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Abstract: After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient
energy and biochemical building blocks for cell proliferation, even under hypoxic conditions.
Glucose and glutamine become their major limiting nutritional demands. Instead of being
autonomous, tumor cells change their immediate environment not only by their metabolites but also
by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells
shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial
cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs),
which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their
contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure.
Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM.
Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout
from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from
EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace
it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically
malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets
in cancer therapy.

Keywords: abnormal tumor vasculature; anti-angiogenesis; cancer-associated fibroblasts;
endothelial cell–tumor cell interaction; targeted tumor therapy; tumor neovascularization; tumor
metabolism; tumor stroma; tumor vessel disruption; vasculogenic mimicry

1. Introduction

In the last few decades, tumor therapy has made appreciable progress. In addition to surgical
intervention, radio- and chemotherapy have significantly increased survival of tumor patients.
Most recently, immunotherapy directed against immune checkpoint inhibitors has been improved and
advanced to first line therapy for different cancers [1,2].

While the oncogenically transformed tumor cell has been and will continue to be the focus of
cancer therapy, an increasing number of publications in recent years has also shed light on cells in
the vicinity of tumor cells and their role in tumor progression. Stromal fibroblasts, endothelial cells
(ECs) and immune cells belong to this cellular environment. They are not unaffected bystanders,
but their behavior changes in response to neighboring tumor cells. Thus, they may support growth
and progression of cancer cells which eventually subvert the resident cells. This review highlights
metabolic alterations and intercellular communication of tumor cells and their neighboring stromal
fibroblasts and ECs. In addition, immune cells, such as macrophages, granulocytes, and leukocytes,
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are affected in a solid tumor and in turn affect tumor growth. These immunological aspects have been
excellently reviewed elsewhere [3] and will not be covered here. This review focuses on fibrotic and
vascular phenomena within growing solid tumor tissue.

2. Setting the Stage: Cancer Cells Determine the Tumor Microenvironment via Metabolites and
Cytokines, via Cell–Matrix and Cell–Cell Contacts

2.1. Metabolic Reprogramming of Cancer Cells

Proliferating tumor cells lack oxygen due to a malfunction or even absence of a proper tumor
vasculature. Lack of oxygen strongly contributes to a reprogramming of cancer cell metabolism and is
typical of the tumor microenvironment (TME) [4]. Driven by the oxygen-dependent hypoxia-inducible
transcription factor-1α (HIF-1α) [4] and by the transcription factor cellular Myelocytomatose
(c-Myc) [5], expression of key enzymes which regulate fundamental metabolic pathways is controlled
in an orchestrated and cancer cell-specific way [6–8]. Glycolysis and glutaminolysis are the most
prominently activated pathways in cancer cells (Figure 1) which, together with hypoxia, belong to
the metabolic hallmarks of cancer [9]. The prime carbon and energy source of proliferating tumor
cells is glucose (Glc in Figure 1), which, after uptake by glucose transporter tye 2 (GLUT2), is utilized
via glycolysis. Glycolytic key enzymes, such as hexokinase 2 and the pyruvate kinase isoform M2
(PK-M2), are upregulated [10]. Moreover, PK-M2 forms a less active dimer instead of the highly
active tetramer found in normal cells [11,12]. Only high concentrations of fructose-1,6-bisphosphate
triggers the formation of the enzymatically active tetramer of PK-M2 [11,12]. Reduced pyruvate kinase
activity results in accumulation of upstream metabolites [7,8,13], such as phosphoenolpyruvate (PEP in
Figure 1), prompts the synthesis of the amino acids serine (Ser) and glycine (Gly) and stimulates the flow
of metabolites into the pentose phosphate pathway, which yields nicotinamide adenine dinucleotide
phosphate (NADPH + H+) and ribose-5-phosphate (R5P), the building block for nucleotides, RNA and
DNA. Folate-bound C1 bodies (methylene, hydroxymethyl, formyl groups) for purine and pyrimidine
synthesis are provided by the conversion of serine to glycine [6,12].

Instead of being transported into mitochondria, the end product of glycolysis, pyruvate,
is cytosolically reduced to lactic acid, which dissociates into lactate and protons, and both are
transported out of the cells. This explains the tumor-characteristic increase of extracellular lactate
and the acidification of the tumor environment. Almost a century ago, Otto Warburg discovered that
tumor cells prominently use glycolysis, even if sufficient oxygen is provided [14]. The lactic acid
produced by aerobic glycolysis fails to feed the mitochondrial tricarboxylic acid (TCA) cycle [15].
To fuel the TCA cycle, glutamine (Gln in Figure 1) becomes another carbon source of the cancer
cell metabolism. Glutamine utilization is mainly regulated by the glutaminase transporter and by
mitochondrial glutaminase-1 in a c-Myc-dependent manner [16]. Its product, glutamate, not only
replenishes the TCA cycle, but also serves as starting material for glutathione (GSH) synthesis in
the cytosol. As GSH is part of the predominant intracellular redox buffer, the increased glutamine
demand of tumor cells also affects redox homeostasis. The end product of glutaminolysis, α-KG,
not only fuels the TCA cycle but can be converted by mutated isocitrate dehydrogenase isoforms to
2-hydroxyglutarate, whose concentration is elevated in several brain tumors [17].

This characteristic reprogramming of the metabolism allows to identify and to target tumor
cells for diagnosis and therapy of cancer patients. Increased uptake and utilization of glucose
and glutamine by cancer cells is diagnostically exploited by using 2-deoxy-2-(18F)fluoro-D-glucose
(18FDG) in positron emission tomography-computed tomography (PET-CT) and labeled glutamine
derivatives [16]. Several transport proteins for glucose and glutamine, as well as key enzymes of
the aberrantly activated glycolysis and glutaminolysis, have been identified as therapeutic targets
in cancer therapy, such as GLUT2, hexokinase-2, pyruvate kinase type M2 [8,10], glutaminase-1 and
glutamate dehydrogenase [16,18].
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as hypoxia-inducible factor 1α (HIF-1α), cellular Myelocytomatose (c-Myc) and nuclear factor κ-light-
chain-enhancer of activated B cells (NFκB), and upregulate expression of glycolytic and 
glutaminolytic key enzymes. Aerobic glycolysis leads to a high lactate concentration and a low pH of 
the tumor microenvironment (TME). Glycolytic metabolites stimulate the pentose phosphate 
pathway to produce ribose-5-phosphate (R5P) and the production of the amino acids serine (Ser) and 
glycine (Gly), thereby filling the tetrahydrofolate pool of C1-groups ([C1]-folate). The tricarboxylic 
acid (TCA) cycle is fueled by glutamine (Gln) via glutamate (Glu) and α-ketoglutarate (αKG). 
Glutamate is also converted to glutathione (GSH), an intracellular redox buffer. Metabolites, 
phosphoenolpyruvate and oxaloacetate are abbreviated to PEP and OA, respectively. Membrane-
bound cell adhesion molecules (e.g., integrins) and cell–cell contact molecules (e.g., cadherin), as well 
as secreted and soluble growth factors and chemokines are other key communicator molecules 
between cancer cells and their neighboring stromal cells. Cell adhesion molecules bind to the 
extracellular matrix (ECM) and sense its rigidity and mechanical forces. 

Figure 1. Metabolic reprogramming and an altered intercellular communication are hallmarks of
cancer cells. Enhanced demands of glucose (Glc) and glutamine (Gln) as well as low supply of
oxygen are characteristic features of cancer cell metabolism. They activate distinct transcription
factors, such as hypoxia-inducible factor 1α (HIF-1α), cellular Myelocytomatose (c-Myc) and nuclear
factor κ-light-chain-enhancer of activated B cells (NFκB), and upregulate expression of glycolytic and
glutaminolytic key enzymes. Aerobic glycolysis leads to a high lactate concentration and a low pH of the
tumor microenvironment (TME). Glycolytic metabolites stimulate the pentose phosphate pathway to
produce ribose-5-phosphate (R5P) and the production of the amino acids serine (Ser) and glycine (Gly),
thereby filling the tetrahydrofolate pool of C1-groups ([C1]-folate). The tricarboxylic acid (TCA) cycle is
fueled by glutamine (Gln) via glutamate (Glu) and α-ketoglutarate (αKG). Glutamate is also converted
to glutathione (GSH), an intracellular redox buffer. Metabolites, phosphoenolpyruvate and oxaloacetate
are abbreviated to PEP and OA, respectively. Membrane-bound cell adhesion molecules (e.g., integrins)
and cell–cell contact molecules (e.g., cadherin), as well as secreted and soluble growth factors and
chemokines are other key communicator molecules between cancer cells and their neighboring stromal
cells. Cell adhesion molecules bind to the extracellular matrix (ECM) and sense its rigidity and
mechanical forces.

The metabolic reprogramming of tumor cells and secretion of metabolites also contribute to
communication with stromal cells. In some cancer types, cancer-associated fibroblasts (CAFs) and
cancer cells seem to establish a symbiotic relationship regarding their energy metabolism [19–21].
Lactate, produced and secreted by cancer cells is taken up by CAFs and utilized as an energy source
for their pro-tumorigenic functions [22]. Conversely, cancer cells release reactive oxygen species (ROS)
that induce aerobic glycolysis in CAFs, which leads to secretion of additional lactate and pyruvate.
They may provide metabolic energy for cancer cells [22,23]. The direction in which the lactate/pyruvate
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flows depends on the conditions of the TME [19]. Caused by excess lactic acid production, the pH
drop likely contributes to the acquisition of drug resistance in tumor cells [24]. Likewise, ECs near
tumor cells adjust their metabolism and alter the glycolytic metabolism, a property that has recently
been highlighted to be a potential therapeutic approach [25,26].

2.2. Cohesion, Adhesion and Soluble Mediators in the Communication between Tumor Cells

Cell–cell contacts (cohesion) between layer-forming epithelial and ECs are mediated by cadherins
and other cell–cell contact molecules. Epithelial cell-derived carcinoma cells typically express
E-cadherin, while VE-cadherin is the principal cadherin of ECs. Cadherins are transmembrane
proteins consisting of five extracellular IgG-folds, a transmembrane part and a cytoplasmic tail,
the latter of which is anchored via α-, β-, and γ-catenins to the actin cytoskeleton [27]. Two cadherin
molecules of one cell form a homodimer which interacts with a cadherin homodimer of the same
type on a neighboring cell in a Ca2+-ion dependent manner, thus mediating cell-type specific cohesion
and ruling out interactions with cells of other tissues which bear other cadherin types (Figure 1).
While E-cadherin-expressing carcinoma cells cohere, loss of cadherin expression or function promotes
contact loss to neighboring tumor cells. Thus, a carcinoma cell can disseminate from a tumor cell cluster,
a hallmark of malignancy. A detached carcinoma cell changes its cellular morphology and increases
its migratory potential, a process called epithelial–mesenchymal transition (EMT). EMT correlates
with tumor cell scattering and metastasis [28]. E-Cadherin surface exposure is regulated at the
transcriptional level by the key transcription factors, Snail family transcriptional repressor 1 (SNAI1)
and TWIST1, and by epigenetic factors, such as DNA-hypermethylation, as well as by endocytosis
and subsequent degradation [28]. Moreover, growth factor receptors, such as Epidermal growth factor
receptor (EGFR) and hepatocyte growth factor receptor (HGFR, c-Met), may activate Src, which triggers
phosphorylation and endocytosis of E-cadherin, leading to dissemination of tumor cells from the
tumor mass. Even if not completely abolished, reduced E-cadherin levels have been observed in
subgroups of carcinoma cells, which migrate collectively. Downregulation of E-cadherin during
EMT may be accompanied by the upregulation of mesenchymal cadherins, such as N-cadherin and
cadherin-11, which allow new interactions of tumor cells with stromal fibroblasts. Moreover, by
expressing VE-cadherin, tumor cells may also mimic ECs and thus are able to establish unconventional
interactions with ECs. Such heterotypic cohesion events may enable tumor cells to contact with stromal
fibroblasts and ECs directly via cell–cell contacts [28].

Adhesion is the interaction of cells with their extracellular matrix (ECM). As a three-dimensional
interstitial fibrillar meshwork, the ECM scaffolds the stromal tissue and as a two-dimensional
basement membrane (BM), it supports epithelial or endothelial tissue layers. Integrins, heterodimeric
transmembrane proteins consisting of an α subunit and a subgroup-determining β-subunit, are the
corresponding adhesion receptors on adherent cells (Figure 1). Integrins with a β1, β3, and β4
subunit bind via their ectodomains to ECM proteins, which trigger integrin clustering and subsequent
signaling. Lacking a kinase domain, integrins interact with several adaptor, signaling, and cytoskeletal
proteins via their cytoplasmic domains, thereby transducing both environmental cues and mechanical
forces between the ECM and the cytoskeleton [29,30]. It is of special interest that tumor cells generate
mechanical forces via actin-associated motor proteins, such as myosin II. These intracellular forces
are transmitted to the ECM network via integrins and build up tension in it. This mechanical tension
is another key parameter which determines the TME and is sensed by resident cells, e.g., fibroblasts.
Diagnostically, the BM plays a pivotal role in tumor metastasis. It is a sheet-like matrix structure
containing characteristic proteins, such as type IV collagen, laminins, nidogens, and the principal BM
proteoglycan perlecan. In addition to its physiological functions as morphogen, the BM acts as a cell
barrier. Physiologically, it can only be penetrated by leukocytes during immune surveillance of tissues.
Pathologically, oncogenically transformed tumor cells are able to breach the BM due to their altered
integrin repertoire and expression of ECM degrading matrix metalloproteinases (MMPs), and thus
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they are considered malignant [31]. Breaching the BM defines malignancy and is another hallmark of
cancer [9].

Growth factors and chemokines are other means of communication between tumor cells and
within the TME (Figure 1). These soluble signaling molecules are produced by tumor cells or by resident
cells. As a consequence of the TME, tumor cells may produce growth factors, such as Hepatocyte
growth factor (HGF), Fibroblast growth factors (FGFs), Transforming growth factor β isoforms (TGFβs),
Vascular endothelial growth factors isoforms(VEGFs), and cytokines, such as Receptor activator of
nuclear factor kappa-B ligand (RANKL) and other members of the Tumor necrosis factor α (TNFα)
superfamily [32,33]. This cocktail of growth factors and cytokines also contributes to the specific TME.
The growth factors act in an autocrine and/or paracrine manner on tumor cells and/or resident cells,
and stimulate their proliferation. Tumor cells alter the expression and activity of secreted cytokines as
well as of various cytokine receptors. This alters their responsiveness to such factors. Several mutations
in growth factor receptors, such as EGFR, hepatocyte growth factor receptor (cMET), and Fibroblast
growth factor receptor isoforms (FGFRs), have been described to initiate uncontrolled cell proliferation
of transformed cells [34,35]. Secreted by cancer cells, transforming growth factor-β (TGFβ) is a key
driver in the differentiation of fibroblasts to Cancer-associated fibroblasts (CAFs). VEGF-A produced by
tumor cells, under hypoxic conditions, attracts ECs to the tumor cell mass resulting in tumor-induced
angiogenesis. Conversely, growth factors and cytokines produced by the resident cells may affect
the cancer cells and may induce them to change their repertoire of integrins and cadherins [36–38].
For example, after stimulation by HGF, cMet triggers the internalization and subsequent degradation
of E-cadherin in carcinoma cells, resulting in EMT and tumor cell dissemination [28].

In all body fluids, extracellular membrane vesicles (EVs) of different size, such as exosomes,
microparticles or microvesicles, and apoptotic bodies, contain numerous signaling molecules
dependent on their cellular origin. They are released from sender cells to be taken up by target
cells. In this way, they convey intercellular signals in autocrine, paracrine, and even endocrine
manners [39–41]. Thus, they crucially mediate intratumoral signaling, tumor progression, metastasis,
and chemotherapy resistance. Exosomes with a diameter of 30–100 nm generally contain membrane
fusion proteins (e.g., tetraspanins, lactadherin, and integrins), cytoskeletal proteins (e.g., actin
and tubulin), membrane trafficking proteins (e.g., Rab proteins, ADP ribosylation factor (ARF)
GTPases, and annexins), cytoplasmic enzymes (e.g., Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), peroxidases, pyruvate kinases, and lactate dehydrogenase) and, signal transduction proteins
(e.g., protein kinases and heterotrimeric G-proteins) [42,43].

Tumor cells communicate with neighboring resident cells via local metabolic parameters, such as
lactic acid-mediated acidosis, low oxygen supply and increased ROS levels. Furthermore, secreted
mediators, such as growth factors and chemokines, and the composition and mechanical tension of the
ECM and integrin-mediated cell–matrix contacts, as well as cadherin-mediated cell–cell contacts are
other means of communication in the TME (Figure 1). These factors determine the TME, in which the
resident cells change their metabolism and behavior in support of the tumor cell. This niche supports
cancer progression and can be compared to the “soil” in which, according to Stephen Paget’s “seed
and soil” theory (1889) [44], cancer cells thrive or metastasizing cells settle. The tumor cells prepare
this “soil” either directly or by making neighboring cells, such as fibroblasts and ECs, change the “soil”
in favor of the tumor.

3. Stromal Fibroblasts, the Immediate Neighbors of Tumor Cells

The TME constitutes a very complex niche, with extreme importance for the maintenance and
progression of the tumor cells [45]. It consists of two components: cells and the ECM. The tumor stroma,
or “reactive stroma” comprises three important cell groups [19,46]: CAFs (described in more detail in
this section), angiogenic vascular cells (discussed in the next section) and infiltrating immune cells [3].
The pro-tumorigenic TME is characterized by an increased deposition and an altered composition of
the ECM, by higher microvessel density, and by the activation of cancer-recruited stromal cells [46].
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However, the TME differs between tumors, with diverse tumor stroma composition and different
portions and activation states of stromal cells and it may alter during tumor progression, due to the
evolving environmental conditions and oncogenic signals from growing tumors [47]. Differences in
the TME are also observed within the same tumor, with disparities between the invasive edge and the
tumor core, in line with the metabolic alterations, such as the availability of oxygen and nutrients [47].
Additionally, the presence of different cell types producing specific growth factors influences the tumor
cells differently [48]. Finally, mechanical aspects of the tumor stroma, such as stiffness of the ECM
and interstitial fluid pressure, play a crucial role in the TME [46,49]. As complex and diverse as it is,
the TME dictates the fate of the tumor by providing survival and expansion signals, by setting the
selection criteria of mutant subclones and by creating tumor cell heterogeneity, thereby posing an
enormous challenge in cancer therapy [48].

3.1. CAFs Are Crucial for the Maintenance of a Pro-Tumorigenic TME

CAFs are the most prominent cell type in the tumor stromal compartment. They are crucial
in forming and maintaining a pro-tumorigenic niche. Their presence in the tumor tissue has been
associated with a poor prognosis in many cancer types as, e.g., gastric [50], colon [51], breast [52],
and pancreatic cancers [53]. CAFs have been described as myofibroblasts, resembling the activated
fibroblasts in wound healing. In some aspects, the tumor stroma is similar to granulation tissue, since
the main cellular components are fibroblasts, together with immune, inflammatory and ECs [54].
Furthermore, in both tumor progression and wound healing, more ECM is deposited and cross-linked.
As a consequence of this, the ECM scaffold is remarkably stiffened. In addition, more soluble cytokines,
such as TGFβ1, are tethered to the ECM scaffold [54,55]. Dvorak even defined a tumor as “a wound
that never heals” [54].

Normally, the ECM is sparsely populated by undifferentiated spindle-shaped fibroblasts [56].
When tissue injury takes place, these fibroblasts are activated. They start to express high levels of
α-smooth muscle actin (αSMA), gain a stellate shape and produce more ECM [56]. Differentiating into
myofibroblasts, they acquire contractile properties to close the wound. Moreover, they take on a
secretory, migratory, and proliferatory phenotype. This further enhances activation and recruitment
to the damaged tissue [56,57]. Once wound healing is accomplished, these cells revert to their normal
phenotype or undergo apoptosis [56,58]. In a neoplastic lesion, this reversion or apoptosis does not happen.
Instead, their proliferation, secretion of paracrine and autocrine cytokines [59], and ECM production and
remodeling are enhanced [60]. Among the cytokines, TGFβ1, monocyte chemotactic protein (MCP1),
platelet-derived growth factor (PDGF), and FGF, as well as secreted proteases have been implicated
in CAFs activation [61,62]. Cancer cell-derived exosomes containing TGFβ and betaglycan have been
reported to induce differentiation of fibroblasts to myofibroblasts by SMAD signaling and upregulation
of basic FGF (bFGF, FGF2) production and α-smooth muscle actin expression [63]. While normal
fibroblasts were reported to suppress tumor formation [64], CAFs emerge in the tumor as promoters of a
pro-tumorigenic TME and thus lay an indispensable foundation for cancer progression. What is the origin
of the CAFs present in the TME? There are several and controversial hypotheses about possible precursor
cells and about different stimuli which ultimately induce formerly tumor-suppressing fibroblasts to
express miscellaneous other marker proteins and change their phenotype into that of pro-tumorigenic
CAFs. In accordance to these hypotheses is a description of CAFs as a heterogeneous cell population with
numerous and different functions in the tumor. This heterogeneity complicates their investigation.

Specific markers for CAFs have not yet been identified, but diverse proteins are altered upon
differentiation of fibroblasts into CAFs. αSMA, a component of cytoskeletal stress fibers, was one
of the first proteins to be described as a marker for myofibroblasts in both fibrotic tissue and
cancer [65]. In addition, a filament-associated, calcium-binding protein called fibroblast-specific
protein 1 (FSP1) was typically expressed de novo in activated fibroblasts [66]. Platelet derived growth
factor receptor-β (PDGFRβ) and NG2 chondroitin sulfate proteoglycan (NG2) were found in some
populations of pancreatic CAFs, in co-localization with αSMA and FSP1, albeit in different percentages.
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This may indicate different subpopulations of CAFs [67]. Fibroblast activation protein (FAP) is another
marker, originally described as a cell surface glycoprotein of reactive stromal fibroblasts [68]. ECM
protein tenascin C was also described to be a typical secretion product and hence potential marker
of CAFs [69]. The lack of a universal CAFs marker is likely to be due to the diversity of CAFs.
Depending on the tumor type and organ in which they differentiate, diverse CAF populations exist
which possess different characteristics [51]. Herrera et al. showed that different subpopulations
of colon CAFs, obtained from different patients, had distinct promigratory effects on colon cancer
cells [51]. The diversity of tumor CAFs may be rooted in their origin [51]. CAFs can originate from
several cell types, such as normal fibroblasts, myofibroblasts, adipocytes, smooth muscle cells, or bone
marrow-derived progenitor cells [70,71]. Moreover, the differentiation pattern of CAFs may depend on
environmental cues provided by different components of the TME, such as the ECM and the cytokine
mixture. Local fibroblasts from the stroma where the neoplastic lesion develops can differentiate into
CAF, as a result of stimulation by cytokines of the PDGF or TGFβ family produced by the cancer cells,
macrophages and other stromal cells [72,73]. CAFs may also originate from ECs in a process called
endothelial to mesenchymal transition, which ECs undergo when submitted to fibrotic conditions,
e.g., under the influence of TGFβ1 [74]. By using two different tumor mouse models (pancreatic
neuroendocrine tumor and melanoma), Zeisberg et al. demonstrated, that ECs acquire a mesenchymal
phenotype and express markers such as FSP1, and to a smaller extent, αSMA [74]. This study showed
that ECs are a possible source for CAFs in the microenvironment of angiogenic tumors.

Various functions are attributed to CAFs. Due to their acquired secretory phenotype, they play
a central role in processes such as EMT, angiogenesis and immune cell recruitment. CAFs secrete
TGFβ1 and thus induce EMT in many carcinomas by TGFβ1-mediated loss of adherens junctions and
by increased motility of cancer cells which results in enhanced invasion and metastasis abilities [59,75].
Moreover, some of the first studies on the role of stromal cells in tumor angiogenesis used transgenic
mice expressing green fluorescent protein (GFP) under the control of the vascular endothelial
growth factor (VEGF) promoter. In spontaneous mammary tumors, as in wounds, the predominant
GFP-positive cells were fibroblasts [76]. CAFs also have been reported to promote angiogenesis by
different mechanisms: mouse cervical CAFs produce pro-angiogenic fibroblast growth factors FGF-2
and FGF-7 and, consequently interception of FGF impairs angiogenesis [77]. Another CAF-related
mechanism to stimulate angiogenesis is to recruit endothelial progenitor cells (EPCs) into the carcinoma
site by secretion of stromal cell-derived factor 1 (SDF-1), also known as C-X-C motif chemokine 12
(CXCL12) [78]. Moreover, Orimo et al. described that the interaction of CAF-secreted CXCL12
with its receptor C-X-C chemokine receptor type 4 (CXCR-4 (CXCR4), expressed by carcinoma cells,
results in enhanced tumor growth [78]. This chemokine is also associated with an inflammatory
response by recruiting leukocytes into the tumor stroma, where they contribute to angiogenesis by
producing angiogenic factors, by remodeling the ECM via stimulated secretion of MMP-9, and by
direct differentiation into ECs [79–81]. Moreover, immunosuppressive CAFs at the invasive front of a
tumor interfere with dendritic cell differentiation [47]. CAFs also modulate the immune response by
secreting cytokines and chemokines, such as interleukin-1 and MCP1, respectively [62]. In addition to
cytokines, CAFs secrete exosomes, containing soluble factors that promote breast cancer cell migration.
Such exosomes are yet another means of communication between cancer cells and stroma cells, but also
between primary and secondary sites of a tumor [82].

3.2. ECM Is a Means of Communication in the TME and Signals via Distinct Parameters: Qualitative and
Quantitative Composition, Cross-Linkage of Supramolecular Structures, Tensional Status and Degradation

The ECM forming the extracellular scaffold for fibroblasts is the characteristic component of
connective tissue. Its border, the BM, forms the foundation to which cells of all other tissues,
such as epithelial and ECs, muscle cells, neurons and adipocytes, are anchored. However, during
carcinogenesis, the ECM is remodeled. This is mainly done by stromal cells, such as CAFs [83].
Moreover, breaching of the BM by tumor cells is a hallmark of malignancy.
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The constitution of the ECM in different tumor types is highly heterogeneous. In addition, within
the same tumor, differences can be noted, as ECM deposition may change depending on tumor
staging [84]. Different types of collagens, laminins, proteoglycans, glycosaminoglycans, fibronectin,
and vitronectin are among the most abundantly expressed ECM proteins in cancer stroma. They are
deposited and remodeled by stromal cells, such as CAFs. The ECM in the TME is also functionally
diverse, and the multiple interactions between the different constituents increase this diversity.

As major components of the BM, laminins are crucial in tumor angiogenesis and metastasis [85,86].
Usually laminin α4 chain is overexpressed in breast cancer and promotes cell detachment in vitro,
and in vivo it stimulates tumor re-initiation in multiple organs, and disseminated metastatic cell
proliferation [87].

Expression of fibronectin is upregulated in CAFs at metastatic sites, e.g., in the lung, and serves as a
docking site for the hematopoietic progenitor cells and invading tumor cells [47]. Being part of the TME
scaffold of aggressive tumors, it comes in two different splice variants which differ in the presence of
the extra-domains (ED) A or B, called EDA and EDB [88–90]. Bordeleau et al. described the alternative
splicing as an adaptation of the cells to their microenvironment [91]. The increased production of the
EDB fibronectin isoform by ECs correlates with ECM stiffness [91]. Matrix stiffness-regulated splicing
depends on the activation of various splice factors, on intracellular Rho/Rho-associated protein
kinase (ROCK)-mediated contractility and on PI3K-AKT signaling [91]. Regulation of alternative
splicing by ECM stiffness is likely to occur in other cell types, too [91]. In contrast, the alternatively
spliced EDA fibronectin variant is deposited in regions of active fibrosis, e.g., in idiopathic pulmonary
fibrosis [92,93]. In this context, EDA fibronectin plays a role in TGFβ-dependent differentiation of
fibroblasts into myofibroblasts via autocrine/paracrine feedback loops and in metastasis, while EDB
fibronectin is likely involved in EC proliferation and vascular morphogenesis, tumorigenesis and
EMT [88,94].

Tenascin-C and periostin are matricellular proteins produced by CAFs. They collaboratively
contribute to lung metastasis, in a process involving Wingless-related integration site (Wnt) and
Notch signaling pathways [95]. Periostin recruits Wnt ligands and presents them to stem-like
metastasis-initiating cells [96]. On the other hand, tenascin-C, produced by both CAFs and tumor
cells, activates Wnt and Notch pathways, supporting the fitness of metastasis-initiating breast cancer
cells and their “seeding” at the metastatic site [97]. Moreover, periostin also contributes to proper
assembly and homeostasis of collagen. In addition, its deposition enables tenascin-C to bind to
other ECM molecules such as collagen-I and fibronectin [98,99]. Tenascin-W, the fourth and newest
member of the tenascin family, was discovered ten years ago. It is expressed in activated tumor
stroma, facilitating tumorigenesis by supporting the migratory behavior of breast cancer cells [100].
Both tenascin-C and -W can be expressed in tumor stroma usually at similar percentages, being most
likely produced by CAFs [101]. However, they do not necessarily coexist in a tumor, likely due to
independent modulation mechanisms [101]. For example, tenascin-W is enriched in low-grade cancers,
while tenascin-C expression is found irrespective of the tumor grade [100]. In addition, in colon
cancer, tenascin-W, in contrast to tenascin-C, is ectopically expressed in tumor tissue and is considered
as cancer biomarker of unfavorable disease progression, since it is not detectable in healthy colon
stroma [102]. Moreover, tenascin-W is present in the stroma of mouse mammary tumor models
developing metastasis, whereas tenascin-C is absent from both non-metastatic tumors and normal
mammary tissue [103].

A fibrotic overexpression of collagenous ECM components contributes to a desmoplastic TME [83].
The mechanical robustness and stiffness of the ECM is strongly increased through inter- and
intramolecular cross-linkages of fibrous collagen and elastin. They are catalyzed by members of
the lysyl oxidase (LOX) gene family, such as lysyl oxidase-like protein-1 (LOXL1). The expression
of this amine oxidase seems to correlate with increased tumor malignancy, since it is expressed in
metastatic but not in non-metastatic cell lines [104,105]. Other experimental observations point out
that LOXL1-expressing tumors are highly fibrotic and surrounded by many dense collagen fibers, [104].
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Inhibition of LOX-dependent collagen crosslinking decreases tissue desmoplasia, tumor incidence and
growth, and reduces mechanotransduction in the mammary epithelium [49].

The mechanical forces that increase ECM stiffening and intratumoral pressure are generated
intracellularly by cytoskeletal motor proteins and transmitted via transmembrane integrins to
ECM proteins such as collagens and laminins. The integrin repertoire of tumors alters during
cancerogenesis [106]. Integrins are both mechanotransducers of tensile force and also elicit intracellular
signaling pathways. Thereby, they regulate cell differentiation and fate [106]. Tumor cells express, e.g.,
β4 integrins which endow them with resistance to apoptosis [107]. In addition, β1-integrin expression
has been described as critical for tumorigenesis initiation and for maintaining the proliferative capacity
of late-stage tumor cells [108].

TGFβ stimulates CAFs by autocrine signaling to produce and deposit more collagens I and III
and fibronectin, which then promote cell adhesion and strengthen mechanical signaling between
CAFs and tumor cells [83]. Noteworthy, the ECM can also tether and store growth factors, e.g., latent
TGFβ1 [109]. Integrin-mediated ECM contraction by CAFs releases TGFβ1 from ECM fibers under
tension, especially in a fibrotic and stiffened matrix, and protease-independently activates TGFβ1 [109].
Excess production, remodeling, stiffening of the ECM and CAF differentiation mutually promote
each other, resulting in increased release of TGFβ1 into the TME. Such self-sustaining growth signals
promote cell activation, proliferation, and EMT, thereby reinforcing tumor progression [109].

Matrix stiffening and increased tensile forces modulate the cytoskeletal contractility in CAFs via
the signaling molecules Yes-associated protein (YAP) and ROCK in a self-reinforcing positive feedback
loop, by which CAFs maintain their differentiated phenotype [110]. Moreover, in vitro studies from our
lab have shown that the stiffness of the ECM substrate influences not only the cytoskeletal αSMA-rich
stress fibers but also the adhesion and proliferation of fibroblasts (Figure 2).

A stiff stroma and elevated Rho-dependent cytoskeletal tension promote focal adhesion formation,
disruption of adherens junctions, and disturb tissue polarity [106,111,112]. In a striking study, Paszek et al.
show that matrix stiffness is associated with integrin clustering, Extracellular signal–regulated kinase
(ERK)-enhanced activation, and increased ROCK-generated contractility and formation of focal adhesions,
in a mechanoregulatory circuit [106]. If this process becomes chronic, it promotes cell growth,
disturbs tissue organization, and thus supports malignant transformation [106]. The desmoplastic
response with enhanced matrix stiffening also influences the metastatic potential of epithelial cancer
cells. Transformed cells often exert abnormally high forces, and these forces consequently disrupt cell–cell
junctions, compromise tissue polarity, allow anchorage-independent survival, and ultimately increase
invasion [49]. The cell-generated forces can also account for increased invadopodia, focal adhesion
maturation and actomyosin contractility [49]. Tension-dependent matrix remodeling can also occur, as a
consequence of increased contractility of tumor cells and CAFs, as it is observed in a reorientation of
collagen fibrils surrounding the invasive front of the tumor [49]. Moreover, contraction of CAFs and
tumor cells, and matrix stiffening cause high interstitial pressure which is another characteristic feature
of the TME. Practically, the high tissue tension and high interstitial tension mechanically affects tumor
vasculature by obliterating and provoking the collapse of blood and lymphatic vessels in the tumor [46,83].

Degradation of collagen and of other ECM molecules also contributes to tumor-induced
ECM-remodeling and is another essential requirement for tumor invasion, where MMPs play a
crucial role [113]. In mesenchymal cell migration, invading cells present focalized cell–matrix
adhesions containing multi-molecular integrin clusters and increased proteolytic activity against
ECM substrates [113]. Overexpression of MMPs-3, -11, -12, and -13 was detected in tumor stroma,
along with MMP-2 in transformed mammary epithelial cells [49,114]. Furthermore, tumor cells recruit
MMP-2- and MMP-9-producing neutrophils and macrophages [114]. Notably, immune cells tend to
accumulate and migrate within dense collagen-enriched tumor stroma regions [115]. The activity of
MMPs can be countered by both endogenous and pharmacological inhibitors. High expression of
protease inhibitors (e.g., serpin family members) is associated with good prognosis, whilst tumors
with high expression of integrins and MMPs correlate with poor prognosis and risk of recurrence [116].
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Therapies employing pharmacological MMP inhibitors have been tested for various cancers with
limited success so far [48].
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Figure 2. Mechanical stiffness of ECM is a crucial factor in CAF differentiation. Fibroblasts seeded
in collagen-I coated polyacrylamide gels of defined stiffness (elastic modulus is given in kPa)
exhibited increased adhesion and increased formation of α-Smooth muscle actin (αSMA)-rich stress
fibers (red fluorescence). αSMA immunostaining was quantified as total corrected fluorescence.
This experiment reflects in vivo conditions, where the stiff scaffold of desmoplastic ECM contributes
to CAF differentiation, together with soluble factors such as TGFβ that are stored bound to ECM
fibers and released when CAFs exert force on those fibers. Upon differentiation, CAFs change their
morphology and express different biomarkers, such as αSMA stress fibers (red fluorescence). CAFs
proliferate at higher rate, exhibit a secretory phenotype and enhanced contractibility; thus, they play
an essential role in forming the TME. Scale Bar = 50 µm.

Proteolytic fragmentation of ECM proteins not only leads to remodeling or degradation of
the ECM scaffold, but also release defined ECM protein fragments, so-called matrikines, which act
as soluble mediators such as cytokines and influence both cancer and resident cells of the tumor
tissue. Moreover, they have attracted special attention as potential new anti-cancer agents [117].
Matrikines can block pathways that are involved in proliferation and invasion of tumor cells, and they
affect angiogenic and lymphangiogenic processes [117]. Collagen XVIII-derived endostatin [118] and
perlecan-cleaved endorepellin [119], strongly inhibit tumor growth in many preclinical cancer models
and show angiogenesis-blocking effects on sprouting ECs [117].

4. Interactions of Cancer Cells with Endothelial Cells

4.1. Tumor Vascularization

In the prevascular phase of tumor dormancy, there is a dynamic equilibrium between proliferation
and hypoxia-induced apoptosis of cancer cells [120]. The oxygen diffusion limit in tissue is around
150 µm which restricts avascular tumor growth to just a few millimeters [121]. When a tumor grows
beyond this size, it flips an angiogenic switch and triggers an angiogenic cascade to recruit its own
vasculature and connect to the blood circuit [122,123]. The vasculature becomes permanently activated
to form new vessels by sprouting from pre-existing vessels in order to supply the tumor with blood and
sustain its growth [9]. This angiogenesis is driven by numerous pro-angiogenic cytokines, chemokines,
and matrix-degrading enzymes during tumor development [124–127]. In addition to tumor cells
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themselves, infiltrating bone marrow-derived monocytes that differentiate into tumor-associated
macrophages (TAMs) [128] are a further source of angiogenic factors [129–131] that recruit endothelial
and mural cells, such as pericytes [132,133]. From the microscopic premalignant phase onwards,
this neovascularization enables the tumor to grow exponentially [9,122,134,135].

Tumor blood vessels appear little differentiated, highly tortuous, disorganized, and chaotic. This is
why blood flow is disturbed and drug delivery hampered. Tumor vasculature is unexpectedly complex
and can be classified into at least six types [136]. Its specific organization and the underlying tumor
vascularization mechanisms have been reviewed in [127,137–139]. A lack of mural cells, a poorly
formed BM and a discontinuous endothelium, in which even tumor cells may be incorporated, render
the tumor vasculature leaky and also promote metastasis, The tumor vasculature-surrounding ECM is
anomalously rich in the oncofetal fibronectin ED-B splice variant, which is synthesized by neoplastic
cells [140,141], and in tenascin-C and -W, which are synthesized by melanoma and glioblastoma cells
and by CAFs of most carcinomas [101,142]. Tenascin-C promotes the survival of tumor stem cells,
inhibits immune surveillance, stimulates angiogenesis, proliferation, invasiveness, and metastasis of
tumor cells [101,142]. Furthermore, Tenascin-C expressing neuroblastoma cells can transdifferentiate
into tumor cell-derived ECs [143]. Tenascin-W is exclusively detectable in tumor stroma and can
be used as a tumor marker for breast and colon cancer [102,144]. In addition to preexisting vessels
that can be co-opted by tumor cells (Figure 3A), neovessel formation can originate from quiescent
vasculature in various ways, which are collectively called tumor angiogenesis. This general term
includes EC sprouting, intussusceptive and glomeruloid angiogenesis (Figure 3B–D). Vasculogenesis,
in contrast, is a process of tumor neovascularization in which bone marrow-derived cells are recruited
and differentiate into EPCs (Figure 3E). Thus, tumor ECs are heterogeneous and can originate from
multiple sources [145]. Furthermore, cancer stem-like cells can accomplish vasculogenesis [146],
and tumor cells themselves may differentiate to take over EC functions and line partly or even
completely plasma containing conduits [147]. Integration of tumor cells into an EC layer forms mosaic
vessels (Figure 3F), and the complete lining of blood-filled tubes with tumor cells is a process called
vasculogenic mimicry (VM) (Figure 3G–H) [148,149]. These heterogeneous formation mechanisms
together with the persistent tumor vessel growth lead to a constantly shape-changing, tortuous,
and highly irregular tumor vasculature of which about 30% comprise arteriovenous shunts that
bypass capillaries [120]. The consequential poor perfusion causes hypoxia of ECs, which hereupon
release more pro-angiogenic molecules and stimulate further tumor angiogenesis [120]. The highly
irregular architecture of the tumor vasculature together with irregular direction of flow, turbulences,
and pressure conditions renders the tumor vasculature intrinsically leaky [150–152]. This causes an
increased interstitial pressure, which makes it difficult for chemotherapeutics that are administered
via the bloodstream to reach their site of action [153].

The proliferation of tumor cells alongside of preexisting vessels is termed vessel co-option and
occurs predominantly early in tumor growth, although there is evidence that hijacking vessels by
co-option might persist during all stages of tumor growth [137,154,155]. With progressive tumor
growth, tumor cells proliferate around constantly formed neovessels which markedly differ from
normal vessels in morphology and molecular composition [156,157]. Angiogenic sprouting of
ECs, which are pivotal in blood vessel growth [158], is usually involved in the formation of these
vessels [159]. Triggered by an angiogenic stimulus, select ECs differentiate into tip cells that migrate
along a stimulatory gradient into the avascular ECM. Other ECs start to proliferate and form cord-like
structures behind the tip cells. These cords develop into endothelial tubes that finally anastomose;
pericytes and smooth muscle cells are recruited, and a new BM is formed [160–162]. New tumor vessels
can also arise via EC columns that move into the vessel lumen, and these transluminal pillars enlarge
and form new vessel walls that split the pre-existing vessel into two in a process called intussusceptive
angiogenesis [163–165]. Neovascularization by intussusceptive rather than sprouting angiogenesis
is energy-saving and faster, and occurs inter alia in gliosarcoma multiforme, melanoma, breast and
colon cancer [166]. Glomeruloid angiogenesis, found in many aggressive tumors, is another way
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of tumor angiogenesis in which several microvessels are ensheathed by a BM of varying thickness
containing few pericytes to form complex vascular structures termed glomeruloid bodies [137,167,168].
Additionally, there is evidence for vasculogenesis by recruitment of bone marrow-derived EPCs that
differentiate into ECs [120,169–171]. EPCs also promote the angiogenic switch and the transition
from micro- to macro-metastasis [172]. Furthermore, in many cancers highly invasive and genetically
dysregulated tumor cells have been reported to adopt an EC-like phenotype [173,174] and form
partially non-EC-lined mosaic vessels and even completely non-EC-lined vascular-like channels to
support their own blood supply by VM [148,149]. Such VM channels can arise either by tubular or
patterned matrix type VM [175,176]. While VM networks of the tubular type morphologically resemble
the pattern of embryonic vascular networks [137,177], the morphology and topology of the patterned
matrix type strongly differs from EC-lined vessels. It displays an intricate meshwork of extravascular
patterned depositions of matrix proteins such as laminins, collagens IV and VI, and heparan sulfate
proteoglycans that wrap around interdigitating and branching cylinders of tumor cells and, unlike
fibrovascular septa, form hollows that anastomose with blood vessels [175,178,179]. All these types of
vessel formation can occur in parallel, and also gradual transitions are possible. All of them comprise
numerous sequential steps which crucially depend on integrins [127] and MMPs [31,180–182] as well
as on soluble growth factors [183].
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Figure 3. Different types of vascularization allow the blood supply of tumor tissue. Different types
of vascularization can occur simultaneously and even merge: (A) co-option of preexisting vessels;
(B) sprouting angiogenesis of endothelial cells; (C) intussusceptive angiogenesis; (D) glomeruloid
angiogenesis; (E) vasculogenesis by recruitment of bone marrow-derived endothelial progenitor
cells (EPCs); (F) in mosaic vessels, patches of tumor cells insert into the endothelium; (G) tubular
type vasculogenic mimicry (VM) of tumor cells; and (H) patterned type VM of tumor cells.
While angiogenesis (B–D), and vasculogenesis (E) depend on proliferation of ECs and bone
marrow-derived EPCs, vessel co-option and VM (F–H) are EC proliferation-independent ways to
support tumor growth. The recruitment of bone marrow-derived EPCs from distant parts of the body
impairs radiation therapy, while vessel co-option and VM are unassailable to anti-angiogenic therapy.
Vascularization mechanisms that are susceptible to anti-angiogenic therapy are highlighted in green,
those that are insusceptible in red.

Once the tumor is connected to the vasculature, ECs become part of the tumor tissue and
communicate with the other cells in the tumor tissue. Cancer progression is promoted when this
communication goes awry [184,185]. At a later progression stage of a primary tumor, both angiogenetic
and lymphangiogenic vessels allow tumor cells to disseminate and use the blood or lymph as a
direct route of transportation to colonize distant organs. In this way, a cancer cell that successfully
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transmigrates through the endothelium into another tissue can form a metastasis. Regarding cancer
invasion and metastasis, the endothelium acts rather as a launching site than as a barrier. ECs can
affect the invasiveness of cancer cells by controlling their vascular dissemination [186] or by increasing
their invasive capability [187].

Angiogenesis, vasculogenesis and vessel-based metastasis are controlled by cancer-endothelial
cell (CEC) interactions. Different molecular modes of action underlying CEC interactions can
be distinguished: (i) chemokine- and soluble factor-mediated interactions; (ii) tumor-endothelial
communication via extracellular vesicles; and (iii) biomechanical (physical) interactions by, e.g., gap
junctions and adheren junctions.

4.2. Soluble Factors Mediate CEC Interactions during Angiogenesis and Vasculogenesis

Tumor cell-secreted growth factors influence the TME and attract ECs. Such factors usually
activate receptor kinases or ion channels to trigger an intracellular response. The most important
endothelial growth and survival factors are the VEGFs. The VEGF family consists of five members
(VEGF-A, -B, -C, and -D, and placental growth factor) that can bind to three tyrosine kinase receptors
(VEGFR-1, -2, and -3) [188]. VEGF-A is the most significant inducer of local angiogenesis. Chronic
VEGF stimulation in tumors promotes excessive sprouting and branching by tip cells leading to
irregularities in the tumor endothelium and loss of its barrier function [189]. Almost all tumors express
VEGF-A as essential growth factor in pathological angiogenesis. Furthermore, it is the prime elicitor of
the angiogenic switch [190].

Originally identified as mediators of inflammatory diseases, chemokines link tumor and
stromal cell communication networks to induce a proper microenvironment for tumor growth and
metastasis [191]. Chemokines are a family of small cytokines secreted by cells. They bind to G
protein-coupled chemokine receptors on target cells. CXCL12 is the most important CXC chemokine
and is implicated in cancer cell extravasation and metastasis [192,193]. It is found in many tissues and
in serum. Expressed by stromal cells of distant organs, CXCL12 promotes metastasis by attracting
cancer cells and stimulating cancer cell extravasation, migration, and adhesion to ECM and to stromal
cells. On cancer cells, it binds to and signals via CXC chemokine receptors type 4 (CXCR4) and
7 (CXCR7). A simultaneous and enhanced expression of CXCL12 and CXCR4 has been found in
many cancers, such as breast [194], gastric [195], pancreatic [196,197], ovarian [198,199], cervical [200]
and oral squamous cell carcinoma [191]. CXCL12 promotes the attachment of prostate cancer and
breast cancer cells to ECs, and increases their transendothelial migration in vitro. Murakami et al.
also demonstrated that ectopic expression of CXCR4 has similar effects on melanoma cells in vitro,
and that it enhances lung metastasis in vivo [201].

Micro RNAs (miRNAs) are also significant regulators of angiogenesis and tumor metastasis.
They are short (20–24 nucleotides) non-coding endogenous RNAs that occur in multicellular organisms
and can influence the expression of many genes by post-transcriptional silencing or by causing
the degradation of their mRNAs. miRNAs, which are frequently deregulated in many types of
cancer, facilitate tumor growth, invasion, angiogenesis, and immune evasion through controlling
translation of their target mRNAs [202,203]. For instance, in ECs co-cultured with hepatocellular
carcinoma cells, three miRNAs, miR-146a, miR-181a*, and miR-140-5p, are upregulated, whereas
miR-302c is downregulated [204]. Upregulation of miR-146a promotes EC migration and proliferation,
as well as tumor growth and vascularization [204]. Furthermore, miRNAs can selectively be
exported from cells in membrane-bound vesicles (exosomes and MPs), lipoproteins, and other
ribonucleoprotein complexes. The content of these vesicles/particles varies with and corresponds to
the (patho)physiological state distinct signature of the secreting cell. After the uptake of exosomal
miRNAs by neighboring or distant cells, these miRNAs modulate the gene expression in the recipient
cell [205]. Zhuang et al. have demonstrated that, via microvesicles, miR-9 transfers information from
cancer to ECs. Thus, miR-9 supports angiogenesis and tumor growth [206].
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4.3. Direct Tumor Cell–Endothelial Cell Interaction and Integration of Tumor Cells in Mosaic Vessels

Fifteen percent of vessels in xenografted and spontaneous human colon carcinomas have been
reported to be of a mosaic type (Figure 3F) [207]. It is not yet clear whether these abnormal vessel
structures are formed by cancer cells which integrate into the EC layer of the vessel wall or whether they
arise by apoptosis of ECs and exposure of underlying cancer cells. Along with their incorporation into
tumor blood vessels, cancer cells undergo epithelial–mesenchymal transition and acquire endothelial
characteristics. The interaction between endothelial-like cancer cells (EndCC) and ECs, blood
components, and inflammatory signals procures the differentiation of cancer cells into EndCCs.
EndCCs interact with neighboring ECs, but they also possess migratory and invasive properties [208].
By biomechanical interaction of breast cancer cells with the endothelium, ECs stimulate proliferation,
survival, and stemness of breast cancer cells and thus metastatic dissemination [209].

Gap junctions are special channels through the plasma membrane that directly connect the
cytoplasms of neighboring cells and thus mediate short-range and direct intercellular communication
which is necessary for proper tissue development and homeostasis [210]. They consist of
transmembrane proteins of the connexin family [210] and allow free diffusion of small molecules and
ions, and also the transport of miRNAs and small interfering RNA (siRNA) silencing signals [211,212]
between cells. Altered expression of gap junction proteins is an important step in carcinogenesis [213].
Moreover, connexins play a crucial role in the direct cellular communication between cancer cells
and ECs [214–217]. Extravasating breast cancer cells induce in ECs tyrosine phosphorylation of
connexin 43 which facilitates further tumor cell extravasation [218]. The gap junction inhibitor,
oleamide, significantly decreases homotypic communication between cancer cells and also heterotypic
interaction between cancer cells and-ECs. Oleamide treatment in vitro attenuates the expression levels
of several angiogenic factors, such as VEGF, HIF-1α, CXCR4, Cx26, Cx43, and MMP-9, presumably via
an impaired connexin-mediated intercellular communication [219].

ECs are tightly connected via VE-cadherin-containing adherens junctions [220–222]. VE-cadherin’s
C-terminus is linked via β-catenin or plakoglobin to the actin cytoskeleton [223]. Blocking VE-cadherin
by monoclonal antibodies inhibits angiogenesis, tumor growth, and metastasis [224]. Endothelial barrier
integrity depends on differential phosphorylation of six out of nine tyrosine residues in the cytoplasmic tail
of VE-cadherin [225,226]. Especially phosphorylation of Y658 and Y731 decreases vessel tightness [227].
Different cancer types vary with respect to VE-cadherin phosphorylation in neighboring ECs,
which differentially affects cancer metastasis [228–230].

5. Tumor Cells Imitating Endothelial Cells in Vasculogenic Mimicry Vessels

Vasculogenic Mimicry and Its Molecular Phenotypes

Vasculogenic mimicry as one form of neovascularization was first described by Maniotis et al. [148].
Unlike angiogenesis and vasculogenesis, VM does not depend on ECs, but tumor cells themselves form
vascular channels to support at least the supply with oxygen and nutrients. Since the first report of
VM in 1999, its existence was controversially debated [231]. Notwithstanding, VM is clearly associated
with tumor aggressiveness, and poor prognosis [232,233]. VM channels are typically characterized as an
intricate meshwork of micro-channels of irregular diameter that anastomose with endothelium-lined blood
vessels, but in contrast to them they are devoid of endothelial markers such as CD31. Simultaneously,
they are covered by extravascular depositions of glycosylated matrix proteins, such as laminins, collagens
IV and VI, and heparan sulfate proteoglycans that are positive for periodic acid Schiff (PAS) staining
(Figure 4) [175,178,179,234]. Continuity and anastomosis with endothelium-lined normal vessels is a
prerequisite for the functional significance of such VM channels [231], together with red blood cells in
their lumen [148]. Moreover, it is conceivable that VM channels, which are too small to transport red
blood cells, could also supply tumor tissue with nutrients and oxygen by hemoglobin from ruptured
erythrocytes [147,235]. In a murine xenograft tumor model of inflammatory breast cancer, tumor cell
lines that either do or do not show VM were used. Thus, VM channels could be discriminated from
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other tumor vasculature by three-dimensional contrast-enhanced dynamic micro-Magnetic resonance
imaging (MRI) with G6-(1B4M-Gd)256 dendrimer as contrast agent [236,237]. Meanwhile, VM has been
observed in more than fifteen cancers, such as astrocytoma World Health Organization (WHO) grade
II–III [238], glioblastoma (astrocytoma WHO grade IV) [177], melanoma [239,240], cancers of breast [237],
gallbladder [241], pancreas [242], liver [243], esophageal [244], gastrointestinal [245], and colorectal
tract [246], lung [247,248], ovaries [249,250], prostate [251], and various sarcomas [252,253]. In multiple
myeloma, bone marrow macrophages and mast cells are additionally involved in VM of bone marrow
vascularization [254,255].
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Representative images are shown.

Unlike the prediction based on numerous preclinical models, tumors are very likely to acquire
an intrinsic resistance to angiostatic drugs [256,257]. Moreover, extrinsic mechanisms can contribute
to resistance, demonstrating the important role that stromal cells play in the context of tumor
neovascularization [258]. Tumor cells release many chemokines, inter alia the pro-angiogenic factors
CCL2, CCL5, and CXCL12 [259] and cytokines, among them redundant pro-angiogenic cytokines,
such as basic fibroblast growth factor (bFGF), interleukin-8 (IL-8), hepatocyte growth factor (HGF),
PDGF, and VEGF [260], which are difficult to inhibit simultaneously. Furthermore, a tumor’s blood
supply by non-angiogenically originated vessels (Figure 3) is also not impaired by anti–angiogenic
treatment [261]. The tumor stroma contains many different cells, among them ECs, mural cells,
platelets, CAFs, and TAMs, whose roles in resistance to angiostatic therapy have been reviewed
recently [258]. Similar to mesenchymal stem cells, which are capable of tubulogenesis in vitro [262],
it appears that some aggressively growing tumor cells can phenotypically mimic or transdifferentiate
into several of these cell types, e.g., they can adopt features of ECs [173,174], pericytes [263,264],
and even platelets [265–267]. In initiation of VM, both EMT and tumor-initiating cancer stem-like cells
(CSCs) play important roles [149,268,269]. In glioblastoma, a portion of the tumor vasculature arises
from CSCs which have been reported to differentiate to tumor vessel pericytes upon CXCL12/CXCR4
and TGFβ signaling [263]. Macrophage migration inhibitory factor (MIF) also triggers via CXCR4 and
AKT EMT in glioblastoma [270]. However, there are conflicting data whether CSCs transdifferentiate
into ECs and/or pericytes [271].

To produce a functional tumor vasculature, many signaling molecules and pathways interact
in a complex network, and the molecular regulation of tumor angiogenesis has been reviewed
earlier to indicate therapeutic possibilities [272–274]. VM exhibits multiple molecular phenotypes,
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because several signaling pathways are interconnected here which are involved in vascular and
embryonic/stem cell differentiation and in adaption to hypoxic conditions [174,275–277]. In adaption
to the hypoxic conditions prevailing in tumor tissue, HIFs are crucially responsible. The HIF-driven
pathways have been recently reviewed [278,279]. Hypoxia-response elements (HREs) are involved
in regulating cell proliferation, cell death, angiogenesis, blood vessel co-option, cell adhesion
molecules, secretion of MMPs, antigen presentation mechanisms and immunosuppressive factors,
and additionally in vasculogenic mimicry [280]. Under normoxic conditions the α-subunit (HIF-1α,
HIF-2α or HIF-3α) of the hypoxia-induced transcription factor HIF is rapidly degraded in the cytosol,
whereas under hypoxic conditions it binds to the constitutively present β-subunit, thus forming an
active heterodimer that translocates to the nucleus, where it controls gene expression by binding
to HREs ([279] and references therein). While the transcription factor HIF-1α plays an important
role in promoting sprouting angiogenesis [281], HIF-2α promotes EMT and thus VM in pancreatic
cancer [282]. This is in line with the observation that VM is especially found in a hypoxic tumor
core [283]. In a neuroblastoma model, an immunotherapy targeting tumor-derived ECs failed, because
the treatment increased hypoxia, causing further EMT and tumor-derived EC trans-differentiation,
and adaptation to the hypoxic microenvironment [284].

Hypoxia modulates the expression of many genes involved not only in angiogenesis, but also in
VM, inter alia VEGF-A, VEGFR-1, Erythropoietin-producing human hepatocellular (EPH) receptor
A2 (EphA2), TWIST, COX-2, and Nodal [285]. The transcription factor HIF-2α promotes EMT
in pancreatic cancer by upregulating the transcription factors TWIST1 and TWIST2 in carcinoma
cells which then upregulate VE-cadherin [282] and downregulate E-cadherin respectively [286].
Such VE-cadherin-expressing carcinoma cells may readily incorporate into the endothelium and
give rise to composite vessels and eventually VM. Furthermore, under the selection pressure imposed
by hypoxia, polyploid giant colorectal cancer cells have been reported to express EMT-related genes,
to become pluripotent, and to give rise to erythroid cells expressing embryonic and fetal hemoglobin,
and also to acquire EC-like features to form VM channels [287,288]. Furthermore, peroxiredoxin 2
(PRDX2), a major antioxidant enzyme, stimulates VM channel formation in colorectal cancer by keeping
VEGFR-2 in its activated state [289]. The VM phenotype is thus associated with transdifferentiation
of CSCs and cell plasticity [276,290], and VM channel-lining tumor cells phenotypically mimic ECs.
However, they differ from ECs regarding their expression of TIE-1, VEGF-C, neuropilin.1 (NRP1),
endoglin, Tissue factor pathway inhibitor (TFPI1), Laminin subunit γ2 (LAMC2), and EphA2, whereas
they do not express Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE-2),
VEGFR-1, VEGFR-2, P-selectin, vascular adhesion protein-1 (VCAM-1), and CD31 [276].

Important transcription factors for the expression of VM-relevant genes are TWIST1 and
BMI1, which are also relevant for EMT [291,292]. The EMT marker TWIST1 is activated by B-cell
lymphoma 2 (Bcl-2) [293] and by metadherin (MTDH) [294], which drives CSC expansion and VM.
Furthermore, CCL21/CXCR7 signaling activates the transcription factor SNAI2/Slug via ERK and
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling in chondrosarcoma, and thus
promotes EMT [295]. Together with TWIST1 and the Snail family transcription factors SNAI1/Snail
and SNAI2/Slug, the Zinc finger E-box-binding homeobox 1 proteins ZEB1 and ZEB2 are pivotal
EMT regulators with significant overlap in their signaling networks [296]. ZEB2, triggered by TGFβ1,
promotes cell motility, invasiveness, expression of EC markers, and formation of VM vessels in
hepatocellular carcinoma [296]. The paired-related homeobox transcription factor 1 (Prrx1) is also
implicated in EMT, but although it is co-expressed and cooperates with TWIST1 in EMT, it suppresses
stemness properties of cancer cells, and thus uncouples EMT and stemness [297]. In VM channel
formation and differentiation, VE-cadherin [276], erythropoietin-producing hepatocellular receptor
A2 (EphA2) [298], phosphatidyl inositol 3-kinase (PI3K) [298], MMPs [299], VEGFR-1, and HIF-1α are
instrumental [174,300]. The migration inducting gene Mig-7 is expressed early in placenta development
during maximal cytotrophoblast invasion and vascular remodeling, and also by carcinoma cells,
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where it is linked to VM [301,302]. Focal adhesion kinase (FAK) and Mig-7 induce upregulation of
MMP-2 and MMP-9, which are involved in ECM degradation and VM [301,303–305].

The laminin binding lectin galectin-1 [306] is overexpressed on tumor-associated ECs and in
their surrounding ECM [307]. It is also involved in the interaction of regulatory T (Treg) cells
with dendritic or T cells, and it is upregulated in Treg cells upon T cell receptor activation [308].
In squamous cell carcinoma ECs, galectin-1 is overexpressed and binds directly to neuropilin-1 (NRP1),
thereby enhancing phosphorylation of VEGF-R2 and triggering signaling via Mitogen-activated protein
(MAP) kinases SAPK1/c-Jun N-terminal kinase (Jnk), which increases EC proliferation and adhesion,
and in combination with VEGF-A it enhances cell migration [307]. The likewise laminin-binding
galectin-3 [309] essentially promotes VM in melanoma by upregulating in melanoma cells the ectopic
expression of genes that are otherwise typical for ECs, such as VE-cadherin, IL-8, fibronectin-1,
endothelial differentiation sphingolipid G-protein receptor-1 (EDG-1), and MMP-2 [310]. While MMP-2
creates fragments from laminin-332 that increase EGFR and F-actin expression and promote VM in large
cell lung cancer, MMP-13 counteracts VM by releasing different laminin-332 fragments that decrease
expression of EGFR and F-actin [311]. Increased NRP1 expression upon upregulation of VEGFA,
secretion of MMP-2 and -9, and activation of αvβ5 integrin furthermore correlates with tumor cell
invasiveness and VM [312,313]. Elevated NRP-1 expression levels are also implicated in development
of resistance to anti–angiogenic therapy with VEGF-A blocking antibodies [314]. This may be due to
the fact that NRP1 is not only a coreceptor of VEGFR-2 for VEGF-A but also signals upon binding of
other growth factors such as class 3 semaphorins, TGFβ, HGF, FGF, and PDGF [315]. Upon PDGF-C
stimulation, NRP-1 triggers invasion and VM of VEGFR-and PDGFR-deficient melanoma cells [313].

Nodal plays an essential role in VM such as in embryonic/stem cell differentiation as demonstrated
by an impaired VM of aggressive melanoma cells upon downregulation of Nodal [174,316]. Notch 1
triggers EMT in hepatocellular carcinoma and promotes VM [317], while Notch4 is highly expressed in
melanoma CSCs, where it promotes metastasis via the TWIST/VE-cadherin/E-cadherin pathway [269].

In addition to transcription factors, miRNAs are involved in post-transcriptional regulation
of VM, thereby modulating tumor angiogenesis and cancer metastasis. TWIST1 upregulates 18
miRNAs in hepatocellular carcinoma cells, among them miR-27a-3p which targets VE-cadherin and
suppresses EMT and VM [318]. Pointing in the same direction, miR-27a negatively regulates the
expression of EphA2, SNAI1, and SNAi2 [319]. miR-27b binds to the 3′-untranslated region (3′-UTR) of
VE-cadherin mRNA and inhibits ovarian cancer cell-mediated VM through suppression of VE-cadherin
expression [320]. Loss of miR-26b promotes VM by increased EphA2 expression in glioma [321].
miR-124 regulates the expression of several EMT- and VM-relevant genes, such as CD151, ROCK1,
integrin β1, Rac1, SNAI2, and angiomotin-like protein 1 (AMOTL1) [322–326]. TWIST1 downregulates
miR-26b-5p in hepatocellular carcinoma by binding to its promotor region, thereby unchecking
Smad1 expression and deregulating BMP4/Smad1 signaling, which promotes EMT [327]. miR-26-5p
in hepatocellular carcinoma is a negative regulator of VE-cadherin, SNAI1, and MMP-2, and thus
VM [328]. miR-186 downregulates the expression of TWIST1 in prostate cancer and thereby among
other effects inhibits EMT and VM [329]. Loss of miR-4638-5p promotes VM in castration resistant
prostate cancer by activating PI3K/AKT signaling via the kinase D-interacting substrate of 220 kDa
(KIDINS220) scaffold protein [330]. KDKDM4b hypermethylates the miRNA-615-5p promotor in
hepatocellular carcinoma, thereby epigenetically silencing this miRNA and consecutively increasing
expression of the Ras-related protein RAB24, which activates the Rab-Ras-pathway and promotes
adhesion, EMT, and VM [331].

Long non-coding RNAs (lncRNAs) are a recently discovered class of gene regulators in many
physiological and pathological processes [332], and by their interaction with miRNAs [333] they
are involved in metabolic reprogramming and EMT [334,335]. lncRNAs and their interaction with
miRNAs in EMT have been reviewed recently [333]. The oncogenic lncRNA metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) is implicated in tumor angiogenesis and also in VM by
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upregulating the expression of VE-cadherin, β-catenin, MMP-2, MMP-9, MMP-14, p-ERK, p-FAK, and
p-paxillin [336], by upregulating N-cadherin and fibronectin, and by suppressing E-cadherin [113].

To maintain an anti-coagulatory milieu in VM vessels, channel lining tumor cells can upregulate
the expression of tissue factor (TF), TF pathway inhibitor-1 (TFPI-1), and TFPI-2 [337]. VM channels
not only supply the tumor with oxygen and nutrients but also might, to a limited extent, aid in some
of the draining function of lymphatics [179,337,338].

Tumor growth and metastasis are promoted by angiogenic and vasculogenic pathways as well as
by vessel co-option and VM. The latter two are notorious for conveying drug resistance. VM occurs
in many, albeit not all, tumor tissues, but not in the healthy body, although some authors believe
that hypoxic trophoblasts in placenta tissue are able to contribute to their own blood supply by
VM [279]. VM correlates with a poor prognosis [247,339], because it promotes cancer growth and
hematogenic dissemination of detaching tumor cells leading to metastasis [300,340–344]. In colorectal
cancer, VM is positively associated with invasion depth, lymph node metastasis, distant metastasis
and tumor-node-metastasis stages and negatively with patients’ overall survival [345]. Likewise in
ovarian carcinoma, VM is associated with tumor and lymph node metastasis grade, implantation,
and stage, and with reduced patients’ overall survival [346]. In ovarian carcinoma, VM correlates
with the immunohistochemical detection of ALDH1, Kisspeptin (KiSS-1), and Metastasis associated in
colon cancer-1 (MACC1), which are used to predict metastasis and prognosis, and VM proved to be
a prognostic marker, as well as a potential target to treat epithelial ovarian carcinoma [346]. Similar
data have been reported for colorectal carcinoma [345]. In addition, in non-small cell lung cancer, VM,
promoted by Dickkopf-related protein 1 (DKK1) is associated with poor differentiation, advanced
stage, and distant metastasis [347]. In hepatocellular carcinoma, both tubular and patterned type VM
have been reported, and the latter has been ranked as an unfavorable prognostic marker [348].

6. Perspective: New Cancer Therapies Targeting Tumor Vasculature and CAFs

6.1. Anti-Angiogenesis and Normalization of the Tumor Vasculature

Cancer therapy comprises surgery, radio- and chemotherapy, targeted therapy, immunotherapy,
hypothermia, hormone therapy, stem cell therapy and combinations of these methods [349].
Radiation therapy and chemotherapy target both cancer cells and tumor vasculature. Bone marrow-derived
cells can restore radiation-damaged blood vessels, and they can support surviving tumor cells [272].
In addition, EPCs between the smooth muscle and adventitial layer of vessel walls, may trigger tumor
neo-vascularization [156,272].

Endostatin and other anti–angiogenic inhibitors specifically target ECs rather than tumor cells
to inhibit tumor angiogenesis. Such an anti–angiogenic therapy has four advantages over the
usually applied cytotoxic chemotherapeutic drugs [272]: (i) angiogenesis is a homogeneous process,
and therefore its inhibition should be effective in any solid tumor; (ii) an anti–angiogenic therapy
approach is not impaired by tumor cells that become resistant to chemo- or radiation therapy; (iii) ECs
can be directly targeted with blood-borne drugs without the need to counteract the usually high tumor
interstitial pressure; and (iv) the tumor vasculature can be specifically targeted due to a differentially
upregulated expression of receptors on tumor ECs versus normal EC. Therefore, anti–angiogenic
therapies targeting VEGF family members, their receptors, or other pro-angiogenic factors raised high
expectations [350]. However, they have not yet produced the clinical benefits initially envisioned [351].

In contrast to anti–angiogenesis, “vascular normalization” returns malformed and dysfunctional
tumor vessels into vessels with a similar appearance and functionality as in normal tissues. It aims
to overcome the serious problems arising from: (i) the physical barrier of tumor vessel walls; (ii) the
high interstitial pressure in tumors; and (iii) the acquisition of drug resistance by genetic or epigenetic
mechanisms [153]. However, delivery of chemotherapeutics may be impeded by an impervious
endothelial layer [352]. Tumor-vascular disruptive agents induce a tumor-selective breakdown of the
vessel wall barrier, and a combined targeting of both tumor vasculature and tumor cells may increase
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the efficacy of chemotherapeutics [250,353]. Until now, strategies to normalize tumor vasculature did
not yet meet the initially high expectations [354], and other strategies are sought.

When anti-VEGF-induced vascular normalization ceases to be effective, the tumor becomes
resistant to additional anti–angiogenic therapy and grows even more aggressive, for not yet understood
mechanisms [355,356]. Various reasons may underlie this resistance to anti–angiogenic therapy
and may occur simultaneously: Anti–angiogenic treatment-induced hypoxia may increase the
production of other redundant angiogenic factors or the invasiveness of tumor cells. Tumor cells
may also acquire mutations that render them tolerant to hypoxia. Moreover, some anti–angiogenic
therapies lack specificity and have toxic side effects [273,274,357]. Such a development of drug
resistance after initial success and even more aggressive tumor growth was not anticipated [358,359],
and anti–angiogenic treatment turned out to have promised too much for various reasons [134,360–362].
Even if angiogenesis is curbed, neovascularization of tumor tissue may occur by other modes such
as intussusceptive or glomeruloid angiogenesis, by CSC-promoted vasculogenesis, or even by VM
of tumor cells [363]. In addition, vessel co-option confers resistance to anti–angiogenic therapy [155].
Moreover, many other tumor stromal cells, such as ECs, mural cells, platelets, CAFs, and TAMs,
can contribute to the development of resistance to angiostatic therapy [258]. The balance between
ECs on the one hand side and stromal fibroblasts and inflammatory cells, which release many
cytokines and angiogenic factors other than VEGF, on the other hand could be disturbed by anti-VEGF
therapy [123,261,364]. In this sense, CAFs even have been denounced Trojan horse-like mediators of
resistance to anti-VEGF therapy [365].

6.2. VM Channels Are a Promising New Therapeutic Target

The so far little considered concept of VM as a new therapeutic target structure attracts increasing
interest [276], because in VM channels tumor cells line the vasculature and hence are directly amenable
to therapeutics from the bloodstream [276,366,367]. They have been suggested as targets for vascular
disrupting agents, drug delivery, and antitumor therapy [136,353,368]. A combination of either VM
inhibitors or VM disruptive agents with anti–angiogenic therapies may be promising, even if targeting
VM channels, that show great diversity with respect to cellular phenotype in diverse tumors, is not as
universally applicable as EC-targeting therapies, that aim at largely uniform ECs [300].

By now, numerous VM-characteristic molecular determinants and signaling pathways have
already been delineated [276,278,366,369]. Tumor cells isolated from malignant pleural effusions,
which develop in various malignancies due to impaired fluid drainage by blood or lymphatic
vessels, inflammation and increased vascular permeability and are routinely drained for diagnosis,
have been employed to test VM tube formation in vitro. Such cells may help to pinpoint drugable
molecular targets (Figure 5) and to develop and optimize personalized therapy [370]. In addition,
a standardized assay, which in vitro recreates the formation of fluid conducting VM channels by cancer
cells surrounding a glycoprotein-rich inner layer, may be instrumental in finding and characterizing
VM targeting drugs [371]. Potential molecular targets of special interest may be EMT-inducing
transcription factors (EMT-TFs), such as TWIST1, SNAI1/2, and ZEB1/2 (Figure 5) [296], where ZEB2
is not only an EMT regulator but also involved in VM [372]. Expression of the transcription factor
high mobility group box-1 (HMGB-1), that also interacts with nucleosomes and histones [373], is
upregulated by anti–angiogenic treatment [284]. Hence, HMGB-1 has been proposed as a target for
tumor therapy [374].

In addition, migration-inducting gene 7 (Mig-7), which is involved in VM by carcinoma cells, but not
expressed in normal cells, may be a promising target in VM channels [302], and Mig-7-inhibitory agents
together with anti–angiogenic or other conventional anti-cancer drugs might act synergistically [301,302].
The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) may also be a potential
target for anti–angiogenic therapy in glioma [375]. The angiogenic factor YKL-40 (human cartilage
glycoprotein HC-gp39, CHI3L1) is produced by cancer cells, inflammatory cells, and stem cells [376].
By transdifferentiation of glioma stem-like cells into vascular pericytes/smooth muscle cell- and EC-like
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cells, YKL-40 promotes both angiogenesis and VM [377], which in a xenograft tumor model is susceptible
to treatment with a neutralizing monoclonal antibody against YKL-40 in combination with radiation
therapy [378].
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Figure 5. Molecular phenotype-defining signaling pathways in vasculogenic mimicry (VM). Signaling
molecules that have been targeted to inhibit VM are highlighted in yellow and targeting compounds
are marked in blue. Regulatory miRNAs are labeled green. EMT (highlighted in orange), which is
pivotal for VM, and VM (highlighted in red) are the focal points in which all these signaling pathways
converge. For details and references, see text.

More than ECs, cancer cells may be responsible for drug resistance to anti–angiogenic
therapy [174]. Especially in VM developing tumors, VM channels lacking ECs are at least
partially responsible for resistance to VEGF inhibition [379] or to anti-angiogenic agents, inter
alia angiostatin and endostatin [367]. However, endostatin combined with radiotherapy
suppresses VM formation through inhibition of EMT in esophageal cancer [380]. HET0016
(N-Hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine), which was initially characterized as
a selective inhibitor of 20-HETE (20-hydroxy-5,8,11,14-eicosatetraenoic acid) formation from
arachidonic acid [381], can be used to target VM channels, whose formation is triggered by
the small molecule proteinase kinase inhibitor vatalanib, which is used as anti–angiogenic
therapeutic, [283]. Norcantharidin (3,6-endoxohexahydrophthalic anhydride), a demethylated
derivative of cantharidin [382] downregulates MMP-9 via NFκB in hepatocellular carcinoma cells
in vitro [383,384]. In vivo it also downregulates MMP-2 in a human melanoma mouse model [385], and
MMPs-2 and -14 in gallbladder cancer, thereby enhancing the VM-inhibiting activity of TIMP-2 [386].
Mosaic vessel and VM channel formation in a B16F10 mouse melanoma model are reduced by
thalidomide which inhibits expression of VEGF, NFκB, PCNA, MMP-2 and MMP-9 [387]. In addition,
natural products with anti–angiogenic and anti-VM activity are very important for the development
of new drugs. Such natural compounds and their molecular modes of action have been reviewed
recently [388]. Genistein inhibits the expression of VEGF-A, PDGF, TF, urokinase-type plasminogen
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activator (uPA), and MMPs-2 and -9, whereas it stimulates expression of PAI-1, endostatin and
angiostatin, as well as thrombospondin-1 [389]. In vivo, compounds such as genistein, jatrorrhizine
hydrochloride, and curcumin inhibit VM in uveal and choroidal melanoma, respectively, via regulating
VE-cadherin and EphA2 expression [390–392], whereas the antioxidant resveratrol has been reported
to suppress VM in a murine melanoma model by decreasing the expression of VEGF and its
receptors 1 and 2 [393]. The latter observation is in line with the finding that luteolin, likewise an
antioxidant, inhibits Notch1-VEGF signaling and thus reduces VM formation in gastric cancer
cells [394]. In addition, in a human hepatocellular carcinoma mouse model using GFP-labeled
MHCC97-H cells, an ethnopharmacologically used Celastrus orbiculatus extract containing 11 terpenes,
of which the effective component is not yet known, reduces VM formation by targeting Notch1
signaling [395]. An also not yet fully characterized ethanolic extract from Paris polyphylla has been
reported to inhibit VM in a human osteosarcoma mouse model by downregulating the expression of
FAK, Mig-7, and MMPs-2 and -9 [396]. Furthermore, inhibition of MMP-14 and tumor angiogenesis
in two murine sarcoma and colon carcinoma models has been reported for the green tea ingredient
(−)-epigallocatechin gallate (EGCG) [397].

Tumor vasculature targeting drug delivery systems have been reviewed recently, inter alia VM
targeted approaches [398]. Targeting liposomes to endocytosis-prone surface receptors with ligand
derivatives or antibodies improves the cellular internalization of encapsulated drugs. In combination
therapy, liposomes and especially passive and active ligand-targeted liposomes have turned out
to be efficient co-delivery systems for hydrophilic and lipophilic chemotherapeutic agents, such as
drugs, anti-cancer metals, and gene agents [349]. Liposomes functionalized with a mannose-vitamin E
derivative conjugate and a dequalinium lipid derivative to cross the blood brain barrier (BBB) and
loaded with both the antimalarial drug artemether, as a regulator of apoptosis and VM channels, and
the anticancer drug paclitaxel have been demonstrated in brain glioma-bearing rats to eliminate CSCs
and tumor cells, and also to destroy VM channels [399]. In addition, aptamer-conjugated peptides allow
delivering chemical drugs and gene drugs, e.g., antagomirs, simultaneously, as was demonstrated by
co-delivery of the VM blocking ROCK inhibitor fasudil and VEGF inhibiting miR-195 [400].

6.3. Therapeutic Potential of Targeting CAFs

As CAFs are such central players in the tumor stroma, understanding the effect of CAFs on therapy
and the development of a CAF-directed remedial treatment are of utmost importance as well. Indeed,
CAFs affect irradiation therapy, as damaged or irradiated CAFs support tumor cell growth stronger
than non-treated CAFs, possibly through up-regulation of cMet expression or its phosphorylation and
MAP kinase activity in cancer cells [401]. Moreover, tumor stromal CAFs contribute to an increased
intratumoral interstitial pressure, due to their potential to contract and to exert force on the ECM, thus
compressing the interstitial space. This eventually results in attenuating therapeutic efficiency [46].
The interaction between cancer cells and CAFs can also reduce cytotoxic effects of chemotherapeutic
drugs such as cisplatin by cell–cell adhesion through N-cadherin that activates the survival-promoting
protein kinase B (PKB)/AKT and blocks pro-apoptotic Bad [402]. However, a clinical trial in which
the Hedgehog signaling pathway was targeted and the tumor-induced mesenchyme activation was
affected, did not show any therapeutic benefit [48].

7. Conclusions

As invasive cancer rates worldwide are continually increasing due to increased life expectancy, changes
in lifestyle and nutrition, and environmental factors, cancer treatment is of prime importance. VM, albeit
usually viewed as a negative prognostic marker, may constitute a potential new target for anti–angiogenic
therapy [261,363]. VM and CAFs are not only passive bystanders but also active players within the
tumor stroma, which contribute to tumor progression and dissemination. A better understanding of their
molecular phenotypes and of their supportive roles for cancer cells are indispensable for pharmacological
intervention, to resolve the burning issues of resistance to chemotherapeutic drugs and anti–angiogenic
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therapies, and to develop multimodal anti-angiogenic, anti-VM, and anti-proliferative strategies [138].
While tumors frequently develop resistance to anti–angiogenic drugs, new strategies that combine an
anti–angiogenic therapy with a VM- or CAF-targeting approach may improve treatment success.
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Bmi1 B lymphoma Mo-MLV insertion region 1 homolog
BMP Bone morphogenetic protein
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CEC Cancer-endothelial cell interaction
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CXCL12 C-X-C motif chemokine 12 = stromal cell-derived factor 1 (SDF-1)
CXCR4 C-X-C chemokine receptor type 4
DKK1 Dickkopf-related protein 1
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EDA Extra-domain A fibronectin splice variant
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EDG-1 Endothelial differentiation sphingolipid G-protein receptor-1
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EGF(R) Epidermal growth factor (receptor)
EMMPRIN Extracellular matrix metalloproteinase inducer
EMT Epithelial–mesenchymal transition
EndCC Endothelial like cancer cell
EPC Endothelial progenitor cell
EphA2 Erythropoietin-producing human hepatocellular (EPH) receptor A2
Erk Extracellular signal–regulated kinase
FAK Focal adhesion kinase
FGF(R) Fibroblast growth factor (receptor)
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
Glc Glucose
Gln Glutamine
GLUT2 Glucose transporter type 2
GSH Glutathione
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HGF(R) Hepatocyte growth factor (receptor), cMet
HIF Hypoxia-inducible factor
HRE Hypoxia-response element
IL Interleukin
Jnk c-Jun N-terminal kinase
KDM4b Lysine-specific demethylase 4B
KIDINS220 Kinase D-interacting substrate of 220 kDa
KiSS-1 Kisspeptin
LAMC2 Laminin subunit γ2
Lam5g2 Laminin-332 γ2chain
LOX lysyl oxidase
MACC1 Metastasis associated in colon cancer-1
MALAT1 Metastasis-associated lung adenocarcinoma transcript 1
MCP1 Monocyte chemotactic protein
Mig-7 Migration-inducing gene 7
miR Micro RNA
MMP Matrix metalloproteinase
MP Microparticle
MRI Magnetic resonance imaging
MTDH Metadherin
NADPH + H+ Nicotinamide adenine dinucleotide phosphate
NFκB Nuclear factor κ-light-chain-enhancer of activated B cells
NICD Notch intracellular domain
NRP1 Neuropilin-1
p130Cas Cellular apoptosis susceptibility protein of 130 kDa
PAS Periodic acid Schiff
PDGF Platelet-derived growth factor
PEP Phosphoenolpyruvate
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
PK-M2 pyruvate kinase isoform M2
PPEE Paris polyphylla ethanol extract
Prdx2 Peroxiredoxin-2
PRRX1 Paired-related homeobox transcription factor 1
ROCK Rho-associated protein kinase
Rab Ras superfamily of monomeric G protein
Rac1 Ras-related C3 botulinum toxin substrate
RANKL Receptor activator of nuclear factor κ-B ligand
Ras Rat sarcoma protein
ROCK Rho-associated protein kinase
ROS Reactive oxygen species
Smad Small body size/mothers against decapentaplegic protein
SNAI snail family transcriptional repressor
TAM Tumor-associated macrophage
TCA Tricarboxylic acid
TF Tissue factor
TFPI1 Tissue factor pathway inhibitor
TGFβ1 Transforming growth factor-β1
TIE Tyrosine kinase with immunoglobulin-like and EGF-like domains
TME Tumor microenvironment
TNFα Tumor necrosis factor α
VEGF(R) Vascular endothelial growth factor (receptor)
VM Vasculogenic mimicry
WHO World Health Organization
Wnt Wingless-related integration site
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YAP Yes-associated protein
YKL-40 Human cartilage glycoprotein HC-gp39, Chitinase-3-like protein 1, CHI3L1
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