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ABSTRACT

Resolving the spatial distribution of the transcrip-
tome at a subcellular level can increase our under-
standing of biology and diseases. To facilitate stud-
ies of biological functions and molecular mecha-
nisms in the transcriptome, we updated RNALocate,
a resource for RNA subcellular localization analysis
that is freely accessible at http://www.rnalocate.org/
or http://www.rna-society.org/rnalocate/. Compared
to RNALocate v1.0, the new features in version 2.0
include (i) expansion of the data sources and the cov-
erage of species; (ii) incorporation and integration
of RNA-seq datasets containing information about
subcellular localization; (iii) addition and reorganiza-
tion of RNA information (RNA subcellular localiza-
tion conditions and descriptive figures for method,
RNA homology information, RNA interaction and
ncRNA disease information) and (iv) three additional
prediction tools: DM3Loc, iLoc-lncRNA and iLoc-
mRNA. Overall, RNALocate v2.0 provides a compre-
hensive RNA subcellular localization resource for re-
searchers to deconvolute the highly complex archi-
tecture of the cell.

INTRODUCTION

The subcellular localization of RNA plays an important
role in cell growth and development, cell differentiation and
inflammation, cell signal transduction and transcriptional
regulation (1,2). At the cellular level, where an RNA is lo-
cated likely determines whether it will be stored, processed,
translated or degraded (3–5). Although the importance of
RNA subcellular localization has been widely recognized,
the related bioinformatics resources are limited compared
to those available for protein localization. For example,
a subcellular map of the human proteome, Human Pro-
tein Atlas (HPA), records detailed information about pro-
tein subcellular localization (6). Moreover, many resources
also provide information about the subcellular localiza-
tion of proteins, such as UniProt, PSORTdb, SubCellBar-
Code, MiCroKiTS 4.0 and SUBA4 (7–12). Corresponding
protein subcellular localization technology and prediction
tools include FLIRT, SUbCons, BUSCA and DeepMito
(13–18).

There are already some databases for collecting the
information of RNA subcellular localization at the
transcriptome-wide level. For example, lncSLdb (19) stores
subcellular localization of long noncoding RNAs (lncR-
NAs) from literature mining, LncATLAS (20) collects sub-
cellular localization of lncRNAs from RNA-seq data, and
EVmiRNA (21) involves the information of microRNAs
(miRNAs) in extracellular vesicles. Several computational
prediction tools, including DM3Loc (22), mRNALoc (23),
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lncLocator (24) and iLoc-lncRNA (25), were developed
based on the first version of RNALocate(26). Of note, many
experimental techniques for detecting RNA subcellular
localizations have been developed in recent years, including
APEX-Seq (27), proximity RNA-seq (28), MERFISH
(29) and subRNA-seq (30), together with extensive new
data. In view of these, this is the right time to update our
database to RNALocate v2.0 (http://www.rnalocate.org/ or
http://www.rna-society.org/rnalocate/), that is the collec-
tion of RNA subcellular localization data from literatures,
other databases and RNA-seq datasets.

RNALocate v2.0 is a repository of integrated experimen-
tally validated information on subcellular localization of
RNA through manual curation of the literature and five
other resources, along with analyses of 35 datasets from the
Gene Expression Omnibus (GEO) (31) under a common
framework (Figure 1). It also supports three RNA subcel-
lular localization prediction tools: DM3Loc, iLoc-lncRNA
and iLoc-mRNA (32). In total, RNALocate v2.0 integrates
more than 213 000 RNA subcellular localization entries at
171 locations across 104 species. This resource will provide
a valuable resource for better understanding the subcellular
localization of the transcriptome.

MATERIALS AND METHODS

Data collection

RNALocate v2.0 integrates RNA subcellular localization
data from the literature, five databases and 35 RNA-seq
datasets. Publications in PubMed (mainly from 2016 to
2021) were screened with the following keyword combina-
tions: (localization name) AND (RNA molecule). ‘Local-
ization name’ represents the subcellular localization name,
and ‘RNA molecule’ represents RNA symbols or RNA cat-
egory names. Finally, we reviewed over 35 000 published
studies that included 38 508 RNA subcellular localization
entries. The other 174 752 entries were integrated from
five other databases, including CSCD, EVmiRNA, exoR-
Base, PomBase and TAIR (21,33–36). RNA-seq datasets
from GEO were screened with the following criteria:
species (Homo sapiens or Mus musculus), sequencing type
(bulk RNA-seq or small RNA-seq), condition (delete un-
known) and replicate (≥2) and publication date (after 2016).
RNALocate v2.0 adds over 200 new samples from 35
datasets of RNA-seq data with subcellular localization in-
formation.

To facilitate elucidating the role of RNA localization
at the subcellular level, more annotation information was
collected, including RNA subcellular localization condi-
tions, methods and corresponding figures from the litera-
ture, RNA homology information from NCBI Gene (37),
RNA interactions from RNAInter (38), and RNA-related
diseases from MNDR v3.0 (39). Simultaneously, the tran-
script sequences from Refseq (40) and miRBase (41) were
also included. For RNA-seq datasets, GEO accession, lo-
calization, sample condition, and PubMed ID were pro-
vided. In addition, the RNA expression and Gene Ontol-
ogy (GO) enrichment results of the top 50 RNAs for each
sample were also incorporated (42).

Data processing

Integrating multisource data requires unifying them into
common reference databases to annotate various RNAs.
Major types of RNA symbols were used: (i) miRNA sym-
bols from the miRBase database, (ii) messenger RNA
(mRNA), small nucleolar RNA (snoRNA), small nuclear
RNA (snRNA) and lncRNA symbols from the NCBI Gene
database, (iii) ribosomal RNA (rRNA) and piwi interact-
ing RNA (piRNA) symbols from the RNAcentral (43)
database and (iv) circular RNA (circRNA) symbols from
the circBase (44) and exoRBase databases. Then, we re-
constructed a hierarchical structure for all of the local-
izations according to the cellular component annotation
curated in Gene Ontology. Additionally, miRBase acces-
sion, NCBI Gene ID, Ensembl Gene stable ID, RNAcen-
tral identifier, circBase ID, exoRBase ID and their exter-
nal links were also provided, which can help to efficiently
retrieve a substantial amount of RNA-associated infor-
mation from external resources. For the convenience of
users, the RNA-associated information also contains RNA
names from the literature, aliases, and sequences, among
others.

In particular, we screened and processed 203 samples
from 35 RNA-seq datasets that had labels of the subcellu-
lar locations in 26 conditions and 13 cell lines. All datasets
contained 15 subcellular locations (Figure 2B, Supplemen-
tary Table S1). The raw data were downloaded and pro-
cessed by the NCBI SRA Toolkit v2.10.5 for format conver-
sion, and then adaptor contaminants and low-quality bases
were removed using Trimmomatic v0.39 (45). The processed
clean reads were aligned to the human and mouse refer-
ence genomes (GRCh38 and GRCm38 from GENCODE)
with gene annotations (Release 34 and M25 from GEN-
CODE), and the gene expression of each sample was esti-
mated using HISAT2 v2.1.0, SAMtools v1.4 and feature-
Counts v2.0.1 (46,47). The RNA expression levels were nor-
malized by transcripts per million (TPM). All the data con-
sisted of two independent biological replicates per sample
(except for samples from APEX-seq, which have at least
two replicates). In order to further analysis, we standard-
ized the genes in each dataset similar to the approach of
LncATLAS. Genes with TPM >0 in all replicates of at least
one sample were retained (gene expressed in some repli-
cates but not expressed in others were excluded). And re-
moved genes with a greater than twofold difference between
replicates.

RESULTS

New data and annotations

To improve the accuracy of our database, we carefully cal-
ibrated all of the data in the first release of the database
and deleted 6739 entries that represent protein subcellu-
lar localizations and unclear localizations. In addition, we
merged 2897 entries in which all of the information was
the same except for cell lines or tissue types. In summary,
RNALocate v2.0 contains 213 260 experimentally validated
RNA subcellular localization entries, including 38 508 man-
ually curated entries from the literature and 174 752 entries
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Figure 1. Overview of the RNALocate v2.0 database.

from databases. These entries involved 112,304 nonredun-
dant RNAs and 16 newly added RNA types (such as cir-
cRNA, lincRNA, mtRNA, scRNA, scaRNA and Y RNA).
The 129 new subcellular locations (such as chromatin, in-
soluble cytoplasm, mitochondrial cloud, and plasma mem-
brane) were also added.

The distribution of the subcellular localizations among
different RNA types is shown in Figure 3A and Supple-
mentary Table S2. The number of species in RNALocate
v2.0 increased from 65 to 104 compared with the first ver-
sion. The species cover seven categories: apicomplexa, eu-
glenozoa, fungi, metozoa, rhodophyta, viridiplantae, and
viruses. The top three species are Homo sapiens, Mus mus-
culus, and Saccharomyces cerevisiae, as shown in Figure 3B.
Other model species, such as Drosophila melanogaster, Rat-
tus norvegicus and zebrafish (Danio rerio), have also been
documented in RNALocate v2.0. Of note, some RNA sub-
cellular localizations that only occur under certain condi-
tions are also recorded in our database.

Features and utilities of RNALocate v2.0

RNALocate v2.0 provides a user-friendly platform for
searching, browsing and profiling RNA subcellular local-
ization data. To improve its search capability, RNALocate
v2.0 provides search function for data from literature and
RNA-seq dataset, respectively. For search from literature
page, it enables an optimized query with a new function of
fuzzy and batch search. ‘Fuzzy Search’ can help users search
entries using nonstandardized RNA names and subcellular
localization. Meanwhile, ‘batch search’ supports queries by
a list of official symbols/IDs or a file upload to obtain as-
sociated entries.

Apart from basic annotations, such as RNA informa-
tion, localization information, other subcellular localiza-
tions and ncRNA disease information, we modified the cor-
responding homology and interaction data in detail. The
‘RNA-RNA interaction’ presents only when both RNAs
have subcellular localization information. Similarly, ‘ho-
mology information’ shows homologous RNA-associated
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Figure 2. Summary of the RNA-seq datasets. (A) The workflow of RNA-seq datasets (left). Top 20 gene expression levels and top 50 gene functional
annotations for each sample (right). (B) The proportion of samples and the number of datasets in 15 subcellular localizations.

entries instead of homologous genes. All of the informa-
tion links to their corresponding databases. In addition, we
added the method of RNA subcellular localization from lit-
eratures, and also included the corresponding conditions
and figures.

To illustrate the different subcellular localizations of each
RNA from RNA-seq datasets, the detail page of ‘Search
From RNA-seq Dataset’ shows the basic information and
subcellular localization in each RNA-seq dataset. Basic in-
formation included gene symbol, ensemble gene stable id,
genome location and gene type. The latter included: (i)
Subcellular localization (chromatin, cytoplasm and nucle-
oplasm) in different conditions (only in Mus musculus); (ii)
Different subcellular localizations in individual cell type;
(iii) Subcellular localizations revealed by APEX-Seq; (iv)
Single subcellular localization in different conditions and

(v) Subcellular localizations of cytoplasm and nucleus in
different cell lines (Supplementary Figure S1). The search
result page of literature and the detail page of RNA-seq
dataset can be switched to each other. ‘Browse By RNA-
seq dataset’ shows the sample information, gene expression
and gene GO enrichment analysis for each dataset on the
‘Browse’ page. GEO accessions, locations, sampling condi-
tions and other information were included in detail page.
And also provided a histogram of the top 20 RNA expres-
sions and the result of the top 50 RNA functional annota-
tions for each sample (Figure 2A). In addition, all of the
RNA expression in each dataset can be downloaded.

In response to the diverse needs of users, RNALo-
cate v2.0 incorporates three prediction tools: DM3Loc,
iLoc-lncRNA and iLoc-mRNA (all prediction tools were
trained on RNALocate v1.0). They are used to predict the
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Figure 3. Statistics on RNALocate v2.0. (A) The distribution of 25 RNA categories in 171 subcellular localizations. (B) Number of entries in the top 10
species.

subcellular localizations of lncRNAs (iLoc-lncRNA) or
mRNAs (DM3Loc and iLoc-mRNA).

CONCLUSION AND FUTURE PERSPECTIVES

Here, we present a resource of RNA subcellular localiza-
tion information, RNALocate v2.0, generated by informa-
tion obtained from the literature, databases and RNA-seq
datasets. It contains more than 213 000 RNA subcellular

localization entries, guiding and helping researchers per-
form further studies. RNALocate v2.0 integrates RNA-seq
data with subcellular localization to quantify the expression
of RNAs at the subcellular level. In addition, RNALocate
v2.0 also incorporates three prediction tools for the various
needs of users.

The biological functions of RNAs are usually influ-
enced by their localizations. The fact that RNAs are lo-
cated at multiple subcellular localizations also increases the
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complexity of the cell. The analysis of the protein-protein
interaction network at the subcellular level has been con-
firmed to have a unique effect different from the cellular
level, and corresponding methods have also emerged, such
as CellWhere and ComPPI (48–50). Because of this, we ex-
pect that continuing to expand and improve RNALocate
v2.0 can also help explore the RNA-RNA interaction net-
work at the subcellular level in the future. Thus, RNALo-
cate is the most comprehensive map of the subcellular lo-
calization of the transcriptome and it can satisfy different
requirements.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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