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Model‑size reduction for reservoir 
computing by concatenating 
internal states through time
Yusuke Sakemi1,2*, Kai Morino1,3, Timothée Leleu1,4 & Kazuyuki Aihara1,4

Reservoir computing (RC) is a machine learning algorithm that can learn complex time series from data 
very rapidly based on the use of high-dimensional dynamical systems, such as random networks of 
neurons, called “reservoirs.” To implement RC in edge computing, it is highly important to reduce the 
amount of computational resources that RC requires. In this study, we propose methods that reduce 
the size of the reservoir by inputting the past or drifting states of the reservoir to the output layer at 
the current time step. To elucidate the mechanism of model-size reduction, the proposed methods are 
analyzed based on information processing capacity proposed by Dambre et al. (Sci Rep 2:514, 2012). 
In addition, we evaluate the effectiveness of the proposed methods on time-series prediction tasks: 
the generalized Hénon-map and NARMA. On these tasks, we found that the proposed methods were 
able to reduce the size of the reservoir up to one tenth without a substantial increase in regression 
error.

Efficiently processing time-series data is important for various tasks, such as time-series forecasting, anomaly 
detection, natural language processing, and system control. Recently, machine-learning approaches for these 
tasks have attracted much attention of researchers and engineers because they not only require little domain 
knowledge but also often perform better than traditional approaches. In particular, machine-learning models 
that employ recurrent neural networks, such as long short-term memory, have achieved great success in natural 
language processing and speech recognition1, and their fields of applications continue to expand. However, the 
standard learning algorithms for recurrent neural networks, which include backpropagation through time2 
and its variants3, require large computational resources. These computational burdens often hinder real-world 
applications, especially when computing is performed near end users or data sources instead of data centers. 
Such computing has been attracting considerable interest because the amount of data often exceeds the network 
bandwidth capacity, which leads to network congestion and makes it difficult to efficiently send data to data 
centers. In addition, transferring personal data across networks is often avoided due to privacy issues. This new 
computing paradigm is called “edge computing,” which is characterized by limited computational power and 
limited battery capacity4,5.

Reservoir computing (RC) is a machine-learning algorithm that aims to reduce the computational resources 
required for predicting time series without reducing accuracy. As shown in Fig. 1, a typical RC consists of three 
parts: an input layer, a “reservoir” layer where neurons are randomly connected, and an output layer6,7. Because 
only the weights between the reservoir layer and the output layer are trained while the other weights remain 
fixed, the learning process of RC is much faster than that of backpropagation through time8–10. Therefore, RC is 
expected to be a lightweight machine-learning algorithm that enables machine learning in edge computing11.

The RC training process is fast and accurate. In addition, RC has shown high performance on various time-
series forecasting tasks, including chaotic time-series12–14, weather15, wind-power generation16, and finance17. 
Moreover, the range of applications of RC has extended into control engineering18,19 and video processing20–22.

To develop the applications for RC in edge computing, its hardware implementation must be improved to 
enhance its computational speed and energy efficiency. For realizing such efficient hardware implementation, 
variants of RC models, some of which employ delay-feedback systems23, simple network topologies such as 
ring-topology and delay lines24–26, and billiard systems27, have been proposed. Efficient hardware based on 
these variants have been implemented using field programmable integrated gate arrays (FPGAs)28–31. Moreover, 
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numerous types of implementation employing physical systems, such as photonics32–34, spintronics35, mechanical 
oscillators36, and analog integrated electronic circuits37,38, have been demonstrated39. Although these implemen-
tations have exhibited the superiority of RC in computational speed and energy efficiency, the maximum size of 
the reservoir and, in turn, the forecasting accuracy, is limited by the physical size of the hardware.

In this study, we propose three methods that reduce the size of the reservoir without any performance 
impairment. The three methods share the concept that the number of the effective dimension of the reservoir is 
increased by allowing additional connections from the reservoir layer at multiple time steps to the output layer at 
the current time step. We analyze the mechanism of the proposed methods based on the information processing 
capacity (IPC) proposed by Dambre et al.40. We also demonstrate how the proposed methods reduce the size of 
the reservoir in the generalized Hénon-map and NARMA tasks.

Results
RC framework.  In the mathematical representation of RC, four vector variables are defined as fol-
lows: u(t) ∈ R

N in for the inputs, x(t) ∈ R
N res for the states of the reservoir, y(t) ∈ R

Nout for the outputs, and 
ytc(t) ∈ R

Nout for the teaching signals. The constants N in,N res, and Nout are the dimensions of the inputs, states 
of the reservoir, and outputs, respectively. The updates of the reservoir states are given by

where W in ∈ R
N res×N in is a weight matrix representing the connections from the neurons in the input layer 

to those in the reservoir layer. Its elements are independently drawn from uniform distribution U(−ρin, ρin) , 
where ρin is a positive constant. Another weight matrix W res ∈ R

N res×N res represents the connections among the 
neurons in the reservoir layer. Its elements are initialized by drawing values from uniform distribution U(−1, 1) 
and subsequently divided by a positive value to ensure that the spectral radius of W res is ρres . Note that elements 
in matrices W in and W res are fixed to the initialized values. The outputs are obtained by

where Wout ∈ R
Nout×N res is a weight matrix representing connections from the neurons in the reservoir layer to 

those in the output layer. The output weight matrix Wout is trained in the offline learning process of RC by using 
the pseudoinverse (see “Methods” section).

Proposed methods.  We propose three methods that modify the connections between the reservoir and 
output layers. We call these three methods (i) delay-state concatenation, (ii) drift-state concatenation, and (iii) 
delay-state concatenation with transient states. These methods share the idea that the number of the effective 
dimension of the reservoir is increased by allowing additional connections from the reservoir layer at multiple 
time steps to the output layer at the current time step. For the delay-state concatenation and delay-state concat-
enation with transient states, additional connections are formed from the past states of the reservoir layer to the 
current output layer, as illustrated in Fig. 2a,d. On the other hand, for the drift-state concatenation, additional 
connections are formed from newly introduced states of the reservoir, called drifting states, to the current output 
layer, as illustrated in Fig. 2b. The drifting states are obtained by updating the current states of the reservoir layer 
without input signals. In what follows, we mathematically formulate these three proposed methods.

First, we formulate the delay-state concatenation with concatenated states of the reservoir given by

(1)x(t) = tanh
(

W resx(t − 1)+W inu(t)
)

,

(2)y(t) = Woutx(t),

(3)x̂(t) :=











x(t)
x(t − Q)
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Figure 1.   Typical RC architecture. The reservoir layer consists of randomly connected neurons. The 
connections between the input and reservoir layer W in and connections within the reservoir layer W res are fixed 
(solid arrows), whereas the output weights Wout are trained (dashed arrows).
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Note that x(t) is a column vector and the number of neurons in the reservoir does not change. A positive 
integer Q represents the unit of delays. Another positive integer P represents the number of past states that are 
concatenated to the current states. The outputs are obtained with the concatenated states x̂(t) and the correspond-
ing output-weight matrix Ŵout as follows:

Here, x̂(t) and Ŵout are defined in R(P+1)N res and RNout×(P+1)N res , respectively. Figure 2a shows a schematic 
of this method illustrating the prediction of y(3) when Q = 1 and P = 2 . One can see that there are additional 
connections from the past states of the reservoir x(1) and x(2) to output y(3) , as indicated by red dashed arrows. 
From a different point of view, this model can be illustrated using the concatenated states of the reservoir x̂(t) , 
as in Fig. 2c, where the reservoir consists of three identical smaller reservoirs, each with a different time delay of 
0, 1, and 2 from the inputs. Evidently, the effective dimension of the concatenated reservoir is three times larger 
than that of the original reservoir. Because the learning performance is enhanced by using a larger reservoir9, 
the proposed method should be able to increase the computing capability without needing to add neurons in 
the reservoir.

Second, we formulate drift-state concatenation, as illustrated in Fig. 2b by introducing the drifting states of 
the reservoir given by

(4)Ŵout :=
(

Wout
0 Wout

1 · · · Wout
P

)

,

(5)
y(t) =

P
∑

i=0

Wout
i x(t − iQ)

= Ŵoutx̂(t).

(6)xdrift(t′; t) =

{

tanh
(

Wdriftx(t)
)

, (if t′ = 1),

tanh
(

Wdriftxdrift(t′ − 1; t)
)

, (if t′ ≥ 2),
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Figure 2.   Schematics of the proposed methods. (a) Delay-state concatenation when the number of additional 
connections P is two and the unit of delay Q is one. (b) Drift-state concatenation when P is two and Q is one. 
(c) Another view of delay-state concatenation. The reservoir consists of three identical dynamical systems and 
delay lines. The added dynamical systems have +1 delay lines and +2 delay lines, respectively. (d) Delay-state 
concatenation with one transient state when P is two and Q is one.
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where xdrift(t′; t) represents the drifting states of the reservoir and t ′ is the time step after the current time step 
t. Using the drifting states, we redefine the concatenated states of the reservoir and the corresponding output 
matrix as follows:

Here, Wdrift is a matrix representing the connections within the reservoir to obtain the drifting states, and its 
elements are drawn from uniform distribution U(−1, 1) divided by a positive value to ensure that the spectral 
radius of Wdrift is ρdrift.

Third, delay-state concatenation with transient states introduces transient states to the delay-state concatena-
tion, as illustrated in Fig. 2d, where the states of the reservoir update twice (so it has one transient state) during 
the inputs and the outputs update once (see “Methods” section).

Although we have shown that the proposed methods can increase the effective dimension of the reservoir 
without adding neurons, one potential drawback of the methods is the cost of the memory required to store the 
past reservoir states. However, the proposed methods are very memory efficient. To carry out RC with delay-state 
concatenation, the output components

are computed and stored in memory at time step t. The dimensions of these vectors are all Nout . As shown in 
Fig. 3a, the vector Wout

i x(t) must be stored until they are used for calculating the outputs at time steps t + iQ . 
Therefore, the total memory cost is obtained as follows:

(7)x̂(t) :=










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(8)Ŵout :=
(

Wout
0 Wout

1 · · ·Wout
P

)

,

(9)
y(t) = Wout

0 x(t)+

P
∑

i=1

Wout
i xdrift(i; t)

= Ŵoutx̂(t).
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1 x(t), . . . , andWout
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2
.

Figure 3.   Memory requirements. (a) Memory requirement for delay-state concatenation when P is two and Q 
is one. Output components that are stored in memory at time step t + 2 for computing outputs at this time step 
or future time steps are masked with blue color. (b) Memory requirement for drift-state concatenation when 
P is two. Output components that are stored in memory at time step t + 2 for computing outputs at this time 
step are masked with blue color. (c) Comparison of memory requirement for (i) standard RC8, (ii) delay-state 
concatenation, (iii) delay-state concatenation with transient states, and (iv) drift-state concatenation. Values 
in each column represent the amounts of memory required to store vectors. The effective dimension of RC is 
(P + 1)N res for all the cases.
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Note that the memory required to store the states of the reservoir is proportional to N res . The memory 
required to store the weights within the reservoir and the output weights is proportional to (N res)2 and 
(P + 1)N resNout , respectively, given that the reservoir is fully connected. Although delay-state concatenation 
with transient states requires additional computation for transient states, the cost of memory is the same as that 
for delay-state concatenation.

To carry out RC with drift-state concatenation, the output components

are computed and stored in memory at time step t, leading to the memory cost of Nout(P + 1) as shown in Fig. 3b. 
After calculating all the drifting states at time step t, the states x(t + 1) at the next time step are calculated using 
the states x(t) at the current time step (see Fig. 1b). Therefore, this method requires additional memory to store 
x(t) corresponding to the memory cost of N res . Note that this memory cost is independent of the number of P. 
The cost of the memory required to store the weights within the reservoir including drifting states is 2(N res)2 
and that required to store the output weights is (P + 1)N resNout , given that the reservoir is fully connected.

If the number of neurons is increased by (P + 1) times using standard RC8, the memory cost to store the 
reservoir states becomes (P + 1)N res and the memory cost required to store the weights within the reservoir 
and output weights becomes ((P + 1)N res)2 and (P + 1)N resNout , respectively, given that the reservoir is fully 
connected. The memory required for different methods is compared in Fig. 3c.

According to Fig. 3c, for moderate values of P and Q (typically less than 5), the total memory cost for the 
proposed methods is much less than that for standard RC because Nout ≪ N res for typical RC applications. 
Therefore, the proposed methods can increase the dimensions of the reservoir more efficiently than by simply 
increasing the number of neurons in the reservoir. It should be noted that the proposed methods increase the 
effective dimension of the reservoir state by a factor of (P + 1) , but the number of the neurons in the reservoir is 
not increased. We also note that the discussion of memory reduction only applies to the inference phase because 
states of the reservoir at all time steps must be stored in the training phase.

Quantitative analysis based on IPC.  Before benchmarking the proposed RC, we quantitatively analyze 
the learning capacity of the RC to elucidate how the proposed methods work.

The memory capacity (MC) is a performance measure commonly used in the RC research community41. The 
MC represents how precisely the RC system can reproduce the past inputs. A number of studies have shown that 
the MC is theoretically bounded by the number of neurons in the reservoir, and the MC can reach this bound in 
some situations25,26,42. Boedecker et al.43 evaluated the MC at the edge of chaos, which is a region in the model 
parameter space where RC is stable but near to unstable. Farkaš et al.44 have evaluated the MC for various model 
parameters. Ganguli et al.45 extended the concept of MC using Fischer information. However, the MC does not 
evaluate how well RC processes information in a nonlinear way. Because many tasks in the real world targeted by 
RC are nonlinear problems, the MC is not a suitable measure for analyzing the proposed methods in this sense. 
Therefore, to elucidate the mechanism of the methods proposed in this study, we employed another criterion40 
called the information processing capacity (IPC), which handles nonlinear tasks.

The IPC is a measure that integrates both memory and information processing performance. By employing 
an orthogonal basis set that spans the Hilbert space, one IPC can be obtained from one corresponding basis. The 
IPC can be interpreted as a quantity that represents not only how well the network can memorize past inputs 
but also how precisely the network can convert inputs into the target outputs in a nonlinear manner given the 
basis set. Dambre et al.40 showed that the total IPC Ctotal , which is a sum of all IPCs, is identical to the number of 
neurons in the reservoir, provided (I) the inputs are independent and identically distributed (i.i.d.), (II) the fading 
memory condition is satisfied, and (III) all the neurons are linearly independent (see Theorem 7 and its proof 
in Ref.40). By analyzing the IPCs, one can obtain a large amount of information about how RC processes input 
data. For example, the degree of nonlinearity of the information processing carried out in RC can be analyzed 
by calculating multi-order IPCs. The kth-order IPC Ckth is defined as the sum of the IPCs corresponding to the 
subset of a basis with kth-order nonlinearity. Based on the IPC, informative results such as the memory–non-
linearity tradeoff have been obtained40. Therefore, using the IPC, we can analyze how RC stores and processes 
information in the reservoir as well as how the proposed methods affect the way information is processed.

We calculated the IPCs for the standard RC and for RC with the proposed methods (see “Methods” section). 
Figure 4 shows the IPCs when N res = 12 and N res = 24 for various values of ρin and ρres . Note that only odd-
order IPCs were observed because of the symmetry. In each setting, we calculated the IPCs for the standard 
RC (left columns), those for the RC with delay-state concatenation with P = Q = 1 (center columns), and 
those for the RC with drift-state concatenation with P = Q = 1 (right columns). One can find that the value 
of Ctotal/(P + 1) almost reaches the number of neurons N res in reservoir, except when ρres = 1.05 . This result 
indicates that the proposed methods actually increase the total IPC by (P + 1) times. The observed lower values 
of the total IPCs for the case of ρres = 1.05 can be attributed to the failure-of-fading-memory condition. In the 
RC research community, it is well known that the dynamics of RC is more likely to be chaotic when ρres increases 
(typically occurring when ρres is larger than 1)46, and this corresponds to the failure of fading memory. For all 
cases, as ρin increases, the third-order IPC C3rd and the fifth-order IPC C5th tend to increase, which reflects the 
increase in nonlinearity in the reservoir40 given the selected basis set. Note that as ρin increases, the total IPC 
Ctotal tends to decrease, which is attributed to increases in the importance of higher-order IPCs (e.g., seventh-
order and ninth-order IPCs).

In Fig. 5a, we show the IPCs for delay-state concatenation with P = 1 for several values of the unit of delay 
Q. As Q increases, the first-order IPC increases as well. This result may be trivial because RC with large Q can 
access the past states of the reservoir, rendering the reproduction of the past inputs easy. To investigate the effects 

(12)Wout
0 x(t), Wout

1 xdrift(1; t), . . . , andWout
P xdrift(P; t)
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of the unit of delay Q on IPCs, we decomposed the kth-order IPC Ckth into components in terms of their delay 
such as Ckth

0 , Ckth
1 , and Ckth

2  , which correspond to a different subset of the basis. Figure 5b shows the distribu-
tions of the delay components for four values of Q under the same experimental conditions. As the values of Q 
increase, the distribution tends to shift to the right (larger delays) for each order of IPC. This fact indicates that, 
as demonstrated in the subsequent section, one can tune RC models by adjusting the value of Q according to 
the delay structure of the target tasks.

Figure 4.   Analysis of IPCs. IPCs of standard RC and RC with the proposed methods for various values of 
input weight strength ρin and spectral radius ρres . The left and right panels show the results for N res = 12 and 
N res = 24 , respectively. The dashed horizontal line within each subgraph represents the value of N res . For 
each value of ρin , the left column presents the standard RC with P = 0 , the center column presents delay-state 
concatenation with P = Q = 1 , and the right column presents drift-state concatenation with P = 1.

Figure 5.   Q-dependence of IPCs. (a) IPCs of the RC with delay-state concatenation for various values of Q. (b) 
Delay structures of the IPCs for various values of Q. From top to bottom, the first-, third-, and fifth-order IPCs 
are shown. The parameters are set as follows: N res = 24 , ρin = 0.9 , ρres = 0.95 , and P = 1.
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Next, for various values of P, we show the IPCs in Fig. 6a for delay-state concatenation, drift-state concatena-
tion, and delay-state concatenation with one transient state. For all three proposed methods, the contributions of 
higher-order IPCs tend to be dominant in the total IPCs as P increases. In Fig. 6b, we show the delay structures 
of the IPCs. Note that to clarify how the distributions of the delay structure change as the value of P changes, we 
used the normalized IPC Cnth

τ /(P + 1)
∑

τ C
nth
τ  . The top panels in Fig. 6b show that, as P increases, the distri-

bution of the delay structure of the IPCs for delay-state concatenation tends to shift to the right (larger delays). 
Conversely, in the middle panels, the IPCs for drift-state concatenation do not change significantly. These results 
may be explained as follows: the increase in P for delay-state concatenation increases the memory of past inputs 
because of the additional connections from the past states of the reservoir, whereas the increase in P for drift-
state concatenation does not increase the memory of the past inputs because drifting states are obtained from 
the current states of the reservoir. The bottom panels of this figure show that the distribution of IPCs for delay-
state concatenation with one transient state tends to shift to larger delays as P increases. However, the delays in 
this distribution are smaller than the delays in the distribution obtained using delay-state concatenation. This 
difference may stem from the fact that the information of past states stored in the reservoir is more likely to be 
thrown away and to be replaced with that of more recent states in delay-state concatenation with one transient 
state because the RC model in this case carries out nonlinear transformation twice for each input (see Fig. 2d).

Here, we present a short summary of the above experiments. We have numerically shown that the total IPCs 
divided by P + 1 are almost independent of the values of Q and P, which is consistent with the theory in Ref.40. 
We note that when the value of P approaches the number of simulation time steps, the IPCs do not effectively 
increase because the internal states are no longer linearly independent. Furthermore, we have found that the 
importance among IPC components and the delay structure of IPCs can be modified by selecting the values of Q 
and P. These findings indicate that the learning performance on real-world tasks may be enhanced by selecting 
appropriate values of Q and P adjusted to a target task with a specific temporal structure.

Effectiveness on complex data.  Although we have shown that the proposed methods can increase the 
IPCs efficiently, the conditions assumed above are not always guaranteed in real-world applications; for example, 
inputs may not be drawn from i.i.d. data, and neurons in the reservoir may not be linearly independent. There-
fore, the IPCs are just a guide that help us understand the mechanisms of the proposed methods. In this section, 
to evaluate the effectiveness of the proposed methods on complex data, we applied them to two prediction tasks: 
generalized Hénon-map tasks and NARMA tasks (see Eqs. (25) and (26) in “Methods” section). In the following 

Figure 6.   P-dependence of IPCs. (a) IPCs with the proposed methods for various values of P. Left columns: 
IPCs for delay-state concatenation, center columns: IPCs for drift-state concatenation, and right columns: IPCs 
for delay-state concatenation with one transient state. (b) Comparison of the delay structures of the IPCs for the 
three proposed methods. Top panels (i): delay structures for delay-state concatenation, middle panels (ii): delay 
structures for drift-state concatenation, and bottom panels (iii): delay structures for delay-state concatenation 
with one transient state. To highlight the difference in the distribution of the delay structures, the IPCs for each 
order are normalized. From left to right, the first-, third-, and fifth-order IPCs are shown. The parameters are set 
as follows: N res = 24 , ρin = 0.9 , ρres = 0.95 , and Q = 1.
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experiments, the dimensions of the reservoir are approximately given by an integer N∗ , and the actual number 
of neurons in the reservoir is given by N res = ⌊N∗/(P + 1)⌋ , where ⌊m⌋ := max{q ∈ Z|q ≤ m} . We optimized 
the model parameters, ρin, ρres , and ρdrift with Bayesian optimization47,48.

We first investigated the effects of the value of Q in the delay-state concatenation method. Figure 7a shows the 
normalized mean-squared errors (NMSEs) for the sixth-order and eighth-order Hénon-map tasks for various 
values of Q with P = 1 . As the value of Q increases, the NMSE first decreases, but abruptly increases when Q is 
larger than 4 in the sixth-order Hénon-map and larger than 6 in the eighth-order Hénon-map. Considering the 
fact that to predict the output, the mth-order Hénon-map has two informative inputs at the mth and (m− 1) th 
previous steps, these increases in performance are reasonable because an RC system with the appropriate val-
ues of Q can possess the information needed from past inputs. We also note that similar results were obtained 
recently in Ref.49. In contrast, the NMSE monotonically increases as the value of Q increases for NARMA5 and 
NARMA10, as shown in Fig. 7b. These results imply that simply adjusting the value of Q is not effective for tasks 
such as NARMA5 and NARMA10 with complicated temporal structures.

We next investigated the effects of the value of P for the NARMA tasks in which adjusting the value of Q 
was not effective. Figure 8 shows the NMSE against the values of P for the NARMA5 task (the top panel) and 
NARMA10 task (the bottom panel) for three settings of N∗ . Note that N∗ is fixed as P is varied to ensure that 
the size of reservoir N res reduces to approximately 1/(P + 1) times as P varies. We found that the NMSEs were 
almost constant up to specific values of P. For example, for the case of the NARMA10 task with N∗ = 300 , the 
NMSE was almost constant up to P = 5 , indicating that the number of neurons in the reservoir can be reduced 
from 300 to 50 without impairing performance.

Finally, we compared the proposed methods, delay-state concatenation with and without one transient state, 
and drift-state concatenation on the NARMA10 task. Figure 9 shows the NMSE as functions of P values with 
N∗ = 200 and 300 for the proposed methods. We found that the NMSEs for delay-state concatenation with 
one transient state and drift-state concatenation were lower than those for delay-state concatenation when P 
was larger than 7. For the NARMA10 task, inputs more than 10 steps in the past are not very informative for 
predicting one step forward. The lack of information in the past steps may explain the increase in NMSE for 
delay-state concatenation when P is larger than 7. The observed lower NMSEs for delay-state concatenation with 

Figure 7.   Q-dependence of the learning performance. (a) NMSE for a sixth-order Hénon-map task (the upper 
panel) and for an eighth-order Hénon-map task (the lower panel) for various values of Q with P = 1 . (b) NMSE 
for NARMA5 (the upper panel) task and for NARMA10 (the lower panel) task for various values of Q with 
P = 1 . Error bars show the standard deviation of the results of 10 trials.
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one transient state and drift-state concatenation are also reasonable because (i) the former method uses the past 
states of the reservoir, which contain more recent input information for the same value of P (see Fig. 2d), and 
(ii) the latter method uses the states of the reservoir, which contain current input information.

Discussion
In this study, we proposed three methods to reduce the size of an RC reservoir without impairing performance.

To elucidate the mechanism of the proposed methods, we analyzed the IPC. We found that the value of the 
total IPCs almost reaches N res(P + 1) using the proposed methods, whereas the importance of their components 
(the first-, third-, and fifth-order IPCs) changes drastically. We also found that the delay structures of the IPCs 
depend on the values of Q and P. To investigate the applicability of the proposed methods on complex data, 
we presented the experimental results on generalized Hénon-map and NARMA tasks. We found that when the 
target task has a relatively simple temporal structure, as demonstrated with the Hénon-map tasks, selecting 
an appropriate value of Q enhances the performance substantially. In contrast, when the target task contains 
complex temporal structure, as demonstrated in the NARMA tasks, adjusting the value of Q does not enhance 
the performance. However, in those cases, we found that increasing the value of P can reduce the size of the 
reservoir without impairing performance. We have demonstrated that the number of neurons in the reservoir 
can be reduced by up to one tenth in the NARMA10 task.

Figure 8.   P-dependence of the learning performance. NMSEs for the NARMA5 (the top panel) and NARMA10 
(the bottom panel) tasks with delay-state concatenation as functions of P for various values of N∗ . Error bars 
show the standard deviation of the results of 10 trials.

Figure 9.   Comparison of the proposed methods. Results of regression performance on the NARMA10 task 
for various values of P with N∗ = 200 (the top panel) and N∗ = 300 (the bottom panel) for (A) delay-state 
concatenation, (B) delay-state concatenation with one transient state, and (C) drift-state concatenation. Error 
bars show the standard deviation of the results of 10 trials.
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Here, we note the relationship between our work and the relevant previous works23,49. In Ref.23, the authors 
proposed the time-delay reservoir that consists of a single node with delayed feedback. The states of the single 
node at multiple time steps correspond to virtual nodes, which may look similar to the delay-state concatena-
tion. However, these two methods are different because the virtual nodes have output connections only to the 
current outputs, whereas the delay-state concatenation adds output connections from the nodes in the reservoir 
not only to the current outputs but also to future outputs. We also note that the delay-state concatenation can 
be also applied to the time-delay reservoir. In Ref.49, the authors proposed a method that is similar to delay-
state concatenation. Their proposed model corresponds to the case when the number of additional connected 
past states is one (i.e., P = 1 ). They observed that performance enhancement depends on the value of Q, as we 
showed in this paper. However, to the best of our knowledge, the dependence of the performance on the value 
of P has not been reported. In addition, the other two proposed methods, drift-state concatenation and delay-
state concatenation with transient states, are introduced for the first time in this paper. Moreover, the authors 
of Ref.49 explained the mechanism of their proposed method in terms of the delayed embedding theorem50. In 
contrast, we have provided a more intuitive explanation based on the IPC40.

Because the proposed methods do not assume a specific topology for the reservoir, they can readily be imple-
mented in FPGAs and physical reservoir systems, such as photonic reservoirs39. Therefore, the proposed methods 
could be an important set of techniques that facilitates the introduction of RC in edge computing.

Methods
Training output weights.  The training procedures are the same as those for standard RC models9. The 
output weights are trained by minimizing

Adding a regularization term �Ŵout�22 did not improve the performance in our case.

Delay‑state concatenation with transient states.  We inserted transient states in the RC system with 
delay-state concatenation as follows:

where N tran is the number of inserted transient states.

IPC.  Following the same procedure given in Ref.40, the IPCs are calculated as follows: The total IPC is defined 
as

where Ctotal is the total IPC and C({di}) is the IPC for a basis represented with a list {di} = {d0, d1, . . . } . The 
list represents an orthogonal basis in Hilbert space. We employed the following Legendre polynomials as the 
orthogonal basis:

where Pdi (·) is the dith-order Legendre polynomial and u(t) is drawn from uniform distribution on [−1, 1] . A 
constant τmax is the maximum delay, which must be large enough to converge the calculation. In our simulations, 
we set τmax to 50 for ρin = 0.1 or otherwise to 25. Then, the IPC C({di}) can be calculated as

where 
〈

y(t)
〉

:= 1
T

∑T
t=1 y(t) . We set the simulation steps T to 106 in all experiments. To avoid overestimation, 

the value of C({di}) was set to zero when the value is less than threshold of 7N res(P + 1)× 10−5.

(13)
T
∑

t=1

||y(t)− ytc(t)||22.

(14)
x(t) = tanh

(

W resx(t − 1)

+W inu

(⌊

t

N tran + 1

⌋))

,

(15)x̂(t) =











x(t)
x(t − Q)

.

.

.

x(t − QP)











,

(16)y(t) = Ŵoutx̂
(

(N tran + 1)t + N tran
)

,

(17)Ctotal =
∑

{di}

C({di}),

(18)y{di}(t) =

τmax
∏

i=0

Pdi (u(t − i)),

(19)C({di}) = 1−

〈

|y(t)− y{di}(t)|
2
〉

〈

|y(t)− �y(t)�|2
〉 ,
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We define the kth-order IPCs as

The kth-order IPC was decomposed into components corresponding to a subset of a basis whose maximum 
delay is τ as follows:

Dataset.  The mth-order generalized Hénon-map51 is given by

where σ is Gaussian noise with zero mean and standard deviation of 0.05. The inputs and outputs of the RC are 
the time series of an n-dimensional generalized Hénon-map. The task is to predict one step forward y(t + 1) 
with past inputs y(t), y(t − 1), . . . . The NARMA time series is obtained with a nonlinear auto-regressive moving 
average as follows:

where s(t) is drawn from uniform distribution of [0, 0.5]. The NARMA5 and NARMA10 time series correspond 
to the case when m = 5 and m = 10 , respectively. The inputs of the RC are s(t). The task is to predict y(t) from 
the inputs s(t).

For both tasks, we used 2000 steps as a training dataset and used 3000 steps as a test dataset. We removed the 
first 200 steps (free run) both during the training and test phases to avoid the effects of the initial conditions in 
the reservoirs9. We evaluated the performance based on the normalized mean-squared error (NMSE) during 
the test phase following:

where 
〈

y(t)
〉

= 1
T

∑T
t=1 y(t) . We averaged the NMSEs over 10 trials. For each iteration, the dataset and connec-

tion matrix of the reservoir were generated using their corresponding probabilistic distributions.
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