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Abstract

Looping Star is a near-silent, multi-echo, 3D functional magnetic resonance imaging

(fMRI) technique. It reduces acoustic noise by at least 25dBA, with respect to gradient-

recalled echo echo-planar imaging (GRE-EPI)-based fMRI. Looping Star has successfully

demonstrated sensitivity to the cerebral blood-oxygen-level-dependent (BOLD)

response during block design paradigms but has not been applied to event-related audi-

tory perception tasks. Demonstrating Looping Star's sensitivity to such tasks could

(a) provide new insights into auditory processing studies, (b) minimise the need for inva-

sive ear protection, and (c) facilitate the translation of numerous fMRI studies to investi-

gations in sound-averse patients. We aimed to demonstrate, for the first time, that

multi-echo Looping Star has sufficient sensitivity to the BOLD response, compared to

that of GRE-EPI, during a well-established event-related auditory discrimination para-

digm: the “oddball” task. We also present the first quantitative evaluation of Looping

Star's test–retest reliability using the intra-class correlation coefficient. Twelve partici-

pants were scanned using single-echo GRE-EPI and multi-echo Looping Star fMRI in

two sessions. Random-effects analyses were performed, evaluating the overall response

to tones and differential tone recognition, and intermodality analyses were computed.

We found that multi-echo Looping Star exhibited consistent sensitivity to auditory stim-

ulation relative to GRE-EPI. However, Looping Star demonstrated lower test–retest reli-

ability in comparison with GRE-EPI. This could reflect differences in functional

sensitivity between the techniques, though further study is necessary with additional

cognitive paradigms as varying cognitive strategies between sessions may arise from

elimination of acoustic scanner noise.
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1 | INTRODUCTION

The inherent acoustic noise of conventional functional magnetic reso-

nance imaging (fMRI), carried out using gradient-recalled echo

echo-planar imaging (GRE-EPI), is often intolerably high, commonly

achieving sound levels greater than 100dBA (Price, De Wilde,

Papadaki, Curran, & Kitney, 2001; Ravicz, Melcher, Kiang, & N., 2000).

At these levels, severe hearing damage can occur without ear protec-

tion. During GRE-EPI, this acoustic noise originates primarily from the

rapid switching of the frequency encoding magnetic field gradient

(from near maximum negative to near maximum positive and vice-

versa), necessary for fast two-dimensional slice-by-slice imaging. This

switching induces high-frequency mechanical vibrations in the scan-

ner hardware, which fall within the acoustic spectrum (Price

et al., 2001).

This high acoustic scanner noise impacts the interpretation of the

mechanisms behind auditory processing in fMRI studies. For example,

Yakunina et al. (2015) showed that the auditory connectivity network

differed during a music listening task when a quieter, sparse-sampling

fMRI acquisition technique was used, in comparison with using con-

ventional, noisy, continuous acquisition. Langers, Van Dijk, and Bac-

kes (2005) also showed the influence of background scanner noise on

the haemodynamic response during auditory tone presentation, using

a variable-length silent gap fMRI acquisition method. Moreover, Gaab,

Gabrieli, and Glover (2007) demonstrated the masking effect of scan-

ner background noise on blood-oxygen-level-dependent (BOLD) sig-

nal in response to word stimuli. The impact of acoustic scanner noise

on auditory processes has been supported by further studies (Healy,

Moser, Morrow-Odom, Hall, & Fridriksson, 2007; Scarff, Dort,

Eggermont, & Goodyear, 2004; Shah, Jäncke, Grosse-Ruyken, &

Müller-Gärtner, 1999).

Background scanner noise can also impose limitations to the

generalisability of studies across numerous cohorts. For example, con-

ditions such as tinnitus can include symptoms of hypersensitivity to

sound (or hyperacusis) (Baguley, 2003; Chen et al., 2015). fMRI stud-

ies have been performed with this cohort, however participants with

hyperacusis are often excluded (Araneda et al., 2018; Golm, Schmidt-

Samoa, Dechent, & Kröner-Herwig, 2013; Han et al., 2018; Hofmeier

et al., 2018; Leaver et al., 2011) and in some instances there is diffi-

culty in disentangling whether activity patterns result from the stimu-

lus or the acoustic scanner noise (Ghazaleh et al., 2017; Gu, Halpin,

Nam, Levine, & Melcher, 2010; Husain & Schmidt, 2014;

Lanting, De Kleine, & Van Dijk, 2009; Leaver, Seydell-Greenwald, &

Rauschecker, 2016; Seydell-Greenwald et al., 2012). Given that

hyperacusis is also heterogeneously prevalent in further cohorts, such

as in individuals with autism spectrum disorder (Stiegler &

Davis, 2010) and in children (Rosing, Schmidt, Wedderkopp, &

Baguley, 2016), mitigating background scanner acoustic noise could

greatly improve standardisation across numerous clinical groups.

To date, conventional methods for addressing this high acoustic

scanner noise have revolved around the retention of GRE-EPI acquisi-

tion sequences, due to their functional sensitivity and spatiotemporal

resolution. One example of this was presented by Seifritz et al. (2006),

where they tuned the GRE-EPI pulse sequence to alter the characteris-

tics of the acoustic noise, but the noise amplitude remained comparable

to conventional GRE-EPI. The primary strategy is to ask participants to

employ earplugs during scanning, however effective sound attenuation

relies on their correct application, hence there remains a risk of hearing

damage (Salvi & Sheppard, 2018; Sheppard, Chen, & Salvi, 2018). Alter-

native strategies for scanner acoustic noise reduction involve adapting

the GRE-EPI pulse sequence, for example via band-limited gradient

pulses (Hennel, Girard, & Loenneker, 1999) and sparse temporal sam-

pling (Hall et al., 1999). A number of early scanner noise reduction tech-

niques were reviewed by Moelker and Pattynama (2003). Hardware

improvements have also been explored, such as gradient coil isolation

(Edelstein et al., 2002), and there has recently been increased use of

active noise-cancelling headphones (Dewey et al., 2018; Gabrielsen

et al., 2018), although these strategies can be financially costly and

therefore not widely applicable across studies. Ultimately, there is no

specific optimal workflow or acquisition technique applicable across

sites and paradigms to reduce the potential confound and limitations of

acoustic scanner noise at its source.

To address these issues, we present the application of a recently

developed silent pulse sequence known as Looping Star (Wiesinger,

Menini, & Solana, 2019). This technique could mitigate the need for

earplugs, improve accessibility to the scanning environment and

remove the acoustic noise confound. Looping Star (LS) is based on a

technique known as Rotating Ultra-Fast Imaging Sequence (RUFIS)

(Madio & Lowe, 1995), which reduces the effect of vibrations induced

by gradient switching by making small incremental changes in the

direction (but not the amplitude) of the frequency encoding gradients

of the readout. Looping Star is a modification of RUFIS in which a

temporal-multiplexed gradient refocusing mechanism is employed

(Wiesinger et al., 2019), allowing the transverse component of the

magnetisation to evolve by returning periodically to the centre of

k-space. As a result, it remains sensitive to static T2* dephasing as in

GRE-EPI and can achieve multi-echo acquisition without the need for

magnetisation preparation pulses (Solana, Menini, Sacolick, Hehn, &

Wiesinger, 2016). A detailed description of the Looping Star method-

ology can be found in Wiesinger et al. (2019).

To date, Looping Star has proven sensitive to the BOLD response

evoked by periodic blocks of sensory stimuli (Damestani et al., 2019a;

Wiesinger et al., 2019), visual working memory (Dionisio-Parra,

Wiesinger, Sämann, Czisch, & Solana, 2020) and in the “resting” state
(Damestani et al., 2019b; Dionisio-Parra et al., 2020). However,

Looping Star has not been evaluated using event-related fMRI para-

digms, including those of an auditory nature, which are able to probe

aspects of cognition in a manner not possible using block-designs.

One such paradigm is the active “oddball” task (Squires, Squires, &

Hillyard, 1975), an important auditory discrimination paradigm that

has been used extensively in several studies using both EEG (Barry,

Kirkaikul, & Hodder, 2000; Justen & Herbert, 2018; Wronka, Kaiser, &

Coenen, 2008) and fMRI (Brázdil et al., 2005; Mangalathu-Arumana,

Beardsley, & Liebenthal, 2012). It is particularly relevant in the study

of cognitive deficits in participants with autism spectrum disorder

(ASD), as these individuals have shown reduced performance during
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similar tasks when compared with healthy controls (Dawson, Finley,

Phillips, & Galpert, 1986; Dawson, Finley, Phillips, Galpert, &

Lewy, 1988; Oades, Walker, Geffen, & Stern, 1988).

Importantly, a previous study also highlighted that alternative

cognitive strategies were employed by children with ASD during an

auditory “oddball” tone discrimination fMRI task (Gomot et al., 2006).

This study used an adapted slice-onset version of conventional GRE-

EPI to account for the acoustic noise limitations. The characterisation

of responses to this task using Looping Star, in comparison with this

adapted GRE-EPI acquisition, therefore has clear advantages with

respect to its translation to studies involving individuals with ASD, as

Looping Star would remove the acoustic noise confound. Demonstrat-

ing comparable test–retest reliability of Looping Star would further

facilitate this translation. Furthermore, the multi-echo capabilities of

Looping Star are worthy of investigation, given the benefits of echo

combination to BOLD signal noise reduction (Kundu, Inati, Evans,

Luh, & Bandettini, 2012). These have not yet been evaluated for

Looping Star using an event-related paradigm design.

Hence, our specific aims were:

1. To investigate whether multi-echo Looping Star is sensitive to the

BOLD response elicited during the auditory “oddball” paradigm.

2. To quantitively compare the functional sensitivity of Looping Star

with that of a compatible adapted slice-onset single-echo GRE-EPI

acquisition, with identical acquisition parameters to those used in

the original auditory tone discrimination study (Gomot

et al., 2006).

3. To explore the test–retest reliability of the Looping Star and GRE-

EPI acquisitions using two sessions.

We performed the following analyses to address the aims: a) group-level

conventional parametric general linear model (GLM) analyses b) inter-

modality sensitivity comparisons using percentage signal change and

parameter estimates and c) test–retest reliability analysis using intra-

class correlation coefficients (ICC) for each modality between sessions.

2 | METHODS

2.1 | Participants

Twelve healthy participants (6 female; mean ± standard deviation

age = 31.5 ± 8.0 years; range = 25–54 years) were scanned in two

sessions. This number of participants was consistent with that of the

healthy control group in the aforementioned study using the same

paradigm (Gomot et al., 2006). These sessions were separated by at

least 1 week and were no more than 2 weeks apart. All participants

took part in both scanning sessions and for the full duration of both

sessions. Exclusion criteria involved standard MRI contra-indications

and participants were recruited from within the university (King's Col-

lege London). Ethical approval was provided under London—

Camberwell St Giles REC reference 04/Q0706/72, and informed writ-

ten consent was obtained from all participants.

2.2 | Oddball paradigm

For consistency with Gomot et al. (2006), we decided to employ a par-

adigm with a design identical to that used in their study. The stimuli

were presented through the pneumatic MR-compatible headphones

(MR Confon, Cambridge Research Systems). The paradigm involved

three tone types (p = probability of occurrence), Deviant (p = .09),

Novel (p = .07) and Standard (p = .84), played with event duration

80 ms and interstimulus interval 625 ms. Deviant tones were simply

frequency-shifted Standard tones, whereas Novel tones were

completely Novel (in terms of pitch and frequency) relative to Stan-

dard and Deviant tones (Müller, Jüptner, Jentzen, & Müller, 2002).

The beginning of the paradigm was silent for a duration of 10 volumes,

then five Standard tones were played. After this, Novel and Deviant

tones were played in random order with a minimum of three Standard

tones between onsets.

Participants indicated with a button-box, in the right hand, when

either a Deviant or Novel tone was detected, using the same button

for both tones. Six silent rest blocks of 10-second duration were

evenly distributed throughout the paradigm. A video of neutral visual

distractors, involving animals in natural habitats, was played through-

out the paradigm as performed in the original study (Gomot

et al., 2006). Deviant and Standard tones were swapped halfway

through, as indicated by a screen displaying the command “Swap”,
whereby Standard tones became Deviant tones and vice versa, to pre-

vent tone habituation and boredom. Although the Deviant and Stan-

dard tones were consistently the same tones when applied, the Novel

tones differed for every onset. For further information on the para-

digm and characteristics of the tones, we point towards the original

study by Gomot et al. (2006), who kindly provided help with the

implementation of the paradigm.

Participants' comprehension of the paradigm and hearing ability

were tested outside of the scanning facility prior to the first session

using a shorter version of the paradigm with frequency-shifted Stan-

dard and Deviant tones, to avoid conditioning effects. These tones

were frequency-shifted by three semitones down from the original

tone using version 2.2.2. of the Audacity® recording and editing soft-

ware (Audacity Team, 2020). Within the scanning sessions, earplugs

were provided beneath the pneumatic MR-compatible headphones.

This was to prevent hearing damage during the loud GRE-EPI

acquisition.

Participants self-reported whether they could hear stimuli pres-

ented through the pneumatic MR-compatible headphones based on

whether they could clearly hear the voices of the radiographers

through the headphones. The paradigm was then also played through

these headphones. To avoid conditioning effects within the session,

the tone order in the paradigm differed between Looping Star and

GRE-EPI acquisitions . Otherwise, the same paradigms were used for

all participants and for both sessions (i.e., a unique paradigm was

assigned to each modality, but not to each session nor each partici-

pant). Participant responses during the scans were also monitored via

a paradigm-linked computer to ensure they could consistently hear

the paradigm.
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2.3 | fMRI acquisition

Participants wore a pulse oximeter on their forefinger and respiratory

belt around their waist to probe any possible differences in physiolog-

ical parameters (heart rate and respiration rate). A 3T General Electric

MR750 Discovery scanner (GE Healthcare, Chicago, IL) with a General

Electric 12-channel receive-only head coil was used. A standard ADNI

(Leung et al., 2015) 1.09 mm in-plane resolution structural IR-SPGR

image was collected with acquisition parameters: TE = 3.016 ms,

TR = 7.312 ms; TI = 400 ms, number of slices = 196, slice-

gap = 1.2 mm, flip-angle = 11�.

For the fMRI modalities, the same acquisition parameters were

used between sessions, and sequence order was pseudo-randomised

between participants and sessions. Acquisition parameters for single-

echo GRE-EPI were as follows: TE = 27.5 ms, TR = 2.5 s; slice

thickness = 4 mm, number of slices = 20, slice-gap = 1 mm, in-plane

resolution = 3.125 mm, flip-angle = 82�, 240 volumes,

duration = 10 min. As in the case of the study by Gomot et al. (2006),

the tone duration (80 ms) and the interstimulus interval of 625 ms,

ensured that the stimuli were audible in the time gap between slice

read-outs of the multi-slice GRE-EPI scans. The field of view for the

GRE-EPI acquisition did not cover the cerebellum.

To ensure k-space sampling uniformity in Looping Star, a pseudo-

randomly ordered trajectory was applied (Dionisio-Parra et al., 2020;

Wiesinger et al., 2019). The trajectory was calculated for a nominal

spatial resolution of 3.2 mm, including an acceleration factor to pro-

duce comparable TR with GRE-EPI (see Supplementary Material A).

This acceleration factor introduces blurring, reducing the effective res-

olution of the images (Maier et al., 2021), however this pattern is suf-

ficient for fMRI as the centre of k-space is densely sampled (Kasper

et al., 2014). This highlights a benefit of radial acquisition, as other

artefacts typical of Cartesian under-sampling are not introduced.

As a result, the multi-echo Looping Star acquisition parameters

were as follows: multi-echo TEs = 0 ms, 16.1 ms, 32.2 ms,

TR = 2.648 s, equivalent spatial resolution = 3.2 mm, flip-angle = 3�,

readout bandwidth = ±46.875 kHz, 24 spokes per loop, 72 spokes per

segment, 1,080 spokes per volume, 240 volumes, duration = 10 min

35 s. For reconstruction of the FID image (TE = 0 ms), missing centre

of k-space samples due to the dead-time of the receiver were

reacquired at the end of the scan by repeating the Looing Star k-space

trajectory at reduced readout gradient amplitude, as described by Wu,

Dai, and Ackerman (2007), Wiesinger, Sacolick, and Menini (2016) and

Wiesinger et al. (2019).

2.4 | fMRI preprocessing

Image reconstruction for Looping Star was conducted offline using a

“nearest-neighbour gridding” approach (Wiesinger et al., 2019) in

MATLAB (Mathworks, 2019), as the fast Fourier transform cannot be

applied directly to non-Cartesian data. This included density compen-

sation to account for oversampling of the centre of k-space (Hoge,

Kwan, & Bruce Pike, 1997). Furthermore, an inherent property of

Looping Star is that the signal from the spoke dephasing outwards is

contaminated by the signal from the spoke refocusing inward. This is

known as echo-in/echo-out interference (Wiesinger et al., 2019).

Dionisio-Parra et al. (2020) demonstrated that addressing this inter-

ference by applying a Fermi filter reduced the image resolution, and

RF phase-cycling doubled acquisition time. Instead, optimal combina-

tion of the echoes was used to improve the temporal signal-to-noise

ratio (tSNR) (Kundu et al., 2012).

After reconstruction, the first 10 volumes were removed for both

modalities to avoid the influence of effects due to non-steady state

magnetisation. Looping Star images were rescaled by a factor of 105

post-reconstruction to avoid intensity capping. Looping Star images

were cropped using the FSL (Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012) command “fslroi” and re-oriented using SPM-

12 (fil.ion.ucl.ac.uk/spm/). The origins were centred for the FID and

echo images to lie on the anterior commissure. Looping Star and GRE-

EPI preprocessing pipelines were almost identical: for single-echoes they

followed the same pipeline, with Looping Star excluding slice-timing cor-

rection since it is a three-dimensional acquisition technique. For Looping

Star, optimal echo-combination was included in the pipeline but TE-

dependent denoising (DuPre et al., 2019; Kundu et al., 2012) was not

applied to Looping Star to ensure consistency of the preprocessing pipe-

lines between modalities. The pipelines are visualised in Supplementary

Material B, with further detail provided below.

Looping Star images were bias-field corrected with ANTS N4-ITK

(Tustison et al., 2010). The high tSNR FID image was used to estimate

the motion correction parameters, which were then applied to the

multi-echo image time series. High frequency artefacts were removed

from the time series, to avoid errors in echo combination, and concat-

enation of the FID and echoes was performed in the z-direction using

AFNI (Cox, 1996). Optimal echo combination was applied using the

“opt_com” command from “tedana.py” in the MEICA (Kundu

et al., 2012) pipeline. The pipeline then continued with co-registration

of the FID to the subject's own high-resolution T1-weighted scan,

which was then applied to the optimally combined dataset, spatial

normalisation using unified segmentation (as implemented in SPM-12)

with images saved at 4 mm isotropic resolution and smoothing with

an 8 mm FWHM kernel. This smoothing kernel was used to ensure

adequate signal-to-noise ratio for the Looping Star dataset and as a

compromise between the minimum identifiable cluster size and satis-

fying the Gaussian random field approximation.

Following the same bias-field correction, the same standard SPM-12

preprocessing pipeline was applied, though adjusted for single-echo GRE-

EPI. This included slice-timing correction, co-registration to the subject's

high-resolution T1-weighted scan, spatial normalisation using unified seg-

mentation (as implemented in SPM-12) with images normalised at 4 mm

isotropic resolution and smoothing with an 8 mm FWHM kernel.

2.5 | fMRI analysis—group level SPM

Single-subject fixed-effects and group-level random-effects analyses

were conducted in SPM-12, with cluster-level inference using a
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primary uncorrected cluster-forming threshold of p < .001 (Woo,

Krishnan, & Wager, 2014; Worsley et al., 1996) . Only clusters surviv-

ing family-wise error correction at the cluster-level (i.e., p[FWEc] < .05)

were deemed significant. The baseline condition (Standard tones) was

not modelled explicitly to avoid over-parameterisation of the general

linear model (GLM) and thereby served as an implicit baseline. The

first level GLM included modelling the motion parameters as nuisance

regressors and modelling three conditions: Deviant, Novel and Silent

periods, constructed by convolving regressors encoding the relevant

trials with the standard canonical double-gamma hemodynamic

response function. An autoregressive AR(1) model was also used for

ReML parameter estimation, used as standard in SPM-12.

The contrasts interrogated in the first level model were:

i. Activity greater during both Novel and Deviant tones over Silent

periods (Dev + Nov > Silent)

ii. Activity greater during both Novel and Deviant tones over Stan-

dard tones and Rest (Dev + Nov > All)

iii. Activity greater for Novel tones than Deviant tones (Nov > Dev)

and vice versa (Dev > Nov)

iv. Activity greater for Novel tones over Deviant, Standard and Rest

(Nov > All)

v. Activity greater for Deviant tones over Novel, Standard and Rest

(Dev > All)

A 128 s high-pass filter was applied during analysis. MNI co-ordinates,

from the output of SPM-12, and Brodmann areas were compared

using BioImage Suite (Lacadie, Fulbright, Arora, Constable, &

Papademetris, 2008).

2.6 | fMRI analysis—between-modality comparison

To quantitatively compare, in a general fashion, the functional sensi-

tivity between techniques, a paired t test was computed in SPM-12

between the first level contrast maps of Dev + Nov > Silent (contrast

i., Section 2.6) in each session.

To further explore the intermodality difference in functional sen-

sitivity in auditory regions, given the nature of the task and the differ-

ence in acoustic load between acquisitions, a Neurosynth (Yarkoni,

Poldrack, Nichols, Van Essen, & Wager, 2011)-derived auditory region

of interest (ROI), using the term “auditory” thresholded at z = 5, was

used as a mask. This mask was applied to the first level contrast maps

of Dev + Nov > Silent (i, Section 2.6). The mean parameter estimates,

or betas, of the Novel and Deviant tones modelled, as well as the

T-scores of the activity maps (see Supplementary Material C) were

calculated in this region. The mean T-score and mean Novel and Devi-

ant parameter estimates were computed across participants. The per-

centage signal change was also computed within the same ROI,

though thresholded at z = 8, using the MarsBaR toolbox of SPM-12;

and its accompanying guidance for batch calculation of the percent-

age signal change (Brett, Anton, & Valabregue, 2002). The event dura-

tion used was zero, and the computed scaling factor within the

MarsBaR batch was dependent on the time-bin used for each modal-

ity as detailed in the aforementioned batch.

Normality was tested on the T-scores, beta parameters and per-

centage signal change values across participants via a Shapiro–Wilk

test in version 27.0 of IBM SPSS Statistics (IBM Corp, 2020). The per-

centage signal change results were therefore quantitatively compared

using Spearman's correlation in SPSS to evaluate the consistency of

the participant responses between modalities. A Wilcoxon Signed

Rank test was also computed in SPSS between modalities for the per-

centage signal change of each tone between modalities. For the beta

parameters of each tone in the auditory ROI and the mean T-score in

the auditory ROI, either a Wilcoxon Signed Rank or Paired T-test was

computed based on the output of the normality test. All T-tests

included a hypothesised mean/median difference of zero and α = .05.

Statistical significance was determined by a two-tailed test at a

p-value threshold <.05.

2.7 | fMRI analysis—between-session differences

2.7.1 | Group level intra-class correlation—within
modality

As is customary in quantitative assessments of reliability, the voxel-wise

intra-class correlation (ICC) analysis (Caceres, Hall, Zelaya, Williams, &

Mehta, 2009), using ICC index (3,1), was employed to evaluate between

session characteristics for the contrast maps of Deviant + Novel > Silent

at group level (i.e., across participants, between sessions, within modal-

ity). This was performed to establish the reliability of the activity maps

between the scanning sessions, as this method is not sensitive to the

mean difference between sessions but rather sheds light on the variabil-

ity between sessions. The ICC (3,1) (Shrout & Fleiss, 1979) has been

proposed specifically for this type of comparison. Its magnitude is calcu-

lated using the sum of squares between subjects (BMS) and between

sessions (EMS), with k as the number of repeated sessions (Caceres

et al., 2009), seen in Equation (1).

ICC 3,1ð Þ= BMS−EMS
BMS+ k−1ð ÞEMS

ð1Þ

An ICC of 1 indicates exceptionally high reliability between sessions

as the between session variability would be close to zero (i.e., the

error sum of squares would be negligible). On the other hand, the ICC

becomes negative as the size of the between-sessions variance

regression becomes larger than the between-subject variance. An ICC

close to −1 therefore, (the other extreme), indicates exceptionally

poor between session reliability; and that this term would be signifi-

cantly larger than the variability between subjects (i.e., the between-

subject sum of squares is close to zero).

The contrast maps were first masked with a grey matter mask

(grey matter tissue prior from SPM-12, see Supplementary Material

C). A task-related network mask was then defined from the first ses-

sion for each modality, by means of a low T-score threshold of 1.
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A low threshold was used to account for the difference in amplitude

of the T-scores between techniques, preventing large clusters from

being more prevalent in one modality than another. The median ICC

score for all voxels within the mask was calculated. When calculating

the network mask, grand mean scaling and global calculation were

omitted.

2.7.2 | Intra-voxel reliability—within modality

The ICC toolbox can also be applied to test the consistency of the sig-

nal distribution within an ROI across sessions. This produces a region

ICC for each subject (i.e., across sessions, within modality) and is

known as the intra-voxel reliability (ICCv). This differs from a typical

voxel-wise ICC where the reliability of the signal across sessions is

determined separately for each voxel.

The intra-voxel reliability was calculated for each subject within

an auditory ROI, generating an intra-voxel ICCv value for each partici-

pant. This auditory ROI was computed across a Neurosynth (Yarkoni

et al., 2011)-derived auditory ROI (see Supplementary Material C),

using the term “auditory” and thresholded at z = 5. In this case, Equa-

tion (1) is applied for each individual subject using the contrast values

of the voxels within this auditory ROI as stated by Caceres

et al. (2009). As this work suggests, the intra-voxel reliability then

measures the total variance explained by the intra-voxel variance,

testing the consistency of the spatial characteristics of the BOLD sig-

nal distribution in this ROI to infer differences between subjects. The

ROI was applied to the contrast maps for Deviant + Novel > Silent for

each participant and across sessions.

2.7.3 | Comparison of intra-voxel reliability—
between modality

To evaluate the differences in ICCv between modalities, the mean and

standard deviation of the outputted ICCv from the intra-voxel reliabil-

ity calculation was computed across participants. Upon computing a

Shapiro–Wilk normality test, a Wilcoxon Signed Rank Test was com-

puted between modalities to compare medians of the ICCv values,

given that the same population produced ICCv scores for the two

modalities, using SPSS. Statistical significance was determined by a

two-tailed test at a p-value threshold <0.05. Although Bland–Altman

plots (Bland & Altman, 1999) have been used in some studies to

explore reliability, these were not used in our work as the literature

indicates that they are more appropriate when assessing direct repli-

cation of quantitative absolute measures, which is not the case of beta

parameters in fMRI analysis.

2.8 | Image quality measures

Temporal signal-to-noise ratio (tSNR) was calculated as outlined by

Friedman and Glover (2006). The mean signal across time per voxel

was computed and divided by its corresponding standard deviation

after second-order polynomial de-trending (i.e., the standard deviation

of the residuals). The images used were those preprocessed including

all steps up to spatial normalisation (i.e., excluding smoothing), to pro-

duce the average tSNR value across participants. The tSNR was also

calculated within a grey matter mask (grey matter tissue prior from

SPM-12, see Supplementary Material Figure C). This measure avoided

artefacts in the average tSNR images that result from differences in

brain structure. A difference map was produced by dividing the differ-

ence between the modality tSNR maps within-session by the sum of

the maps and multiplying this result by 100.

2.9 | Sound level measurements

A direct sound level measurement was taken by attaching the Casella

62X (Casella Solutions, UK) sound meter on a cylindrical phantom at

the axial isocentre of the magnet bore and taking the mean LCpeak

and LAeq values across 15 s (approximately 5 volumes) for each scan-

ning sequence.

3 | RESULTS

3.1 | Looping Star acoustic noise and image quality
characteristics

Table 1 shows the in-bore sound amplitude measures inside the scan-

ner, indicating that Looping Star was less than 10dBA louder than the

ambient scan room noise and 27dBA quieter than GRE-EPI. This is a

substantial difference, particularly since acoustic noise is measured on

a logarithmic scale.

The tSNR results can be seen in Figure 1 for each individual echo

and for the optimally combined temporal series from Looping Star, com-

pared with GRE-EPI. tSNR overall was lower in Looping Star compared

with GRE-EPI, evident both visually in the whole brain (Figure 1, top)

and in the quantitative values in grey matter (Figure 1, bottom). The dis-

tribution of tSNR values was narrower for the echoes and optimally

combined echoes of Looping Star than in GRE-EPI. The percentage dif-

ference map indicated less than 50% difference between optimally com-

bined Looping Star and GRE-EPI, whereas higher differences could be

seen in white matter, which is likely driven by the different tissue relaxa-

tion characteristics between techniques. A figure of the raw images has

also been provided (Supplementary Material D).

TABLE 1 Average sound level measures over a duration of 15 s
of scanning from bore isocentre of each acquisition modality

Acquisition LAeq (dBA) LCpeak (dBC)

GRE-EPI 98.0 112.9

Looping Star 71.0 102.8

Ambient scanner room, no scan 64.0 85.7
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F IGURE 1 (top) Mean temporal signal-to-noise-ratio (tSNR) maps, calculated across participants for each modality and for separate echoes
(free induction decay—FID, Echo 1—GRE, Echo 2—GRE2) and the optimally combined echoes (OptCom) in Looping Star (LS). Datasets were
realigned and spatially normalised prior to computation of the tSNR. Percentage difference maps between optimally combined Looping Star and
GRE-EPI for each session are also shown at the bottom right. (bottom) tSNR value distribution across subjects and sessions within grey matter
mask for each modality. Slice (mm = millimetres) in MNI space provided
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3.2 | Physiological and behavioural responses

The mean heart rate and respiratory volume per time across the acquisi-

tion did not demonstrate any significant differences between modalities

(Supplementary Material E). Participants were over 86% accurate on

average for both modalities and sessions, indicating satisfactory cogni-

tive engagement with the paradigm. Only one participant had lower

than 86% accuracy during GRE-EPI Session 2, but they were still over

76% accurate. There was no evidence of poorer performance accuracy

after the tones were swapped (Supplementary Material E).

3.3 | Whole-brain voxel-wise GLM random-effects
analysis

Since the standard tone events served as an implicit baseline, we evalu-

ated the overall sensitivity to auditory stimuli between modalities, using

the contrasts: Deviant + Novel > Silent (rest blocks) and Deviant + Novel

> All other blocks. Figure 2a,b shows that Looping Star and GRE-EPI were

both sensitive to the responses to non-standard tones. Activation was

observed in the same Brodmann areas (BA) identified by the original study

(Gomot et al., 2006), namely the anterior transverse temporal area (BA 41)

and the posterior superior temporal gyrus (BA 22) (Table 2). Significant

activity was also identified in both modalities within the motor cortex

(BA 6) and somatosensory cortex (BA 1). No significant results were iden-

tified for the contrast Deviant > Novel with either technique, however

Figure 2c demonstrates the regions more responsive to Novel trials than

Deviant trials. Only the Looping Star Session 1 data yielded a statistically

significant BOLD response to this contrast in an auditory region.

3.4 | Quantitative comparison between modalities
(within session)

Figure 3 demonstrates the results of the quantitative comparisons

between modalities, within each session. The intermodality paired

F IGURE 2 Parametric
activity maps for the contrasts
(a) Deviant + Novel > Silent,
(b) Deviant + Novel > All other
onsets and (c) Novel > Deviant.
Regions of comparable activity
can be seen for (a) and (b),
whereas (c) highlights that only
Looping Star Session 1 detects an
auditory response for the
contrast. Slices shown are also
visualised in top left corner of
images. Overlaid on ch2 image
(Holmes et al., 1998) in
MRICRON (Rorden &
Brett, 2000). Statistics at p < .001
uncorrected can be seen in
Table 2. Slice (mm = millimetres)
in MNI space provided
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TABLE 2 SPM statistics table of results for parametric analysis at primary uncorrected cluster-forming threshold ( p < .001 unc.) across
different contrasts for each session and modality

Contrast name Modality

MNI co-ordinates

(x,y,z in mm) Brodmann area

Cluster-level

p(FWE)-value T-score Cluster size

Deviant + Novel > Silent GRE-EPI Session 1 −46 −28 10 41 <10−3 ** 15.86 2,325

66 −20 10 41 <10−3 ** 9.33 477

42 −32 46 40 0.027* 4.26 40

34 28 26 9 0.003* 4.06 67

GRE-EPI Session 2 58 −20 18 40 <10−3 ** 13.52 217

−62 −20 18 1 <10−3 ** 13.06 616

−6 0 58 6 <10−3 ** 9.56 278

6 −84 −10 18 0.064 8.30 33

−14 24 6 N/A 0.004* 7.56 73

Looping Star Session 1 50 −32 14 41 <10−3 ** 16.91 242

2 −76 −22 N/A <10−3 ** 11.15 130

34 −52 −26 N/A 0.197 10.50 12

−2 4 50 6 <10−3 ** 9.16 91

−34 −4 58 6 <10−3 ** 8.33 127

−46 6 −6 13 <10−3 ** 7.77 222

Looping Star Session 2 −58 −20 22 1 <10−3 ** 9.60 542

6 −64 −14 N/A <10−3 ** 10.02 329

62 −12 6 41 0.006* 8.96 36

50 16 −10 N/A 0.001* 7.92 56

2 4 66 6 0.010* 5.73 32

Deviant > All GRE-EPI Session 1 −50 −28 10 41 <10−3 ** 14.43 3,166

34 8 34 13 <10−3 ** 6.41 165

54 8 −2 44 0.005* 6.05 45

GRE-EPI Session 2 62 −16 18 40 0.001* 14.07 71

10 −92 −6 17 <10−3** 12.93 77

−58 −16 50 N/A <10−3** 11.63 328

2 12 58 6 <10−3** 10.05 236

−62 −20 22 1 0.001* 8.86 74

10 28 −2 N/A <10−3** 7.92 123

Looping Star Session 1 −2 0 66 6 <10−3** 9.91 226

−50 −24 10 40 <10−3** 9.93 50

−54 4 −2 6 0.014* 8.48 26

54 −20 22 N/A <10−3** 8.07 85

30 0 −6 49 <10−3** 7.52 120

2 −76 −22 N/A <10−3** 7.48 134

Looping Star Session 2 −50 −20 42 1 <10−3** 9.20 130

−6 −40 −22 N/A 0.121 7.90 15

−6 −80 10 17 <10−3** 7.60 95

Novel > All GRE-EPI Session 1 −58 −20 18 1 <10−3 ** 13.96 2,775

−10 −48 −2 N/A <10−3 ** 10.24 890

−42 −36 −10 N/A 0.056 9.66 30

−34 36 26 N/A 0.001* 8.86 88

30 32 26 9 <10−3 ** 7.85 101

GRE-EPI Session 2 −46 −20 58 1 <10−3 ** 10.86 333

−58 −24 14 40 0.004* 10.15 89

−2 0 62 N/A <10−3 ** 8.87 212

(Continues)
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TABLE 2 (Continued)

Contrast name Modality

MNI co-ordinates

(x,y,z in mm) Brodmann area

Cluster-level

p(FWE)-value T-score Cluster size

62 −20 18 40 0.004* 8.51 90

Looping Star Session 1 54 −32 14 41 <10−3** 11.55 255

−2 −72 −18 N/A <10−3** 7.91 137

−2 0 66 6 <10−3** 7.43 72

−43 4 −6 13 0.001* 6.88 52

−62 −20 10 1 <10−3** 6.70 98

−14 −20 2 50 0.018* 6.55 26

−18 −28 78 N/A <10−3** 6.31 186

Looping Star Session 2 −54 −24 42 40 <10−3** 12.15 455

58 −16 6 41 0.001* 9.77 49

14 −44 −14 N/A <10−3** 8.22 265

54 12 −6 N/A 0.005* 7.44 37

54 −24 30 40 0.044* 7.27 22

−46 12 18 44 0.001* 7.11 49

Novel > Deviant GRE-EPI Session 1 22 −84 26 19 0.009* 7.11 35

−18 −92 26 18 0.022* 5.73 28

GRE-EPI Session 2 −18 −8 22 48 0.907 5.70 2

Looping Star Session 1 −46 −40 10 22 0.004* 10.29 37

58 −32 15 22 0.001* 6.91 47

Looping Star Session 2 42 −44 14 N/A 0.218 6.47 12

Deviant > Novel GRE-EPI Session 1 14 −64 46 N/A 0.946 4.87 2

GRE-EPI Session 2 NSC NSC NSC NSC NSC

Looping Star Session 1 22 12 14 N/A 0.981 4.19 1

Looping Star Session 2 −38 −36 −6 N/A 0.974 4.36 1

Deviant + Novel > All GRE-EPI Session 1 −50 −28 10 41 <10−3** 13.83 4,099

54 12 −2 44 0.039* 6.50 32

30 −4 18 N/A 0.036* 5.73 33

GRE-EPI Session 2 2 12 58 6 <10−3** 11.88 261

62 −20 18 40 <10−3** 11.40 110

−46 −20 58 1 <10−3** 11.05 370

2 −84 −10 18 0.11 10.40 57

−6 28 2 N/A 0.001* 9.24 90

−62 −20 18 1 0.001* 8.92 97

Looping Star Session 1 −2 0 66 6 <10−3** 12.54 313

50 −32 14 41 <10−3** 11.05 307

2–76 −22 N/A <10−3** 10.63 180

−62 -20 6 41 <10−3** 8.04 106

−54 8–6 22 <10−3** 7.43 50

Looping Star Session 2 −50 −20 42 1 <10−3** 13.76 275

−6 −80 10 17 <10−3** 9.84 252

50 16–10 N/A 0.002* 7.28 44

−46 12 18 44 0.003* 6.96 41

−6 −40 −22 N/A 0.035* 6.55 23

Abbreviations: N/A, outside of defined Brodmann Area; NSC, no significant clusters.

*Cluster-level p(FWE) < .05. **Cluster-level p(FWE) < .001.
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t tests of the statistical maps for each session (Figure 3a,b) highlight

regions of differences in activity. Table 3 provides the accompanying

statistics. Within Session 1, only motor cortices (i.e., BA 4 and BA 6)

presented statistically significant higher activity for GRE-EPI relative

to Looping Star.

The statistical comparisons of the different measures in an auditory

ROI presented in Figure 3c–e are shown in Table 4. We found a statisti-

cally significant difference in the mean T-score within the auditory ROI

between GRE-EPI and Looping Star for both sessions. We also found a

statistically significant difference within the auditory ROI for the mean

F IGURE 3 Between modality analyses using Deviant + Novel > Silent contrast maps. (top) Bidirectional results of paired T-test between first
level contrast maps of all participants. (a) Session 1 comparison and (b) Session 2 comparison. Overlaid on ch2 image (Holmes et al., 1998) in
MRICRON (Rorden & Brett, 2000). (middle) An auditory ROI was used to mask parameter estimate (beta) maps and the mean parameter estimate
was calculated for the regressors of the (c) Deviant onsets and (d) Novel onsets and plotted for all participants. (e) The mean T-score was
calculated from the first level T-maps for the contrast, and plotted for each participant after auditory ROI masking. (bottom) Percentage signal
change based on parameter estimates in auditory ROI, withall sessions included and plotted for each modality. Pattern of difference between
modality shown for (f) Deviant and (g) Novel tones. LS, Looping Star. **p(two-tailed) < .05. Accompanying statistics seen in Tables 3–5

TABLE 3 SPM statistics table of results for parametric paired T-test at primary uncorrected cluster-forming threshold (p < .001 unc.) for
activity maps of contrast Deviant + Novel > Silent across participants for each session

Paired T-test
MNI co-ordinates
(x,y,z in mm) Brodmann area

Cluster-level
p(FWE)-value T-score Cluster size

GRE-EPI > LS Session 1 −34 −28 62 4 0.001* 8.72 50

2 −44 58 N/A <10−3** 8.44 176

6 4 46 6 0.002* 5.30 45

GRE-EPI > LS Session 2 62 −24 18 40 0.578 5.81 6

LS > GRE-EPI Session 1 14 −60 −10 17 0.299 4.69 10

LS > GRE-EPI Session 2 10 −52 −6 N/A <10−3** 6.54 79

Abbreviation: LS, Looping Star; N/A, outside of defined Brodmann Area.

*Cluster-level p(FWE) < .05. **Cluster-level p(FWE) < .001.
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parameter estimates of the Deviant tones in Session 1. There was no

significant difference for the parameter estimates of the Novel tones.

This was also consistent with the percentage signal change results

(Figure 3f,g). Table 5 shows the results of the intermodality Spearman's

correlation, which was between 0.08 < r < 0.32, as well as the T-tests

between the percentage signal change values. Only Deviant tones in

Session 1 provided a statistically significant intermodality difference in

percentage signal change.

3.5 | Quantitative comparison between sessions
(within modality)

Intersession differences, evident in the random-effects analyses, were

more specifically characterised with an ICC analysis. Figure 4 (top)

summarises the group level ICC results within modality, where the

ICC values are consistently high in task-related regions, such as the

auditory and motor cortices, in both modalities for the contrast maps

of Deviant + Novel > Silent. However, the spatial extent with high

ICC, in the regions detected with Looping Star, was much smaller than

in GRE-EPI and negative ICC values were seen in regions from the

Looping Star data, outside of task-related regions. This was not the

case in GRE-EPI data. A more skewed joint distribution (towards

higher ICC values) was seen in GRE-EPI between activation T-score

and ICC score in comparison with Looping Star.

An independently derived functional ROI of the auditory cortex

(Supplementary Material C), was used to calculate the intra-voxel reli-

ability (ICCv) between sessions for each subject, specifically testing

between session consistency in an auditory region in each individual.

Significantly higher ICCv values were identified using this method on

average across subjects in this auditory ROI for GRE-EPI than Looping

Star (Figure 4, centre), where p(two-tail) = .002. There was no evi-

dence of one participant producing particularly low ICCv values in

both modalities (i.e., having low ICCv in both modalities).

To further evaluate the ICC results, the between-subject sum of

squares and between-session sum of squares outputs from the ICC

analysis, which are calculated from the activity maps, were explored

(Figure 4, bottom). Both modalities demonstrated clusters of low spa-

tial extent with high between-session variance in the visual and

TABLE 4 Wilcoxon Signed Rank Test or paired T-test results
across different intermodality measures within the auditory ROI

Test variables

Wilcoxon signed
rank/paired T-test
two-tailed p-value

Wilcoxon signed
rank/paired T-test
T-score

Mean T-score in

auditory ROI†

GRE-EPI—LS

Session 1

0.004* 3.648

Mean T-score in

auditory ROI†

GRE-EPI—LS

Session 2

0.043* 2.284

Mean Deviant beta

parameter in

auditory ROI†

GRE-EPI—LS

Session 1

0.022* 2.677

Mean Deviant

parameter in

auditory ROI

GRE-EPI—LS

Session 2

0.060 −1.883

Mean Novel beta

parameter in

auditory ROI†

GRE-EPI—LS

Session 1

0.442 0.798

Mean Novel beta

parameter in

auditory ROI

GRE-EPI—LS

Session 2

0.814 −0.235

*p < .05. †Parametric paired T-test.

TABLE 5 Intermodality Spearman's correlation and Wilcoxon Signed Rank Test results between percentage signal change values within the
auditory ROI

Correlation pair Spearman's r Wilcoxon signed rank T-score Wilcoxon signed rank two-tailed p-value

GRE-EPI—Looping Star

Session 1, Deviant tones

0.252 −2.510 0.012*

GRE-EPI—Looping Star

Session 2, Deviant tones

0.133 −2.197 0.028

GRE-EPI—Looping Star

Session 1, Novel tones

−0.056 −1.334 0.182

GRE-EPI—Looping Star

Session 2, Novel tones

0.315 −0.471 0.638

GRE-EPI—Looping Star

All sessions, Deviant tones

0.320 −3.343 <0.001**

GRE-EPI—Looping Star

All sessions, Novel tones

0.088 −1.257 0.209

*p < .05. **p < .001.
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auditory cortices. Although both modalities demonstrated high

between-subject variance within the frontal lobe and auditory cortex,

GRE-EPI demonstrated higher between-subject variance than Looping

Star in the auditory cortex and along the longitudinal fissure.

4 | DISCUSSION

4.1 | Summary of results

With respect to our key aims, we demonstrated that (a) multi-echo

Looping Star is sensitive to the BOLD response elicited during the

auditory oddball paradigm, (b) multi-echo Looping Star has compara-

ble sensitivity for novel tone discrimination in auditory regions, rela-

tive to a GRE-EPI acquisition with identical parameters to Gomot

et al. (2006), though intermodality differences were also identified,

and (c) multi-echo Looping Star has lower test–retest reliability than

GRE-EPI. We also observed some limitations in the Looping Star tech-

nique, such as its reduced tSNR, driven in part by the need to employ

a very low excitation flip angle in this modality.

4.2 | Physiological and behavioural data

On average, there were no differences in the mean heart rate and res-

piration volume per sampling time across participants for the duration

of the different scans. This suggests that overall there were no addi-

tional systemic effects imposed by either imaging modality across the

paradigm duration. Behaviourally, participants performed very well

with regards to detecting the Deviant and Novel tones during both

modalities. This is unsurprising as the GRE-EPI acquisition parameters

used were identical to that used in the original study by Gomot

F IGURE 4 (top) Plots of intra-class correlation coefficient (ICC) versus T-score, relative voxel frequency versus ICC and ICC z-score map for
each modality. Arrows indicate regions with consistently high z-scores between modalities. (centre) Intra-voxel reliability (ICCv) plots for each
participant in an auditory region-of-interest (ROI) (top, centre) can be seen with accompanying box-and-whisker plot of the outputted ICCv

valuesacross participants. Significant differences between intermodality intra-voxel reliability was identified, where p(two-tailed) = .002
(**p < .05). (bottom) Between-session and between-subject difference maps outputted from ICC analysis. Overlaid on ch2 image (Holmes
et al., 1998) in MRICRON (Rorden & Brett, 2000). Slice (mm = millimetres) in MNI space provided. Scale of ICC z-score maps adjusted to account
for functional sensitivity differences between modalities
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et al. (2006), especially ensuring that the EPI slice acquisition train

contained the appropriate delays for the tones to be heard by the par-

ticipants. Our behavioural data also indicated that subjects remained

attentive and alert throughout the scans.

4.3 | Whole-brain voxel-wise random-effects
analysis

In general, our results demonstrated good agreement with those of

Gomot et al. (2006). The main effect of Deviant and Novel tones ver-

sus Silence (Deviant + Novel > Silent) demonstrated consistent bilat-

eral activity in both GRE-EPI and Looping Star sessions, providing

evidence that Looping Star is sensitive to the BOLD response in

event-related auditory paradigms. Right hemisphere involvement of

BA 41 was seen in both modalities, which may be linked to the right

hemisphere involvement in attention-related processes (Müller

et al., 2002; Stevens, Calhoun, & Kiehl, 2005). Similar activity patterns

were also seen in the response to Deviant + Novel > All, which

addressed potential issues with the Silent condition likely being an

unstable baseline due to its short duration.

The separate contrasts of Deviant > All and Novel > All also dem-

onstrated significant results in auditory regions for both modalities,

but there were no significant results for the contrast Deviant > Novel.

This could indicate that higher attention was paid to the Novel tones,

eliciting a higher amplitude response in spatially overlapping regions

relative to Deviant tones. This is supported by the functional overlap

for Deviant and Novel tones seen here and by Gomot et al. (2006),

alongside the proximity of the overlap of auditory loci and the preva-

lence of attention-driven modulations observed in a meta-analysis by

Alho, Rinne, Herron, and Woods (2014). A key intermodality differ-

ence that should be explored in depth with a larger cohort was that

only Looping Star Session 1 revealed significantly greater activity in

response to Novel trials compared to Deviant stimuli (Novel > Devi-

ant) in an auditory region. There were no behavioural motivations for

this to be the case, therefore future studies may benefit from explor-

ing potential differences in cognitive engagement, perhaps using a dif-

ferent oddball paradigm. This would inform whether the differences

we observed are linked to the reduced auditory load in Looping Star.

4.4 | Measurement of between-modality
differences

The intermodality paired t test for the contrast of Deviant and Novel

tones versus Silence (Deviant + Novel > Silent) indicated that there

were no statistically significant differences in activity in auditory

regions, but differences were present in motor cortices. However, sig-

nificant activity in the motor cortex was indeed identified in both

modalities, therefore these differences are likely related to functional

sensitivity differences between techniques that lead to more localised

responses in Looping Star. Significant differences in percentage signal

change were only identified for the parameter estimate of the Deviant

stimuli, which were much lower in Looping Star compared to GRE-

EPI. To verify whether this could be linked to the difference in audi-

tory demand, application of Looping Star with a paradigm exploring

repetition priming (Bergerbest, Ghahremani, & Gabrieli, 2004) may be

of benefit.

4.5 | Measurement of between-session reliability

The ICC results overall indicated lower reliability of Looping Star

activity maps for the contrast Deviant + Novel > Silent compared with

those of GRE-EPI. This was demonstrated by the following: (a) the

joint distribution indicated a strong relationship between T-score and

ICC for GRE-EPI, that is, a strong relationship between activity and

repeatability, that was not apparent for Looping Star, (b) higher ICC

values were seen in the auditory and motor cortex for GRE-EPI and

Looping Star relative to the rest of the brain, though Looping Star

demonstrated negative ICC values across the cortex, outside of the

auditory regions, unlike GRE-EPI, suggesting high between-session

variance, and (c) higher intra-voxel reliability (ICCv) was seen in the

auditory ROI for GRE-EPI than Looping Star on average across partici-

pants, therefore the signal distribution is more consistent in GRE-EPI

than Looping Star within the auditory ROI. The lower tSNR and

smaller identified clusters in Looping Star could be a contributing fac-

tor to this intersession difference, though cognitive links to acoustic

background noise have been identified in previous studies that could

also contribute (Cho, Chung, Lim, & Wong, 1998; Kiehl &

Liddle, 2003; Novitski et al., 2003; Seifritz et al., 2006; Wolak

et al., 2016). Future replicability and repeatability studies should aim

to disentangle these effects.

4.6 | Limitations and future work

It is important to emphasise that our intention was to perform the first

evaluation of multi-echo silent fMRI in an event-related context, and

we acknowledge that a larger cohort would improve the generalisa-

tion of these findings. Limitations regarding the paradigm design, such

as the duration of the resting blocks being barely longer than the

haemodynamic response, were unavoidable as we aimed to replicate

the paradigm used by Gomot et al. (2006). We did, however, adapt

the original general linear model by deciding against modelling the

Standard tones (Gomot et al., 2006) to avoid over-parameterisation.

Our desire to reproduce the conditions of the study of Gomot et al as

much as possible, also meant that we did not acquire multi-echo GRE-

EPI data and so we were limited in our comparisons. There were also

some inherent limitations in the pulse sequence design of the version

of Looping Star that we employed, which prevented both faster imag-

ing and higher tSNR. These have been outlined in detail by Dionisio-

Parra et al. (2020).

There is scope to further characterise Looping Star for targeting

specific optimisation strategies. Such avenues include evaluating the

impact of spatial blurring induced during acquisition, assessing
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whether anatomical configuration interacts with certain acquisition

parameters, and exploring the impact of physiology on this three-

dimensional acquisition. Future studies could also capitalise on the

reduced impact of inflow effects in Looping Star given the absence of

slice selection. Furthermore, alternative reconstruction schemes,

beyond the one employed here for Looping Star, may be more appro-

priate in future studies. Such techniques include compressed sensing

and low-rank reconstruction, which employ under-sampled k-space

trajectories (Chiew et al., 2015; Holland et al., 2013; Zong, Lee,

Poplawsky, Kim, & Ye, 2014).

5 | CONCLUSIONS

Looping Star provides a useful, near-silent MRI acquisition alternative

that mitigates the limitations produced by the high acoustic noise of

GRE-EPI, providing a “real-world” scenario for functional neuroimag-

ing. It also removes the reliance on strong ear protection and noise

cancellation hardware by minimising acoustic noise at its source.

Looping Star demonstrated sensitivity to the BOLD response in a

complex, event-related auditory fMRI paradigm, supporting its exten-

sion from simple blocked designs to complex cognitive tasks that are

more widely used across studies. Optimisation and further characteri-

sation with a range of paradigms and acquisition parameters is

required to identify whether it indeed reveals additional information

on cognitive processes involved in auditory processing. Furthermore,

our study evaluated, for the first time, the test–retest reliability of

Looping Star, which warrants further study to understand the impact

of reduced scanner acoustic noise on cognitive strategies between

sessions. Ultimately, Looping Star is a promising technique that offers

a useful alternative to study the mechanisms of brain activity in sound

averse populations.
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