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Melanoma, a cancer of the skin, arises from transformed melanocytes. Melanoma has the
highest mutational burden of any cancer partially attributed to UV induced DNA damage.
Localized melanoma is “curable” by surgical resection and is followed by radiation therapy
to eliminate any remaining cancer cells. Targeted therapies against components of the
MAPK signaling cascade and immunotherapies which block immune checkpoints have
shown remarkable clinical responses, however with the onset of resistance in most
patients, and, disease relapse, these patients eventually become refractory to treatments.
Although great advances have been made in our understanding of the metastatic process
in cancers including melanoma, therapy failure suggests that much remains to be learned
and understood about the multi-step process of tumor metastasis. In this review we
provide an overview of melanocytic transformation into malignant melanoma and key
molecular events that occur during this evolution. A better understanding of the complex
processes entailing cancer cell dissemination will improve the mechanistic driven design of
therapies that target specific steps involved in cancer metastasis to improve clinical
response rates and overall survival in all cancer patients.
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INTRODUCTION TO MELANOMA

In the United States, cancer is the second leading cause of death and is expected to surpass heart
disease in a few years (1). Skin cancer is by far the most common of all cancers, with an increasing
frequency in the past three decades that includes basal cell carcinoma (BCC), squamous cell
carcinoma (SCC), and melanoma. Although melanoma accounts for merely 1% of all skin cancers, it
is responsible for the majority of skin cancer related fatalities. Melanoma is the most aggressive and
dangerous forms of skin cancer that develops from the transformed pigment forming cells of the
skin, melanocytes (2). Diagnosing melanoma in its early stages, in situ, is crucial for the prognosis
and survival of this deadly disease as the 5-year survival rate for primary melanoma is 99% and for
metastatic melanoma is only 27% (1). Global incidence rates for melanoma have steadily increased
over the years; in the United States approximately 100,000 new cases of invasive melanoma will be
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diagnosed in 2021 and about 7,000 of those melanoma patients
will die from this disease (1, 3). There are various risk factors
associated with melanoma: a family history of skin cancer, being
a male, fair skin, number of moles, age, and UV exposure (1, 3–
9). The most common inherited genetic defects associated with a
predisposition to developing melanoma are the cell cycle
regulating genes: CDKN2A, CDK4, a gene responsible for skin
pigmentation: MC1R, and the genetic disorder xeroderma
pigmentosum (XP) that disrupts the proper repair of UV
induced DNA damage thereby leading to a higher mutation
rate (10–17).

A dermatologist usually diagnoses melanoma on a patient
using the ABCDEF criteria with the help of a dermascope, a tool
that removes skin surface reflections to accurately distinguish
between a benign or malignant lesion (18–20). The ABCDEF
criteria are: Asymmetry, Border irregularity, Color variegation,
Diameter >6 mm, Evolution of a nevi and Funny looking, where
a malignant nevi does not conform to the common profiles of
nevi found on a patient (18). Once diagnosed, the melanoma is
staged using a set of principles developed by the American Joint
Committee on Cancer (AJCC) to guide patient treatment and
prognosis (21). Melanoma patients can be classified into five
distinct stages, 0, I, II, III, and IV, as the stage increases the
prognosis is worse (21). Stage 0 is defined as melanoma in situ
while stage IV melanoma is known as metastatic melanoma.
Metastatic melanoma is defined by the dissemination of primary
melanoma cells to distant organs including but not limited to the
lymph nodes, lungs, liver, brain, and bone (21, 22). AJCC criteria
uses different permutations of the TNM system, to categorize
melanoma from early stage to late stage melanoma (21). The
TNM system is defined as: Tumor thickness with or without
ulceration, Nodal involvement, and Metastasis (21). Great
advances have been made in the understanding of melanoma
pathogenesis that have resulted in improved disease treatment
Frontiers in Oncology | www.frontiersin.org 2
outcomes including targeted therapies: BRAF and MEK
inhibitors and immunotherapies: monoclonal antibodies that
target CTLA-4, PD-1 and PD-L1, however not all patients
respond, and resistance eventually develops to these agents.
This underscores the importance of dissecting the molecular
pathways mediating metastasis, the processes of transitioning of
an immobile melanoma cell into a motile cell that can
successfully colonize distant organs. A better understanding of
these pathways will help in the identification of biological
markers (biomarkers) for better diagnosis and provide rational
therapeutic strategies to predict favorable treatment responses.
TUMOR INTRINSIC AND EXTRINSIC
FUNCTIONS NECESSARY
FOR SUCCESSFUL TUMOR
CELL DISSEMINATION

Stepwise Molecular Evolution for the
Transition of Primary Melanoma to
Metastatic Melanoma
Melanoma has the highest mutational burden of any cancer as a
result of UV induced DNA damage and/or DNA replication
errors (8, 23). All these mutations contribute to various aspects of
melanocytic neoplasia; however, certain mutations are
considered driver mutations as they are likely to initiate
melanocytic transformation, the early steps of tumor
formation, progression, and dissemination. Vogelstein et al.,
and Shain et al., have elegantly described the genetic evolution
transpiring during the transformation of a melanocytic lesion
into malignant melanoma (Figure 1) (6, 24, 25). First a normal
melanocyte acquires an initiating driver mutation that leads to
melanocyte hyperplasia and nevi development (6, 25–28). These
FIGURE 1 | Factors Which Contribute to Melanocytic Transformation. Created with BioRender.com.
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steps are known as the breakthrough phase, with a low mutational
burden, and copy number alterations (24, 25). Common
mutations found in melanocyte nevi are BRAF mutations (26–
28). Mutations in BRAF and NRAS are frequently mutually
exclusive, with NRAS mutations sometimes found in nevi,
especially congenital nevi (29, 30). The next step known as the
expansion phase where some of the melanocytic nevi progress into
intermediate lesions and overtime develop into melanoma in situ,
that is accompanied with the acquisition of the TERT promoter
mutations, and a high mutational burden (6, 24, 25, 31). The
TERT gene encodes for telomerase reverse transcriptase,
the catalytic component of telomerase, an enzyme required for
the maintenance of telomeres (31). Aberrant expression of
telomerase allows melanoma cells to become replicative
immortal (31). After the accumulation of various mutations
such as: CDKN2A, TP53, PTEN, and genes encoding SWI/SWF
chromatin remodeling complex subunits, primary melanoma
enters the invasive phase and becomes malignant melanoma (6,
24, 25). This phase is characterized by a high tumor mutational
burden and increased copy number alterations (6, 25). To note,
only 20–40% of melanomas arise from nevi and the rest are de
novo, however de novo melanomas may arise from clinically
undetectable precursor lesions, and these lesions may follow
similar trajectory as detectable lesions (Figure 1) (6, 25, 32, 33).

In addition to the genetic defects associated with metastatic
melanoma development there are several dysregulated key
signaling pathways that occur during melanoma progression
such as the WNT, MAPK, and PI3K/AKT pathways (22, 34,
35). These pathways are involved in melanoma cell proliferation,
growth, survival, evading cell death, and acquiring metastatic
properties (34, 35). The MAPK and PI3K/AKT pathways can
cooperate with each other in the transduction of survival signals
(36). The WNT signaling cascade plays a fundamental role in
embryogenesis (37). The involvement of such a central pathway,
the WNT pathway, in melanoma cell dissemination suggests that
the reactivation of elements associated with embryogenesis is
crucial in elucidating cancer cell metastases (37, 38).
Embryogenesis requires a single cell to proliferate and
differentiate into various cell types and acquire migratory/
invasive properties required for body patterning that parallels
carcinogenesis (37, 38). Signal transduction of the WNT, MAPK,
and PI3K/AKT pathways in melanoma cells promotes altered
expression of cell adhesion molecules and peptidases allowing for
the remodeling of the extracellular matrix (ECM) to facilitate in
cancer cell migration (34, 39–42). During melanoma
progression, elevated matrix metallopeptidase (MMP)
expression and function have been detected (34, 43, 44). MMP
facilitates the degradation of the ECM that supports melanoma
growth during early stages and eventual migration to distant
organs (34, 43, 44). Increased MMP avidity in the tumor
microenvironment is contributed by both tumor production of
MMP as well as tumor induced fibroblast production of MMPs
(39–47). Loss of the ECM enables melanoma cells to become
anchorage independent and anoikis resistance that support
melanoma dissemination through the circulatory system. In
addition to MMP cleaving connections between melanoma
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cells and ECM, the loss of adhesion molecules such as
integrins and cadherins also contribute to the motility of
melanoma cells from the primary site (22, 34, 48–51). Cell
adhesion molecules are required for cell attachment to the
basement membrane and cell-cell interactions allowing for the
proper development of tissues and organs. Under normal
physiology, cell adhesion molecules, integrins and E-cadherins
are involved in the attachment of melanocytes to the basement
membrane and mediating the interactions between keratinocytes
and melanocytes (52, 53). During melanoma progression, E-
cadherins are progressively reduced to allow for the dissociation
between melanocytes and keratinocytes followed by concomitant
upregulation of N-cadherins to support melanoma cell survival,
and migration through tissues, a process regulated by the PI3K/
AKT pathway (54–56). In addition to modulations in the
expression of cadherins during metastasis, integrins can be
modulated to support motility and migration into hospitable
metastatic niches by modifying basement membrane
interactions, supporting angiogenesis formation and expression
of MMPs (34, 51, 57–59). There are specific micro RNAs
(miRNA), metastamiRs, that were shown to potentiate cancer
cell metastasis by regulating critical steps associated with
epithelial and mesenchymal transition (EMT), angiogenesis,
colonization, adhesion, migration, and invasion (60).
Melanoma cell interactions with neighboring cells are essential
for their survival, proliferation, and dissemination, in line with
this we will discuss the importance of immune evasion in
melanoma metastasis.

Interactions Between the Host Immune
System and Melanoma Cells to Support
Melanoma Cell Growth and Dissemination
Our immune system is essential for defending us from foreign
pathogens that invade our body. Cancer is a distorted version of
our normal self, and under this guise it can evade immune
destruction through the process of immune editing (61, 62). It
takes many years through the process of immune editing for a
clinically detectable melanoma (or other cancers) to emerge (61,
62). Immune editing is composed of three phases: elimination,
equilibrium, and escape phases (61, 62). Immunogenic
melanoma clones during the elimination phase are detected by
antigen presenting cells, phagocytosed and cross-presented to
melanoma specific cytotoxic T-cells for activation to induce an
anti-tumor responses against melanoma associated antigens
(61). This process inherently allows for the selection of low
immunogenic melanoma cell clones to survive and evade host
immune detection while highly immunogenic cell clones are
eliminated, a process termed as the equilibrium phase (61).
Immune resistant melanoma cell clones that have survived are
able to proliferate and migrate to distant organs without immune
detection, a term coined as the escape phase (61). The process of
immune editing is supported by the notion that the first site of
melanoma metastasis is detected in the lymph nodes, an organ
composed of many cytotoxic immune cells (Figure 2) (22). If the
immune system is not suppressed, then these melanoma cells
would not be able to survive and thrive at this site (Figure 2). The
February 2021 | Volume 10 | Article 626129
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migration of low immunogenic primary melanoma cells into
lymph nodes may not be attributed solely to the passive
migration of these cells from the primary niche to the
metastatic niche, but rather a preferential migration to the
lymph nodes to improve tumor fitness and colonization
abilities (63–65). The migration of melanoma cells from the
skin to the lymph nodes is attributed to their ability to secrete
soluble factors, in addition to the presence of small vesicles,
exosomes, which contain cargo that promote the lymphatic
system to expand its vasculature (65) (Figure 2). Furthermore,
lymphatic endothelial cells secrete cytokines and chemokines
that support the movement of tumor cells to the lymph nodes
(65). All these factors are key contributors to the successful
colonization of melanoma cells to the lymphatic tissues (65). One
of the rate limiting steps in the establishment of distant
metastasis is oxidative stress (65). To overcome this barrier,
primary melanoma cells preferentially migrate to the lymph
nodes where they are educated to become resistant to oxidative
stress (65). This adaptation allows these tumor cells to
successfully seed and colonize distant organs compared to
circulating melanoma cells (64, 65). Next, we will discuss the
critical players in tumor metastasis including genetic mutations,
signaling pathways, tumor microenvironment and the
involvement of small vesicles, exosomes (Figure 2).

Experimental Models to Study Melanoma
Metastasis
Experimental models that recapitulate the onset and progression
of human disorders is essential in biomedical research to bridge
the gap between basic science and the treatment of diseases.
There are very few animal models for tumor metastasis, with the
B16 mouse melanoma cell line being a very popular one. The B16
parental cell line was derived from a C57BL/6 mouse which
spontaneously developed lesions and were subsequently adapted
to grow in cultured conditions (66). There are several subclones
of B16 cells with differing metastatic capabilities (66, 67). These
subclones were derived by subcutaneously injecting B16 cells
into syngeneic C57BL/6 mice (spontaneous metastasis), or by
intravenous injection of these cells into circulation (experimental
metastasis) (66). Our spontaneous melanoma-prone mouse
model is driven by the ectopic expression of a normal neuronal
Frontiers in Oncology | www.frontiersin.org 4
receptor, Metabotropic Glutamate Receptor 1 (protein: mGluR1;
gene: GRM1) in melanocytes which is a useful model to study
spontaneous metastasis in a biologically and physiologically
relevant manner (68–72). We demonstrated this melanoma-
prone mouse model has several advantages: it develops
spontaneous metastatic melanoma with 100% penetrance, the
progression of the disease mimics human melanoma progression
and metastatic dissemination with melanomas being detectable
first in the lymph nodes and at later stages in the lung, brain, and
other sites (68–72). In some cases, the melanotic tumors can
undergo phenotypic changes into amelanotic metastatic tumors
similar to human melanomas (72). Recently, Kos and co-workers
used fluorescence imaging to trace melanoma cell dissemination
in an intact in vivo setting using crosses of our mice, this new
strain will be a useful tool to study spontaneous metastasis (73).
The study of spontaneous metastasis is hindered since the
required interval for spontaneous metastasis to occur in vivo
takes much longer than the commonly used intravenous
inoculation of tumor cells, in addition animal wellness rules in
almost all institutions, frequently discourages the practice to
keeping tumor-bearing mice for a long period of time.
MECHANISMS AND ROUTES
FOR MELANOMA METASTASIS

EMT-to-MET Transition
There are numerous steps required for melanoma cells, as well as
other cancer cells, to successfully spread to distant organs.
Melanoma cells must first dissociate from the primary tumor
and undergo Epithelial Mesenchymal Transition (EMT), a
process by which epithelial cells undergo morphological and
phenotypic changes that allow them to become more migratory
and invasive through tissues and enter circulation. Tsuji and
colleagues have proposed that tumor cells that have not
undergone EMT, termed non -EMT tumor cells are attached to
EMT tumor cells and “come along for the ride” to distal organs
(Figure 3) (74). Bockhorn and colleagues suggested the notions
of passive and active intravasations (75). In passive intravasation
tumor cells are passively shed during tumor progression as a
result of a highly stressful environment (Figure 3) (75). Active
intravasation is when cancer cells are actively undergoing
molecular alterations to a metastatic phenotype and follow a
chemokine gradient to arrive at the site of metastasis (Figure 3)
(75). We propose that both passive and active intravasations
occur as tumor progresses, since the surrounding extracellular
matrix (ECM) is degraded and enables both EMT and non-EMT
tumor cells to intravasate into circulation (Figure 3) (74, 75). In
this scenario, EMT cells are actively intravasating into circulation
and non-EMT cells are the passengers as in passive intravasation
(Figure 3) (74, 75). Once in circulation, these traveling melanoma
cells will migrate to their preferential metastatic organs mediated
by chemotaxis of specific chemokine ligand-receptor interactions
or by passive migration (22, 74, 75). In circulation, melanoma
cells can transdifferentiate into endothelial cells where they
remain dormant at the intravascular niche near the metastatic
FIGURE 2 | Exosomes. Melanoma exosomes create a pre-metastatic niche
at distal sites to support melanoma cell dissemination. Created with
BioRender.com.
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site (Figure 3) (73). Quiescent in-transit melanoma cells are
resistant to therapies, suggesting that these melanoma cells may
have transdifferentiated into endothelial-like cells and contribute to
melanoma relapse in patients who have previously responded to
therapy (73). Interestingly, it was shown that highly metastatic
melanoma cells can form their own vascular tubes to improve
blood flow to the tumor site and promote cancer cell dissemination,
a phenomenon known as vascular mimicry (76, 77). It has been
proposed that these transdifferentiated quiescent melanoma cells
may undergo an endothelial to mesenchymal transition (EndMT)
to extravasate into the metastatic niche (73). Therefore, it is
possible that there are at least two distinct mechanisms for
circulating melanoma cells to successfully establish at the
secondary site depending on if they are active or dormant cancer
cells: 1) the canonical extravasation or 2) the proposed transition of
a quiescent-like endothelial melanoma cell to convert into a
Frontiers in Oncology | www.frontiersin.org 5
mesenchymal phenotype in order to successfully extravasate into
the metastatic niche (Figure 3) (73, 78). If the environment of the
metastatic niche is favorable, melanoma cells can successfully
colonize there and become clinical detectable tumors. Alternate
mechanisms of tumor cell dissemination have been proposed. One
of these mechanisms is that melanoma metastasis occurs in parallel
with the primary tumor rather in a stepwise manner, a distinct idea
from EMT (6). This concept is based on the observation that in
some melanoma patients with localized melanomas who have had
their sentinel lymph nodes removed but did not show
improvement in their survival suggests that the tumor cells may
already have migrated to distal organs (6, 63, 79, 80). Furthermore,
patients who have localized melanomas or no metastasis at all
have shown the presence of circulating melanoma cells (6, 81).
Another intriguing proposal is that benign melanocyte nevi can
migrate to distal sites and acquire oncogenic mutations enabling
FIGURE 3 | Melanoma Metastasis. Three routes of primary melanoma dissemination are outlined. A primary melanoma can undergo 1) passive shedding of tumor
cells, non-EMT (epithelial to mesenchymal transition) followed by passive intravasation, 2) tumor cells can undergo EMT and active intravasation or 3) melanoma cells
can undergo EMT and bring along non-EMT tumor cells, where the EMT cells are actively intravasating while the non-EMT cell are undergoing passive intravasation.
Once in circulation, tumor cells will migrate to site of metastasis. If the tumor cells are active, they will undergo the canonical extravasation by mesenchymal to
epithelial transition (MET). If the tumor cells are dormant, they will transdifferentiate into endothelial cells at the intravascular niche, undergo endothelial to
mesenchymal transition (EndMT) and extravasate into the niche. Created with BioRender.com.
February 2021 | Volume 10 | Article 626129
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their transformation into melanoma cells at the metastatic site,
a process known as benign metastasis (6, 82–84). Benign
metastasis may explain how 4% of melanoma patients develop
“metastasized” melanomas despite the absence of detectable
primary tumors (6). These findings further complicate our
understanding of melanoma metastasis; however, it is possible
that in some cases both stepwise and parallel melanoma
dissemination occur simultaneously.

Angiogenesis
Angiogenesis is a biological process that marks a critical stage in
tumor progression where the cells transition from an avascular to
a vascular phase, serving as a turning point in melanoma tumor
growth and metastasis (Figure 4). Melanoma cells serve as the
source of several classical angiogenic growth factors including
but not limited to vascular endothelial growth factor (VEGF),
also known as the vascular permeability factor (VPF), fibroblast
growth factor (FGF), interleukin-8 (IL-8), and placental growth
factor (PlGF), all potent contributors of angiogenesis (Figure 4)
(85). VEGF is often considered to be one of the most important
mediators of angiogenesis and was shown to have elevated
expression in all known solid tumors including malignant
melanoma (86). Melanoma cells produce and secrete VEGF
into the extracellular matrix (87). Expression of a specific
VEGF isoform in an otherwise non-tumorigenic, non-VEGF
expressing melanoma cell line results in an aggressive tumor
with a highly extensive supporting vasculature, suggesting its
undisputed role in promoting angiogenesis (88). Upregulation of
IL-8 and VEGF have also been postulated to contribute to the
development of resistance to chemotherapeutic agents in
Frontiers in Oncology | www.frontiersin.org 6
melanoma (89). VEGF mediates its effects by interacting with
and stimulating its high-affinity transmembrane family of
tyrosine kinase receptors, VEGF receptors (VEGFRs). At the
molecular level, interactions between VEGF and VEGFR-
mediated signal transduction, promote reprogramming of
specific gene expression in endothelial cells, including
upregulated expression of several proteins encompassing the
procoagulant tissue factor, proteins associated with the
fibrinolytic pathway, MMPs and a number of anti-apoptotic
factors (90, 91). The consequences of this altered gene expression
includes stimulation in endothelial cell proliferation and
migration, lumen formation, increased vessel dilation and
permeability thereby enabling constant supply of both oxygen
and nutrients to support the growing tumor (92). Inhibition of
angiogenesis through targeting of various driver genes,
predominantly VEGF, has been touted as a novel alternative or
supplement to conventional cancer therapy (93–95). Since anti-
angiogenic agents were shown to effectively slow the growth and
metastasis of human melanoma, it is not surprising that the
efficacy of these agents in augmenting the benefits of other
promising therapies is being tested in clinical trials (87, 96).
Unfortunately, anti-angiogenic monotherapies in melanoma did
not show remarkable clinical responses and it has been suggested
that vascular mimicry plays an important role in improving blood
supply to the tumor to support its growth and dissemination (97,
98). It is possible that delivering therapeutics that block
angiogenesis or vascular mimicry to early-stage melanoma
patients, may impede metastasis in two ways: 1) block nutrient
and oxygen flow to the primary tumor and 2) hamper primary
tumor cells’ dissemination by inhibiting entry into circulation.

Exosomes
All cell types release exosomes but cancer cells release higher
amounts of exosomes compared to their normal counterparts
(2). Cancer exosomes play important roles in creating a favorable
environment for cancer cells to thrive in; which can be attributed to
the suppression of an anti-tumor immune response and
establishment of a pre-metastatic niche (Figure 2) (2).
Accumulating evidence suggests that the horizontal transfer of
tumor exosomal cargo, composed of nucleic acid, lipids, and
proteins, into recipient cells within lymphoid tissue promotes
immune suppression resulting in defective antigen presentation,
reduced antigen specific anti-tumor immune response and
upregulation of immunosuppressive cytokines that support
melanoma metastasis to the lymph nodes and beyond (Figure 2)
(99–105). These unique features plus PD-L1 expression on the
exosome surface, contribute to defective immune effector cell
function at both local and systemic levels (106–108). In addition
to their roles in modulating the immune system, other functions
have been attributed to exosomal cargo including enhanced
vascular leakiness, fibronectin deposition, and delivery of soluble
factors that are involved in ECM remodeling to support formation
of a metastatic niche for tumor cells, including melanomas (Figure
2) (2, 104, 109–112). Exosomes support the “seed and soil”
hypothesis of cancer cell dissemination (111–113). Melanoma
exosomes located at the most common sites of metastasis, lymph
nodes, liver, and lungs, create a “fertile soil” for melanoma cells to
FIGURE 4 | Angiogenesis in Melanoma. A mechanism to provide
nourishment to the growing tumor cells and establish routes to distant
metastatic sites. Vascular Endothelial Growth Factor (VEGF), Fibroblast
Growth Factor (FGF), Interleukin-8 (IL-8), and Placental Growth Factor (PlGF).
Created with BioRender.com.
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“seed” upon arrival then proliferate and manifest into a malignant
tumor (111–113). In our mGluR1 driven melanoma model, we
have demonstrated that mGluR1+ melanoma exosomes when
taken up by mGluR1− recipient cells promote these cells to
become more migratory, invasive and develop an anchorage-
independent growth phenotype compared to mGluR1−

melanoma exosomes (114). Taken together, it is clear that every
step of tumor dissemination is critical for its successful colonization
to distant sites. Better understanding of these necessary molecular
and theoretical steps will provide rational therapeutic designs to
improve the efficacy of treatments as well as reduce disease relapse.
BIOMARKERS IN MALIGNANT
MELANOMA

Melanoma biomarkers can be divided into different categories
based on their level of expression compared to normal tissues as
well as their ability to serve as prognostic or predictive markers
(115). These markers can be further classified into two groups
(serum-specific and tissue-specific) depending on their dominant
location of expression. Due to the complexity and heterogeneity of
melanoma tumors, immunohistochemical staining for tissue-
specific melanocytic markers is often used to diagnose melanoma.
Microphthalmia-associated transcription factor (MITF), a
predominant tissue-specific marker, plays a critical role in lineage
commitment of melanocytes and melanoma (116). Normal
melanocyte differentiation and proliferation are under the
regulation of MITF. MITF expression is also essential for
melanoma cell proliferation and survival (117). With integrative
genomic analysis, it was found to be amplified in ~16% of
melanomas. BRAFV600E mutation together with ectopic expression
of MITF has been shown to transform primary melanocytes into
malignant melanoma (118). In addition, MITF also stimulates the
cell cycle regulator, INK4A, for efficient melanocyte differentiation
(119). Several studies have investigated the potential of MITF in
specificity and sensitivity in distinguishing melanoma from other
cancers, however, the discovery of the presence of MITF in other
non-melanocytic cell types in the tumor microenvironment has
complicated this notion (120–122). Similar concerns pertaining to
other tissue-specific biomarkers including tyrosinase, MMPs,
cyclooxegenase-2 (COX-2), chondroitin sulfate proteoglycan 4
(CSPG4), and human melanoma black-45 (HMB-45) among
others also have been reported (123). A lack of “tumor-specific”
non-invasive and affordable tools including specific antibodies have
greatly hampered the use of biomarkers in diagnosis, prognosis, and
prediction of treatment outcomes. It is critical to improve biomarker
discoveries and detection tools. Promising candidates are “OMICS”
studies that include a variety of cancer and normal tissue specimens
along with machine learning approaches may have the potential to
promote such findings.

Regarding serum-specific biomarkers, lactate dehydrogenase
(LDH) is one of the best prognostic factors in metastatic
melanoma (124). Cancer cells including melanoma employ a
different metabolic strategy than normal cells to satisfy their
energy requirements and sustain cellular proliferation. Under
Frontiers in Oncology | www.frontiersin.org 7
aerobic conditions, normal cells acquire their energy primarily
from the conversion of glucose to pyruvate by a process known
as glycolysis that occurs in the cytosol. Pyruvate then enters the
tricarboxylic acid (TCA) cycle where it converts into carbon dioxide
in the mitochondria via oxygen-consuming cellular respiration
(125, 126). However, under hypoxic conditions such as in most
tumors, where oxygen is not readily available, cells prefer to rely
more on anaerobic glycolysis that converts glucose into lactate
instead of pyruvate. Elevated levels of LDH, an enzyme that
catalyzes the conversion of pyruvate to lactate, in systemic
circulation was shown to predict survival in patients with
metastatic melanoma (127). The increase in serum LDH is
associated with poor survival, one of the consequences of
melanoma cells outgrowing and surpassing the blood supply
(124). Similar to tissue-specific biomarkers, differential sensitivity
and specificity are also reported in serum-specific markers including
but not limited to LDH, S100 and melanoma-inhibitory activity
(MIA) (128). The importance of cancer exosomes in mediating
tumor progression has led many investigators to evaluate its
diagnostic and prognostic value as a biomarker (2). Cancer
exosomes that carry specific molecules such as, PD-L1, CD63,
Caveloin-1, MIA, S100B, Glypican-1, and non-coding RNA to
name a few, were shown to stratify patients participating in
various clinical trials into responders versus non-responders,
healthy controls and disease-free patients versus cancer patients,
and/or cancer patients with differing survival outcomes (104, 107,
129–133). Taken together, the challenges that confront the
identification of a reliable melanoma biomarker emphasizes the
need to investigate and validate emerging biomarker candidates in
the clinic to realize their diagnostic, prognostic, and
predictive values.

The identification of a reliable predictive clinical biomarker is
crucial for precision medicine. Predictive biomarkers are biological
molecules detected in most patients and are frequently correlated
with treatment responses (134). Personalized/precision medicine is
the future for human disease treatments, and it is essential to
identify clinically relevant biomarkers that can be easily applied in
the clinic. Most pre-clinical cancer studies only assess for the efficacy
of drug(s) in tumor progression, but it is crucial to also identify
predictive biomarkers for treatment responses. Identification of
these biomarkers will provide clinicians with the opportunity to
make suitable and rational decisions in therapeutic options.
MELANOMA TREATMENTS

Chemotherapies and Targeted Therapies
For patients diagnosed with primary melanoma, surgical removal of
the tumor(s) provides the best chance of definitive cure. Late-stage
melanoma is difficult to treat due to metastasis, refractile to most
treatment modalities and a high genomic variability of a
heterogeneous melanocytic tumor (135). The understanding of
how various genetic mutations are associated with the onset and
progression of melanoma allows for innovation and subsequent
implementation of novel therapeutic strategies targeting specific
oncogenes. Within the last decade, much progress has been made
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in the treatment of metastatic melanoma. Earlier studies showed
that treatment with Sorafenib (BAY 43-9006), a general multi-
kinase inhibitor resulted in inhibition of melanoma cell
proliferation in vitro and in vivo (136). However, in the Phase 2
randomized Sorafenib clinical trial little or no anti-tumor activity
was detected in advanced melanoma patients, therefore, the trial
was discontinued (137). A highly selective small molecule
inhibitor, Vemurafenib/Zelboraf (PLX4720/PLX4032), against
cells that harbor the most common mutation in melanoma,
mutated BRAFV600E, was initially reported to have therapeutic
effects in patients with advanced melanoma but its effectiveness
was marred by patient relapse within 8–12 months (138–141).
The treatment responses were short-lived due to the reactivation
of the MAPK pathway and/or other mutations (36, 142–144).
Combining BRAF inhibitors with other small molecule inhibitors
that target other components of the MAPK pathway such as MEK
and ERK appear to be an improvement over single-agent therapy
but also has increased toxicities (36, 145, 146). It is noteworthy
that until recently, it had not been possible to develop an inhibitor
towards RAS (147). Christensen et al., reported a KRASG12C

inhibitor that demonstrated pronounced tumor regression in
multiple KRAS-mutant tumor models (148). KRAS mutations
are rare in melanoma, where it accounts for about 1.7% and is
almost exclusively in codon G12 however it is not known if the
recently developed KRASG12C inhibitor will have any effects in
KRASmutated melanomas, furthermore, possible efficacies of the
mutated KRAS inhibitor toward NRAS mutated melanomas was
not tested (149). Despite the nominal successes described above
for some patients they only represent a minority of all patients.

Immunotherapies
Melanoma is one of the most immunogenic types of cancers,
hence making it a strong candidate for immune checkpoint
blockade (ICB) therapy (150). This therapy utilizes a patient’s
own immune system to attack cancer cells with a robust anti-
tumor response, long-term immunity, and durable survival. The
concept of immunotherapy has been around for approximately
130 years with the early usage of Coley’s toxin, then almost a
century later, the uses of interferon (IFN), high dose interleukin-
2 (IL-2) and the cancer vaccine, Bacillus-Calmette-Guerin (BCG)
have been described for the treatment of melanoma (151–153).
These early immunotherapies were non-specific, however within
the past decade the utilization of targeted immunotherapies have
risen with monoclonal antibodies that block immune checkpoint
molecules, such as cytotoxic T-lymphocyte associated protein–4
(CTLA-4), programmed cell death protein-1 (PD-1), and
programmed death ligand-1 (PD-L1), adoptive T-cell therapies
and oncolytic viruses (151, 153–155). These new targeted
immunotherapies have shown remarkable anti-tumor immune
responses with improved survival; however, they only benefit a
subset of patients.

During infection, immune activity is heightened in order to
properly identify and eliminate the source of infection. To reduce
the likelihood of the development of autoimmunity the body uses
immune checkpoints such as CTLA-4, PD-1, and PD-L1 to rein
in the overactive immune response (156–161). Cancer cells
utilize these immune checkpoints to induce local and systemic
Frontiers in Oncology | www.frontiersin.org 8
immune suppression. Since cancer is a chronic disease, T-cells
within the lymph nodes are continuously exposed to cancer
antigens resulting in the upregulation of CTLA-4 on their cell
surface and inhibition of proper T-cell activation, disrupting
anti-tumor cytotoxic T-cell functions that results in T-cell anergy
(162–164). The PD-1/PD-L1 axis functions within the tumor
microenvironment, the PD-1 receptors are expressed on the
surface of T-cells and tumor cells express its ligand, PD-L1
(152). The PD-1/PD-L1 axis inhibits cytotoxic T-cell response
against tumor cells (152). Interestingly, it was shown that this
axis contributes to T-cell anergy within tumor draining lymph
nodes and that PD-1/PD-L1 interactions within tumor draining
lymph nodes can be used as a prognostic marker to determine
melanoma treatment outcomes (165). Monoclonal antibodies
were developed to block these immune checkpoint interactions.
Ipilimumab blocking CTLA-4, and Pembrolizumab/Nivolumab
blocking PD-1. The FDA has approved these antibodies for
patients with unresectable or metastatic melanoma and these
agents were shown to have strong durable responses with
improved survival in a subset of patients (151, 152, 166–169).
Stage III melanoma patients who have had their melanomas
resected can undergo different regimens based on their BRAF
genotype (170). Patients who harbor mutated BRAF are given
adjuvant anti-PD-1 therapy in combination with BRAF and
MEK inhibitors, while patients with wild-type BRAF are given
anti-PD-1, as opposed to anti-CTLA-4 due to toxicity (170). The
anti-PD-L1 antibody, Atezolizumab has been approved for
unresectable or metastatic melanoma patients with the BRAF
V600 mutation in combination with BRAF and MEK inhibitors,
Vemurafenib and Cobimetinib (153). It is not surprising that
various combinatorial studies utilizing various permutations of
drugs to combine with anti-PD-1/anti-PD-L1 may improve
patients’ responsiveness to immune checkpoint blockade
therapy have been one of the most sought-after clinical trials
in human cancers including melanoma (169).
DISCUSSION AND FUTURE
PERSPECTIVES

A better understanding of the metastatic processes that govern
migration of primary melanoma to distant metastatic niches such
as lymph nodes, liver, lung, and brain can aid in the clinical
development of novel anti-cancer treatments in the future. Several
therapies that target driver pathways of melanoma metastasis have
been developed: BRAF and MEK inhibitors, anti-angiogenic
therapies and immunotherapies that rejuvenate the immune
system to detect and eliminate cancer cells. These therapies have
remarkable efficacy in the outcomes of treating malignant
melanoma in the past decade, however only a small subset of
patients respond. This implies that our understanding of
melanoma progression is incomplete. To improve our
understanding of the signaling cascades involve in melanoma
progression (or other cancers) we suggest conducting a large-
scale unbiased biomarker serum profiling screen of healthy
donors, disease free patients and melanoma patients at different
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melanoma stages. Biomarkers are molecules that are linked to
disease pathogenesis and identification of biomarkers will reveal
biological pathway(s) involved in melanoma progression.
Identification of upregulated or downregulated serum markers
such as nucleic acids, proteins, exosomes, lipids, and circulating
tumor cells may unravel novel or key metastatic pathways that can
be further dissected, and therapies developed against them. This
proposed concept mirrors forward genetics, we know the external
phenotype is melanoma, therefore doing a high throughput un-
biased screen for serum biomarkers will reveal expression changes
of biomarkers between healthy controls, disease-free patients, and
melanoma patients, which will provide insights into key driver
pathways regulating metastasis. Using this approach will be the
nucleation point to further dissect these pathways and develop a
more robust anti-metastatic drug with better responses than
current therapies. Furthermore, the identification of a reliable
melanoma biomarker that can accurately predict disease treatment
outcome in patients and correctly identify patients who will benefit
from therapy is still underway. Since melanoma is a molecularly
complex and heterogeneous disease with intra- and inter-tumoral
variabilities, evaluating multiple biomarkers simultaneously may
improve the accuracy and precision of predictive markers than
each individual marker.
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