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Abstract

Background: Because multiple loci control complex diseases, there is great interest in testing
markers simultaneously instead of one by one. In this paper, we applied two model selection
algorithms: the stochastic search variable selection (SSVS) and the least absolute shrinkage and
selection operator (LASSO) to two quantitative phenotypes related to rheumatoid arthritis (RA).

Results: The Genetic Analysis Workshop 16 data includes 2,062 unrelated individuals and 545,080
single-nucleotide polymorphism markers from the Illumina 550 k chip. We performed our analyses
on the cases as the quantitative phenotype data was not provided for the controls. The performance
of the two algorithms was compared. Using sure independence screening as the prescreening
procedure, both SSVS and LASSO give small models. No markers are identified in the human
leukocyte antigen region of chromosome 6 that was shown to be associated with RA. SSVS and
LASSO identify seven common loci, and some of them are on genes LRRC8D, LRP1B, and COLEC12.
These genes have not been reported to be associated with RA. LASSO also identified a common
locus on gene KTCD21 for the two phenotypes (marker rs230662 and rs483731, respectively).

Conclusion: SSVS outperforms LASSO in simulation studies. Both SSVS and LASSO give small
models on the RA data, however this depends on model parameters. We also demonstrate the
ability of both LASSO and SSVS to handle more markers than the number of samples.

Introduction
It is now feasible to perform large-scale, high-density
genome-wide association studies (GWAS) to search for
common genetic variants underlying common diseases

(reviewed in [1,2]). Due to their computational feasi-
bility, single-marker tests remain the primary tools in the
analysis of GWAS data. However, most common diseases
are complex and are caused by multiple genetic variants,
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each having only a small effect. The possible interactions
among genetic variants and the interactions between
genes and environment present additional challenges for
disease mapping.

Because multiple loci contribute to complete diseases,
testing markers simultaneously instead of one by one
may increase statistical power. Advanced technology can
provide us thousands of high-quality marker genotypes.
To identify the correct set of genetic variants from
thousands of markers, efficient and reasonable model
selection algorithms are urgently needed. Two popular
model selection methods have been proposed: the
stochastic search variable selection (SSVS) [3] and the
least absolute shrinkage and selection operator (LASSO)
[4]. With SSVS, a latent variable g is introduced to
perform variable selection for regression models. If gj = 1
the jth variable is included in the model; if gj = 0, the jth

variable is excluded from the model. A homogenous
ergodic Markov chain can be generated by the Gibbs
sampler. The empirical distribution of g based on the
Markov chain will converge to the actual posterior
distribution of g [5]. LASSO method proposed by
Tibshirani is a shrinkage-based selection method for
linear regression. LASSO minimizes the residual sum of
squares subject to the constraint on the sum of absolute
value of coefficients. This L1-Norm constraint produces
shrunk coefficients with some of them exactly equal to
zero, which leads to interpretable models. In 2004, Efron
et al. proposed the least angle regression (LARS) [6],
which is a computationally efficient model-selection
algorithm. There is a close connection between LARS and
LASSO. A simple modification of the LARS algorithm can
yield all LASSO solutions. LASSO is one of the most
popular model selection methods that involve mini-
mization of the mean square error with respect to some
constraints. On the other hand, SSVS is based on the
Gibbs sampler, which belongs to the broader class of
Markov-Chain Monte Carlo methods. Hence, a compar-
ison of the two methods would be of great interest.

In this paper, we focus on two quantitative phenotypes
related to rheumatoid arthritis (RA). The data was
provided by the Genetic Analysis Workshop 16. RA is
an autoimmune disease that causes chronic inflamma-
tion in joints, resulting in loss of function and disability.
We applied SSVS and LASSO to the two quantitative
phenotypes to identify genetic variants associated with
RA. We compared the results based on 545,080 SNPs.

Methods
SSVS
SSVS uses a hierarchical Bayes model to identify
associated variables [3]. Here we assume that the

phenotype follows a multiple-regression model of a
subset of the markers. The canonical regression setup is
given by

Y N X In| , ~ ( , ),β θ β θ2 2

where Y is n × 1, X = [X1,..., Xp] is n × p, b = (b1,..., bp), and
θ2 is scalar.

A latent variable gi is defined as the indicator whether
marker i is selected in the model or not. SSVS uses the
idea that the true posterior distribution of gi values can
be estimated by generating a Markov chain that
converges to its stationary distribution. bi values are
distributed according to a mixture distribution of two
normal distributions with different variances, which
enables the detection of associated variables:

β γ γ σ γ τi i i iN N| ~ ( ) ( , ) ( , ).1 0 02 2− +

The prior for g is selected as a Bernoulli prior with the
same parameter over all the gi values:

P P pi i( ) ( ) / .γ γ= = − = =1 1 0 1

Using simulation studies, we confirmed that changing
(1/p) to other values such as 0.1,0.2,...,0.9 does not
significantly change the power of SSVS (data not shown).
The distribution of θ2 conditional on g is given by

θ γ β2 22 2| ~ ( / ,|| || / ),InverseGamma n Y X−

which is equivalent to ν λ θ χγ γ ν γ
/ ~2 2 . SSVS implements

the Gibbs sampler to generate the following Gibbs
sequence using the conditional probabilities mentioned
above:

β θ γ β θ γ β θ γ0 0 0 1 1 1, , , , , , , , , , ,… …j j j

which is an ergodic Markov chain that converges to its
stationary distribution. We ran the Gibbs sampler for
2,000 iterations to achieve stationarity and then ran it for
an additional 8,000 iterations to estimate the posterior
probabilities of the gi values.

LASSO
LASSO tries to shrink the coefficients of independent
variables and set most of the coefficients exactly equal to
0 to achieve a model with a small number of variables
and a small mean square error. Using the same linear
model as above,

Y X= ,β ε+

where Y is the dependent variable, X are the independent
variables, and ε is the independent error term, LASSO
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tries to minimize ||Y - Xb||2 subject to j j t∑ ≤| |β . Here
t ≥ 0 is the tuning or shrinkage parameter. An equivalent
constraint would be

β̂ β λ ββ= ( | |).2argmin Y X
j

j− + ∑
This is a quadratic programming problem but can be
solved by a simple modification to the LARS algorithm
by Efron et al. [6]. LARS, a modification of the classic
model-selection method known as forward selection,
orders regression covariates on the basis of their
decreasing association with the output variable. By
modifying LARS to enforce the sign consistency restric-
tion of LASSO, we can generate all LASSO solutions
corresponding to different values of the free parameter l.
Selecting the active model at a given iteration would give
us LASSO solution corresponding to a particular value of
l. Hence, using a cutoff for the number of iterations
allowed for the modified LARS, we can control l.

Simulation studies
For simulation studies, we considered 60 individuals. The
genotype data was simulated as follows: we selected a set of
markers from the Hapmap CEU population data. We
utilized the Hapmap data because it provides enough
markers at different marker densities. In the Hapmap CEU
population data, there are a total of 60 independent
individuals. For each sample, 60 markers were used for
both SSVS and LASSO analysis. Among them, five markers
were simulated to be associated with the phenotype (the
causal markers). These causal markers were always
included in the analysis. The phenotype was simulated
from a linear model with the five causal markers:

Y X X Xi i i i i= 1 2 5β β β ε+ + + +… ,

where the εi values are independent and identically
distributed N(0,1). Different marker densities, coeffi-
cients (b), and SSVS parameters were considered. For
each scenario, 1,000 simulations were performed. The
average area under the curve (AUC) was calculated for
each scenario. The AUC is the area under the receiver
operator characteristic (ROC) curve, which is a plot of
the sensitivity versus (1-specificity). An AUC of 0.5
represents a completely random guess. For SSVS, the
AUC is calculated using the following formula modified
from the method of Ma and Huang [8]:

AUC
nCnCC

I i j

i C j CC

= >
∈ ∈
∑1

{ },
,

γ γ

where C is the set of indices of the causal markers and Cc

is the set of indices of the non-causal markers. nc and

n
CC are the number of causal and non-causal markers

respectively. For LASSO, the following formula is used to
calculate the AUC:

AUC
nCnCC

I i j

i C j CC

= <
∈ ∈
∑1

{ },
,

λ λ

where li is the iteration at which the ith marker enters the
model.

Sure independence screening for the RA data
The genotype was coded as 0 for homozygous rare
alleles, 1 for heterozygous alleles, and 2 for homozygous
common alleles. Missing alleles were imputed according
to the genotype frequency calculated from the available
data for 0.7% of missing genotype data. As a prescreen-
ing step, markers with a minor allele frequency less than
0.01 were discarded. The phenotype data was log-
transformed. To decrease the dimensionality of the
marker data, sure independence screening (SIS) was
performed [9]. SIS uses correlation learning to detect
predictors in the true model. If X denotes the genotype
data that are standardized columnwise, and y denotes
the phenotype data, then w is defined as

w X yT= .

SIS selects the largest component-wise magnitudes of the
vector. Here, we selected the 1,000markers with the largest
correlations with the quantitative traits for SSVS and
LASSO. Because the number of samples are 746 and 867
for the IgM and the anti-CCP phenotypes, respectively, we
demonstrate the use of SSVS and LASSO to select a model
in which the number of markers is greater than the number
of samples. SIS reduces computational time required by
themodel-selectionmethods. SIS has been shown to retain
important variables in the screened model with a large
probability when a set of conditions are satisfied [9].

Results
Simulation studies
In the simulation studies, we considered different marker
densities, causal marker effects, and SSVS parameters. We
also compared the two methods with a standard single-
marker F-test. The results are summarized in Table 1.
SSVS consistently has a higher AUC value than LASSO
and the single-marker test. We chose s = 0.05 for SSVS
and the values of τ were chosen according to the

suggested ratios of τ
σ

2

2 in George and McCulloch [3].

When the marker effect b is small (i.e., b = 0.5), LASSO
performs worse than the single-marker F-test. In other
scenarios, LASSO performs better than the single-marker
F-test.
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RA
Markers with a minor allele frequency less than 0.01
were screened out. After this step, 425,555 markers for
the IgM phenotype and 425,586 markers for the anti-
CCP phenotype remained. After removing the samples
with missing phenotypes, 746 samples for the IgM
phenotype and 867 samples for the anti-CCP phenotype
were left. The correlation between the phenotype and the
genotype was calculated. The top 1,000 markers were
chosen for each of the two phenotypes. Then, SSVS and
LASSO were run on both phenotypes.

For SSVS, we used a cutoff of 0.9 for the posterior
probabilities of markers being included in the model.
The parameter values in the simulation studies, s = 0.05

and τ = 1,2,3, were used such that τ
σ

2

2 = 400, 1600, and

3600. For IgM phenotype, SSVS selected 20, 11, and 6

markers for the three τ
σ

2

2 ratios. For the anti-CCP

antibody phenotype, SSVS selected 18, 12, and 6 markers

for the three τ
σ

2

2
ratios. The positions of the markers

selected by SSVS for s = 0.05 and τ = 1 are shown in
Figure 1. No common markers are identified for the two
quantitative phenotypes.

The LASSO algorithm was run for 500 iterations unless it
terminated earlier automatically because there were no
more significant markers. The optimal cut-off for the
number of iterations was selected using a 10-fold cross-
validation. The minimum cross-validation error was

achieved at 31 iterations for the IgM phenotype and at 33
iterations for the anti-CCP phenotype. It identified 31
significant markers for the IgM phenotype and 33 for the
anti-CCP phenotype. The marker positions are also shown
in Figure 1. No commonmarkers were identified for the two
phenotypes. However two markers, rs230662 for the IgM
phenotype and rs483731 for the anti-CCP phenotype, are
within 100 Kb of each other and both lie on the same gene
KTCD21 at chromosome location 11q14.1. These markers
have been enclosed in a diamond in Figure 1.

SSVS and LASSO identified a few common loci for the
IgM phenotype and the anti-CCP phenotype. For the IgM
phenotype, SSVS selected rs1938032 and LASSO selected
rs12032393; both markers are located on the gene
LRRC8D on chromosome 1 (enclosed by a star in
Fig. 1). On chromosome 7, SSVS selected rs2392467
and LASSO selected rs13234380 for the IgM phenotype.
Both markers are within 100 kb of each other and are
shown in Figure 1 (enclosed by a star). For the anti-CCP
phenotype, SSVS selected rs10183908 and LASSO
selected rs972485 in the gene LRP1B on chromosome
2 (enclosed by a triangle). On chromosome 4, SSVS
selected rs192068 and LASSO selected rs1540052, while
on chromosome 10, SSVS selected rs807013 and LASSO
selected rs17113682 (enclosed by triangles). Both
marker pairs are within 100 kb of each other, but
neither of them are located on annotated genes. SSVS
and LASSO selected two common markers, rs2186830
and rs334438, on chromosome 18 (enclosed by trian-
gles). Among them, marker rs2186830 is located on the
gene COLEC12. None of these genes have been reported
to be associated with RA in the literature.

Table 1: Simulation results of QTL mapping

AUCb

Coefficient Marker densitya SSVS (τ = 1) SSVS (τ = 2) SSVS (τ = 3) LASSO F-test

0.5 200 0.898 0.891 0.884 0.684 0.729
0.5 100 0.923 0.918 0.913 0.7 0.753
0.5 10 0.949 0.944 0.942 0.783 0.800
0.5 1 0.950 0.947 0.942 0.798 0.814
1 200 0.969 0.955 0.947 0.873 0.814
1 100 0.987 0.982 0.978 0.886 0.854
1 10 0.997 0.996 0.995 0.965 0.922
1 1 0.999 0.998 0.997 0.979 0.932
1.5 200 0.989 0.985 0.976 0.926 0.838
1.5 100 0.998 0.998 0.996 0.939 0.887
1.5 10 1 1 0.999 0.991 0.951
1.5 1 1 1 1 0.995 0.951
2 200 0.991 0.988 0.986 0.952 0.823
2 100 0.999 0.997 0.997 0.962 0.874
2 10 1 1 0.999 0.995 0.963
2 1 1 1 1 0.998 0.966

ameasured in the average number of markers selected from every 1,000 markers of the Hapmap Phase I data
bThe AUC values are the average values across 1,000 simulations. s = 0.05
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Discussion
SSVS and LASSO have advantages and disadvantages in
their application to the model selection problem. SSVS is
computationally intensive and cannot handle a very
large set of markers. Hence, a more aggressive marker
screening step needs to be done. The Gibbs sampler also
requires the selection of prior parameters. In our
simulation studies, by changing the prior of the g values,
we did not see a significant difference in the power of
SSVS (data not shown). However, changing s and τ will
change the results. Further study is required on how to
select these parameters. On the other hand, LASSO is
very fast and hence the model is selected very quickly. It
can handle large number of markers because the
computational time in each step is proportional to the
size of the model at that iteration. However, a big
problem with LASSO is the selection of the cut-off. The
Cp type score mentioned in Efron et al. [6] does not
work in this data set because it does not give a small
enough model (e.g., the model size using the Cp type
score exceeds 200 markers for a given phenotype).
LASSO may also overshrink parameters because it
shrinks both non-significant coefficients and significant
coefficients at the same rate. This can lead to over-
shrinking of the non-zero coefficients and result in

models with large size as more variables are required to
fit the data. To rectify this problem, cross validation is
performed using the ordinary lease squares estimates of
the model selected at each iteration rather than using
LASSO estimates for b values. The problem of over-
shrinking can be minimized by using different penalties
for different coefficients, which is performed in the
adaptive LASSO [10]. In addition, it is very important to
choose the prescreening steps carefully. A total of 1,000
markers were used for our studies to demonstrate the
ability of SSVS and LASSO to handle more markers than
the sample size. In future studies, it would be of great
interest to address the number of markers chosen in the
prescreening step to increase power.

For SSVS, we found that for different marker coeffcients
(b), the best results were achieved by different values of
τ. SSVS with τ = 1 had the maximum power compared
with other values of τ. While for b = 2, SSVS with τ = 2
has the maximum power compared to τ = 1,3. It
indicates that different values of hyper-parameters are
required to detect markers with different effects.

SSVS and LASSO both rely on the assumption that the
predictors are independent. However, the markers are

Figure 1
Comparison of the outputs of SSVS and LASSO for the two phenotypes. The squares show the markers
selected by SSVS and the circles show the markers selected by LASSO. The stars enclose the loci identified by both
SSVS and LASSO for the IgM phenotype. The triangles enclose loci identified by both SSVS and LASSO for the anti-CCP
phenotype. The diamond encloses the locus identified by LASSO for the two phenotypes.
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dependent on each other due to linkage disequilibrium,
which would need to be considered to make an accurate
statistical inference. SIS also assumes independence, but
is more robust to dependent markers than SSVS or
LASSO. A modification of LASSO known as the adaptive
LASSO [10] deals with correlated predictors by using
adaptive weights for different predictors. It would be
useful to compare the results of adaptive LASSO to that
of LASSO.

SSVS and LASSO both assume a linear model and
independent predictors. Using simulation studies, we
have demonstrated that both SSVS and LASSO select
common causal markers. When the markers are farther
apart, i.e. they are independent of each other, and the
prediction accuracy increases. In the real data, these
assumptions may be violated. In complex diseases like
RA, the individual marker effect is very weak and the
marker effect may be nonlinear. The markers are not
independent of each other due to high linkage disequili-
brium. In addition, there are other confounding vari-
ables such as population structure and epistatic effects.
All of the factors will affect the performance of the two
methods to different degrees. Therefore, only a few
common markers are selected by the two methods. It
would be of great interest to study the behavior of SSVS
and LASSO when these effects are incorporated into a
more complex simulation model.

The human leukocyte antigen (HLA) region on chromo-
some 6 has been reported to be associated with the
disease by various association and linkage studies
[11,12]. However, we did not identify any markers
within that region using LASSO or SSVS. This is an
interesting result because markers in the HLA region
correlate very strongly with the disease status. A possible
explanation could be the missing quantitative phenotype
data for the controls. QTL studies focus on quantitative
traits instead of the binary disease status information. By
incorporating disease status via a different method like
logistic regression, random forests, and so on, one can
build a more powerful model for the association study.
This would be extremely useful in our data set because
the disease status shows a very high association with the
HLA region, but the quantitative phenotype data shows
no association with the HLA region.

Conclusion
In this paper, we compared SSVS and LASSO on
simulated and real data. SSVS outperforms LASSO as
well as the single-marker F-test in the simulation studies.
The two methods were compared on the RA data
provided by the Genetic Analysis Workshop 16 work-
shop after a dimension reduction using the SIS.

Association studies were carried out for the two
quantitative phenotypes using the two algorithms. The
two methods identified two common markers for the
anti-CCP antibody phenotype and two and three marker
pairs that are located close to each other for the
rheumatoid factor IgM phenotype and the anti-CCP
antibody phenotype, respectively.

Some of these markers were found to be in annotated
genes such as LRRC8D, LRP1B, and COLEC12. However
these genes have not been reported to be associated with
RA. In summary, SSVS and LASSO are very useful tools in
GWAS studies for quantitative data.
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