
1

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports

Model‑size reduction for reservoir
computing by concatenating
internal states through time
Yusuke Sakemi1,2*, Kai Morino1,3, Timothée Leleu1,4 & Kazuyuki Aihara1,4

Reservoir computing (RC) is a machine learning algorithm that can learn complex time series from data
very rapidly based on the use of high-dimensional dynamical systems, such as random networks of
neurons, called “reservoirs.” To implement RC in edge computing, it is highly important to reduce the
amount of computational resources that RC requires. In this study, we propose methods that reduce
the size of the reservoir by inputting the past or drifting states of the reservoir to the output layer at
the current time step. To elucidate the mechanism of model-size reduction, the proposed methods are
analyzed based on information processing capacity proposed by Dambre et al. (Sci Rep 2:514, 2012).
In addition, we evaluate the effectiveness of the proposed methods on time-series prediction tasks:
the generalized Hénon-map and NARMA. On these tasks, we found that the proposed methods were
able to reduce the size of the reservoir up to one tenth without a substantial increase in regression
error.

Efficiently processing time-series data is important for various tasks, such as time-series forecasting, anomaly
detection, natural language processing, and system control. Recently, machine-learning approaches for these
tasks have attracted much attention of researchers and engineers because they not only require little domain
knowledge but also often perform better than traditional approaches. In particular, machine-learning models
that employ recurrent neural networks, such as long short-term memory, have achieved great success in natural
language processing and speech recognition1, and their fields of applications continue to expand. However, the
standard learning algorithms for recurrent neural networks, which include backpropagation through time2
and its variants3, require large computational resources. These computational burdens often hinder real-world
applications, especially when computing is performed near end users or data sources instead of data centers.
Such computing has been attracting considerable interest because the amount of data often exceeds the network
bandwidth capacity, which leads to network congestion and makes it difficult to efficiently send data to data
centers. In addition, transferring personal data across networks is often avoided due to privacy issues. This new
computing paradigm is called “edge computing,” which is characterized by limited computational power and
limited battery capacity4,5.

Reservoir computing (RC) is a machine-learning algorithm that aims to reduce the computational resources
required for predicting time series without reducing accuracy. As shown in Fig. 1, a typical RC consists of three
parts: an input layer, a “reservoir” layer where neurons are randomly connected, and an output layer6,7. Because
only the weights between the reservoir layer and the output layer are trained while the other weights remain
fixed, the learning process of RC is much faster than that of backpropagation through time8–10. Therefore, RC is
expected to be a lightweight machine-learning algorithm that enables machine learning in edge computing11.

The RC training process is fast and accurate. In addition, RC has shown high performance on various time-
series forecasting tasks, including chaotic time-series12–14, weather15, wind-power generation16, and finance17.
Moreover, the range of applications of RC has extended into control engineering18,19 and video processing20–22.

To develop the applications for RC in edge computing, its hardware implementation must be improved to
enhance its computational speed and energy efficiency. For realizing such efficient hardware implementation,
variants of RC models, some of which employ delay-feedback systems23, simple network topologies such as
ring-topology and delay lines24–26, and billiard systems27, have been proposed. Efficient hardware based on
these variants have been implemented using field programmable integrated gate arrays (FPGAs)28–31. Moreover,

OPEN

1Institute of Industrial Science, The University of Tokyo, 4‑6‑1 Komaba Meguro‑ku, Tokyo 153‑8505, Japan. 2NEC
Corporation, 1753 Shimonumabe Nakahara‑ku, Kanagawa 211‑8666, Japan. 3Interdisciplinary Graduate School of
Engineering Sciences, Kyushu University, 6‑1 Kasuga‑Koen, Kasuga‑shi, Fukuoka 816‑8580, Japan. 4International
Research Center for Neurointelligence (WPI‑IRCN), The University of Tokyo Institutes for Advanced Study, The
University of Tokyo, Tokyo 113‑0033, Japan. *email: sakemi@iis.u‑tokyo.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-78725-0&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

numerous types of implementation employing physical systems, such as photonics32–34, spintronics35, mechanical
oscillators36, and analog integrated electronic circuits37,38, have been demonstrated39. Although these implemen-
tations have exhibited the superiority of RC in computational speed and energy efficiency, the maximum size of
the reservoir and, in turn, the forecasting accuracy, is limited by the physical size of the hardware.

In this study, we propose three methods that reduce the size of the reservoir without any performance
impairment. The three methods share the concept that the number of the effective dimension of the reservoir is
increased by allowing additional connections from the reservoir layer at multiple time steps to the output layer at
the current time step. We analyze the mechanism of the proposed methods based on the information processing
capacity (IPC) proposed by Dambre et al.40. We also demonstrate how the proposed methods reduce the size of
the reservoir in the generalized Hénon-map and NARMA tasks.

Results
RC framework.  In the mathematical representation of RC, four vector variables are defined as fol-
lows: u(t) ∈ R

N in for the inputs, x(t) ∈ R
N res for the states of the reservoir, y(t) ∈ R

Nout for the outputs, and
ytc(t) ∈ R

Nout for the teaching signals. The constants N in,N res, and Nout are the dimensions of the inputs, states
of the reservoir, and outputs, respectively. The updates of the reservoir states are given by

where W in ∈ R
N res×N in is a weight matrix representing the connections from the neurons in the input layer

to those in the reservoir layer. Its elements are independently drawn from uniform distribution U(−ρin, ρin) ,
where ρin is a positive constant. Another weight matrix W res ∈ R

N res×N res represents the connections among the
neurons in the reservoir layer. Its elements are initialized by drawing values from uniform distribution U(−1, 1)
and subsequently divided by a positive value to ensure that the spectral radius of W res is ρres . Note that elements
in matrices W in and W res are fixed to the initialized values. The outputs are obtained by

where Wout ∈ R
Nout×N res is a weight matrix representing connections from the neurons in the reservoir layer to

those in the output layer. The output weight matrix Wout is trained in the offline learning process of RC by using
the pseudoinverse (see “Methods” section).

Proposed methods.  We propose three methods that modify the connections between the reservoir and
output layers. We call these three methods (i) delay-state concatenation, (ii) drift-state concatenation, and (iii)
delay-state concatenation with transient states. These methods share the idea that the number of the effective
dimension of the reservoir is increased by allowing additional connections from the reservoir layer at multiple
time steps to the output layer at the current time step. For the delay-state concatenation and delay-state concat-
enation with transient states, additional connections are formed from the past states of the reservoir layer to the
current output layer, as illustrated in Fig. 2a,d. On the other hand, for the drift-state concatenation, additional
connections are formed from newly introduced states of the reservoir, called drifting states, to the current output
layer, as illustrated in Fig. 2b. The drifting states are obtained by updating the current states of the reservoir layer
without input signals. In what follows, we mathematically formulate these three proposed methods.

First, we formulate the delay-state concatenation with concatenated states of the reservoir given by

(1)x(t) = tanh
(

W resx(t − 1)+W inu(t)
)

,

(2)y(t) = Woutx(t),

(3)x̂(t) :=











x(t)
x(t − Q)

.

.

.

x(t − PQ)











.

Reservoir layerInput layer Output layer

 (fixed) (fixed) (trained)

Figure 1.   Typical RC architecture. The reservoir layer consists of randomly connected neurons. The
connections between the input and reservoir layer W in and connections within the reservoir layer W res are fixed
(solid arrows), whereas the output weights Wout are trained (dashed arrows).

3

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

Note that x(t) is a column vector and the number of neurons in the reservoir does not change. A positive
integer Q represents the unit of delays. Another positive integer P represents the number of past states that are
concatenated to the current states. The outputs are obtained with the concatenated states x̂(t) and the correspond-
ing output-weight matrix Ŵout as follows:

Here, x̂(t) and Ŵout are defined in R(P+1)N res and RNout×(P+1)N res , respectively. Figure 2a shows a schematic
of this method illustrating the prediction of y(3) when Q = 1 and P = 2 . One can see that there are additional
connections from the past states of the reservoir x(1) and x(2) to output y(3) , as indicated by red dashed arrows.
From a different point of view, this model can be illustrated using the concatenated states of the reservoir x̂(t) ,
as in Fig. 2c, where the reservoir consists of three identical smaller reservoirs, each with a different time delay of
0, 1, and 2 from the inputs. Evidently, the effective dimension of the concatenated reservoir is three times larger
than that of the original reservoir. Because the learning performance is enhanced by using a larger reservoir9,
the proposed method should be able to increase the computing capability without needing to add neurons in
the reservoir.

Second, we formulate drift-state concatenation, as illustrated in Fig. 2b by introducing the drifting states of
the reservoir given by

(4)Ŵout :=
(

Wout
0 Wout

1 · · · Wout
P

)

,

(5)
y(t) =

P
∑

i=0

Wout
i x(t − iQ)

= Ŵoutx̂(t).

(6)xdrift(t′; t) =

{

tanh
(

Wdriftx(t)
)

, (if t′ = 1),

tanh
(

Wdriftxdrift(t′ − 1; t)
)

, (if t′ ≥ 2),

Inputs

t=0
u(t)

x(t)

y(t)

t=1 t=2 t=3

u(t)

x(t)

x(t-1)

x(t-2)

(a)

(c)

Update (time evoluation)

Linear connections (fixed)
Linear connections (trained)

Added linear connections (trained)

Concatenated state

Inputs

t=0
u(t)

Reservoir
x(t)

Outputs
y(t)

x(n;t)

t=1 t=2

+1

+2
y(t)

+m m-step delay line

Reservoir

Outputs
(b)
Drifting states

Inputs

t=0
u(t)

x(t)

y(t)

t=1 t=2

(d)

Reservoir

Outputs

Figure 2.   Schematics of the proposed methods. (a) Delay-state concatenation when the number of additional
connections P is two and the unit of delay Q is one. (b) Drift-state concatenation when P is two and Q is one.
(c) Another view of delay-state concatenation. The reservoir consists of three identical dynamical systems and
delay lines. The added dynamical systems have +1 delay lines and +2 delay lines, respectively. (d) Delay-state
concatenation with one transient state when P is two and Q is one.

4

Vol:.(1234567890)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

where xdrift(t′; t) represents the drifting states of the reservoir and t ′ is the time step after the current time step
t. Using the drifting states, we redefine the concatenated states of the reservoir and the corresponding output
matrix as follows:

Here, Wdrift is a matrix representing the connections within the reservoir to obtain the drifting states, and its
elements are drawn from uniform distribution U(−1, 1) divided by a positive value to ensure that the spectral
radius of Wdrift is ρdrift.

Third, delay-state concatenation with transient states introduces transient states to the delay-state concatena-
tion, as illustrated in Fig. 2d, where the states of the reservoir update twice (so it has one transient state) during
the inputs and the outputs update once (see “Methods” section).

Although we have shown that the proposed methods can increase the effective dimension of the reservoir
without adding neurons, one potential drawback of the methods is the cost of the memory required to store the
past reservoir states. However, the proposed methods are very memory efficient. To carry out RC with delay-state
concatenation, the output components

are computed and stored in memory at time step t. The dimensions of these vectors are all Nout . As shown in
Fig. 3a, the vector Wout

i x(t) must be stored until they are used for calculating the outputs at time steps t + iQ .
Therefore, the total memory cost is obtained as follows:

(7)x̂(t) :=















x(t)

xdrift(1; t)

xdrift(2; t)
.
.
.

xdrift(P; t)















,

(8)Ŵout :=
(

Wout
0 Wout

1 · · ·Wout
P

)

,

(9)
y(t) = Wout

0 x(t)+

P
∑

i=1

Wout
i xdrift(i; t)

= Ŵoutx̂(t).

(10)Wout
0 x(t), Wout

1 x(t), . . . , andWout
P x(t)

(11)
Nout + (Q + 1)Nout + (2Q + 1)Nout + · · · + (PQ + 1)Nout

=
(P + 1)(PQ + 2)Nout

2
.

Figure 3.   Memory requirements. (a) Memory requirement for delay-state concatenation when P is two and Q
is one. Output components that are stored in memory at time step t + 2 for computing outputs at this time step
or future time steps are masked with blue color. (b) Memory requirement for drift-state concatenation when
P is two. Output components that are stored in memory at time step t + 2 for computing outputs at this time
step are masked with blue color. (c) Comparison of memory requirement for (i) standard RC8, (ii) delay-state
concatenation, (iii) delay-state concatenation with transient states, and (iv) drift-state concatenation. Values
in each column represent the amounts of memory required to store vectors. The effective dimension of RC is
(P + 1)N res for all the cases.

5

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

Note that the memory required to store the states of the reservoir is proportional to N res . The memory
required to store the weights within the reservoir and the output weights is proportional to (N res)2 and
(P + 1)N resNout , respectively, given that the reservoir is fully connected. Although delay-state concatenation
with transient states requires additional computation for transient states, the cost of memory is the same as that
for delay-state concatenation.

To carry out RC with drift-state concatenation, the output components

are computed and stored in memory at time step t, leading to the memory cost of Nout(P + 1) as shown in Fig. 3b.
After calculating all the drifting states at time step t, the states x(t + 1) at the next time step are calculated using
the states x(t) at the current time step (see Fig. 1b). Therefore, this method requires additional memory to store
x(t) corresponding to the memory cost of N res . Note that this memory cost is independent of the number of P.
The cost of the memory required to store the weights within the reservoir including drifting states is 2(N res)2
and that required to store the output weights is (P + 1)N resNout , given that the reservoir is fully connected.

If the number of neurons is increased by (P + 1) times using standard RC8, the memory cost to store the
reservoir states becomes (P + 1)N res and the memory cost required to store the weights within the reservoir
and output weights becomes ((P + 1)N res)2 and (P + 1)N resNout , respectively, given that the reservoir is fully
connected. The memory required for different methods is compared in Fig. 3c.

According to Fig. 3c, for moderate values of P and Q (typically less than 5), the total memory cost for the
proposed methods is much less than that for standard RC because Nout ≪ N res for typical RC applications.
Therefore, the proposed methods can increase the dimensions of the reservoir more efficiently than by simply
increasing the number of neurons in the reservoir. It should be noted that the proposed methods increase the
effective dimension of the reservoir state by a factor of (P + 1) , but the number of the neurons in the reservoir is
not increased. We also note that the discussion of memory reduction only applies to the inference phase because
states of the reservoir at all time steps must be stored in the training phase.

Quantitative analysis based on IPC.  Before benchmarking the proposed RC, we quantitatively analyze
the learning capacity of the RC to elucidate how the proposed methods work.

The memory capacity (MC) is a performance measure commonly used in the RC research community41. The
MC represents how precisely the RC system can reproduce the past inputs. A number of studies have shown that
the MC is theoretically bounded by the number of neurons in the reservoir, and the MC can reach this bound in
some situations25,26,42. Boedecker et al.43 evaluated the MC at the edge of chaos, which is a region in the model
parameter space where RC is stable but near to unstable. Farkaš et al.44 have evaluated the MC for various model
parameters. Ganguli et al.45 extended the concept of MC using Fischer information. However, the MC does not
evaluate how well RC processes information in a nonlinear way. Because many tasks in the real world targeted by
RC are nonlinear problems, the MC is not a suitable measure for analyzing the proposed methods in this sense.
Therefore, to elucidate the mechanism of the methods proposed in this study, we employed another criterion40
called the information processing capacity (IPC), which handles nonlinear tasks.

The IPC is a measure that integrates both memory and information processing performance. By employing
an orthogonal basis set that spans the Hilbert space, one IPC can be obtained from one corresponding basis. The
IPC can be interpreted as a quantity that represents not only how well the network can memorize past inputs
but also how precisely the network can convert inputs into the target outputs in a nonlinear manner given the
basis set. Dambre et al.40 showed that the total IPC Ctotal , which is a sum of all IPCs, is identical to the number of
neurons in the reservoir, provided (I) the inputs are independent and identically distributed (i.i.d.), (II) the fading
memory condition is satisfied, and (III) all the neurons are linearly independent (see Theorem 7 and its proof
in Ref.40). By analyzing the IPCs, one can obtain a large amount of information about how RC processes input
data. For example, the degree of nonlinearity of the information processing carried out in RC can be analyzed
by calculating multi-order IPCs. The kth-order IPC Ckth is defined as the sum of the IPCs corresponding to the
subset of a basis with kth-order nonlinearity. Based on the IPC, informative results such as the memory–non-
linearity tradeoff have been obtained40. Therefore, using the IPC, we can analyze how RC stores and processes
information in the reservoir as well as how the proposed methods affect the way information is processed.

We calculated the IPCs for the standard RC and for RC with the proposed methods (see “Methods” section).
Figure 4 shows the IPCs when N res = 12 and N res = 24 for various values of ρin and ρres . Note that only odd-
order IPCs were observed because of the symmetry. In each setting, we calculated the IPCs for the standard
RC (left columns), those for the RC with delay-state concatenation with P = Q = 1 (center columns), and
those for the RC with drift-state concatenation with P = Q = 1 (right columns). One can find that the value
of Ctotal/(P + 1) almost reaches the number of neurons N res in reservoir, except when ρres = 1.05 . This result
indicates that the proposed methods actually increase the total IPC by (P + 1) times. The observed lower values
of the total IPCs for the case of ρres = 1.05 can be attributed to the failure-of-fading-memory condition. In the
RC research community, it is well known that the dynamics of RC is more likely to be chaotic when ρres increases
(typically occurring when ρres is larger than 1)46, and this corresponds to the failure of fading memory. For all
cases, as ρin increases, the third-order IPC C3rd and the fifth-order IPC C5th tend to increase, which reflects the
increase in nonlinearity in the reservoir40 given the selected basis set. Note that as ρin increases, the total IPC
Ctotal tends to decrease, which is attributed to increases in the importance of higher-order IPCs (e.g., seventh-
order and ninth-order IPCs).

In Fig. 5a, we show the IPCs for delay-state concatenation with P = 1 for several values of the unit of delay
Q. As Q increases, the first-order IPC increases as well. This result may be trivial because RC with large Q can
access the past states of the reservoir, rendering the reproduction of the past inputs easy. To investigate the effects

(12)Wout
0 x(t), Wout

1 xdrift(1; t), . . . , andWout
P xdrift(P; t)

6

Vol:.(1234567890)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

of the unit of delay Q on IPCs, we decomposed the kth-order IPC Ckth into components in terms of their delay
such as Ckth

0 , Ckth
1 , and Ckth

2  , which correspond to a different subset of the basis. Figure 5b shows the distribu-
tions of the delay components for four values of Q under the same experimental conditions. As the values of Q
increase, the distribution tends to shift to the right (larger delays) for each order of IPC. This fact indicates that,
as demonstrated in the subsequent section, one can tune RC models by adjusting the value of Q according to
the delay structure of the target tasks.

Figure 4.   Analysis of IPCs. IPCs of standard RC and RC with the proposed methods for various values of
input weight strength ρin and spectral radius ρres . The left and right panels show the results for N res = 12 and
N res = 24 , respectively. The dashed horizontal line within each subgraph represents the value of N res . For
each value of ρin , the left column presents the standard RC with P = 0 , the center column presents delay-state
concatenation with P = Q = 1 , and the right column presents drift-state concatenation with P = 1.

Figure 5.   Q-dependence of IPCs. (a) IPCs of the RC with delay-state concatenation for various values of Q. (b)
Delay structures of the IPCs for various values of Q. From top to bottom, the first-, third-, and fifth-order IPCs
are shown. The parameters are set as follows: N res = 24 , ρin = 0.9 , ρres = 0.95 , and P = 1.

7

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

Next, for various values of P, we show the IPCs in Fig. 6a for delay-state concatenation, drift-state concatena-
tion, and delay-state concatenation with one transient state. For all three proposed methods, the contributions of
higher-order IPCs tend to be dominant in the total IPCs as P increases. In Fig. 6b, we show the delay structures
of the IPCs. Note that to clarify how the distributions of the delay structure change as the value of P changes, we
used the normalized IPC Cnth

τ /(P + 1)
∑

τ C
nth
τ  . The top panels in Fig. 6b show that, as P increases, the distri-

bution of the delay structure of the IPCs for delay-state concatenation tends to shift to the right (larger delays).
Conversely, in the middle panels, the IPCs for drift-state concatenation do not change significantly. These results
may be explained as follows: the increase in P for delay-state concatenation increases the memory of past inputs
because of the additional connections from the past states of the reservoir, whereas the increase in P for drift-
state concatenation does not increase the memory of the past inputs because drifting states are obtained from
the current states of the reservoir. The bottom panels of this figure show that the distribution of IPCs for delay-
state concatenation with one transient state tends to shift to larger delays as P increases. However, the delays in
this distribution are smaller than the delays in the distribution obtained using delay-state concatenation. This
difference may stem from the fact that the information of past states stored in the reservoir is more likely to be
thrown away and to be replaced with that of more recent states in delay-state concatenation with one transient
state because the RC model in this case carries out nonlinear transformation twice for each input (see Fig. 2d).

Here, we present a short summary of the above experiments. We have numerically shown that the total IPCs
divided by P + 1 are almost independent of the values of Q and P, which is consistent with the theory in Ref.40.
We note that when the value of P approaches the number of simulation time steps, the IPCs do not effectively
increase because the internal states are no longer linearly independent. Furthermore, we have found that the
importance among IPC components and the delay structure of IPCs can be modified by selecting the values of Q
and P. These findings indicate that the learning performance on real-world tasks may be enhanced by selecting
appropriate values of Q and P adjusted to a target task with a specific temporal structure.

Effectiveness on complex data.  Although we have shown that the proposed methods can increase the
IPCs efficiently, the conditions assumed above are not always guaranteed in real-world applications; for example,
inputs may not be drawn from i.i.d. data, and neurons in the reservoir may not be linearly independent. There-
fore, the IPCs are just a guide that help us understand the mechanisms of the proposed methods. In this section,
to evaluate the effectiveness of the proposed methods on complex data, we applied them to two prediction tasks:
generalized Hénon-map tasks and NARMA tasks (see Eqs. (25) and (26) in “Methods” section). In the following

Figure 6.   P-dependence of IPCs. (a) IPCs with the proposed methods for various values of P. Left columns:
IPCs for delay-state concatenation, center columns: IPCs for drift-state concatenation, and right columns: IPCs
for delay-state concatenation with one transient state. (b) Comparison of the delay structures of the IPCs for the
three proposed methods. Top panels (i): delay structures for delay-state concatenation, middle panels (ii): delay
structures for drift-state concatenation, and bottom panels (iii): delay structures for delay-state concatenation
with one transient state. To highlight the difference in the distribution of the delay structures, the IPCs for each
order are normalized. From left to right, the first-, third-, and fifth-order IPCs are shown. The parameters are set
as follows: N res = 24 , ρin = 0.9 , ρres = 0.95 , and Q = 1.

8

Vol:.(1234567890)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

experiments, the dimensions of the reservoir are approximately given by an integer N∗ , and the actual number
of neurons in the reservoir is given by N res = ⌊N∗/(P + 1)⌋ , where ⌊m⌋ := max{q ∈ Z|q ≤ m} . We optimized
the model parameters, ρin, ρres , and ρdrift with Bayesian optimization47,48.

We first investigated the effects of the value of Q in the delay-state concatenation method. Figure 7a shows the
normalized mean-squared errors (NMSEs) for the sixth-order and eighth-order Hénon-map tasks for various
values of Q with P = 1 . As the value of Q increases, the NMSE first decreases, but abruptly increases when Q is
larger than 4 in the sixth-order Hénon-map and larger than 6 in the eighth-order Hénon-map. Considering the
fact that to predict the output, the mth-order Hénon-map has two informative inputs at the mth and (m− 1) th
previous steps, these increases in performance are reasonable because an RC system with the appropriate val-
ues of Q can possess the information needed from past inputs. We also note that similar results were obtained
recently in Ref.49. In contrast, the NMSE monotonically increases as the value of Q increases for NARMA5 and
NARMA10, as shown in Fig. 7b. These results imply that simply adjusting the value of Q is not effective for tasks
such as NARMA5 and NARMA10 with complicated temporal structures.

We next investigated the effects of the value of P for the NARMA tasks in which adjusting the value of Q
was not effective. Figure 8 shows the NMSE against the values of P for the NARMA5 task (the top panel) and
NARMA10 task (the bottom panel) for three settings of N∗ . Note that N∗ is fixed as P is varied to ensure that
the size of reservoir N res reduces to approximately 1/(P + 1) times as P varies. We found that the NMSEs were
almost constant up to specific values of P. For example, for the case of the NARMA10 task with N∗ = 300 , the
NMSE was almost constant up to P = 5 , indicating that the number of neurons in the reservoir can be reduced
from 300 to 50 without impairing performance.

Finally, we compared the proposed methods, delay-state concatenation with and without one transient state,
and drift-state concatenation on the NARMA10 task. Figure 9 shows the NMSE as functions of P values with
N∗ = 200 and 300 for the proposed methods. We found that the NMSEs for delay-state concatenation with
one transient state and drift-state concatenation were lower than those for delay-state concatenation when P
was larger than 7. For the NARMA10 task, inputs more than 10 steps in the past are not very informative for
predicting one step forward. The lack of information in the past steps may explain the increase in NMSE for
delay-state concatenation when P is larger than 7. The observed lower NMSEs for delay-state concatenation with

Figure 7.   Q-dependence of the learning performance. (a) NMSE for a sixth-order Hénon-map task (the upper
panel) and for an eighth-order Hénon-map task (the lower panel) for various values of Q with P = 1 . (b) NMSE
for NARMA5 (the upper panel) task and for NARMA10 (the lower panel) task for various values of Q with
P = 1 . Error bars show the standard deviation of the results of 10 trials.

9

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

one transient state and drift-state concatenation are also reasonable because (i) the former method uses the past
states of the reservoir, which contain more recent input information for the same value of P (see Fig. 2d), and
(ii) the latter method uses the states of the reservoir, which contain current input information.

Discussion
In this study, we proposed three methods to reduce the size of an RC reservoir without impairing performance.

To elucidate the mechanism of the proposed methods, we analyzed the IPC. We found that the value of the
total IPCs almost reaches N res(P + 1) using the proposed methods, whereas the importance of their components
(the first-, third-, and fifth-order IPCs) changes drastically. We also found that the delay structures of the IPCs
depend on the values of Q and P. To investigate the applicability of the proposed methods on complex data,
we presented the experimental results on generalized Hénon-map and NARMA tasks. We found that when the
target task has a relatively simple temporal structure, as demonstrated with the Hénon-map tasks, selecting
an appropriate value of Q enhances the performance substantially. In contrast, when the target task contains
complex temporal structure, as demonstrated in the NARMA tasks, adjusting the value of Q does not enhance
the performance. However, in those cases, we found that increasing the value of P can reduce the size of the
reservoir without impairing performance. We have demonstrated that the number of neurons in the reservoir
can be reduced by up to one tenth in the NARMA10 task.

Figure 8.   P-dependence of the learning performance. NMSEs for the NARMA5 (the top panel) and NARMA10
(the bottom panel) tasks with delay-state concatenation as functions of P for various values of N∗ . Error bars
show the standard deviation of the results of 10 trials.

Figure 9.   Comparison of the proposed methods. Results of regression performance on the NARMA10 task
for various values of P with N∗ = 200 (the top panel) and N∗ = 300 (the bottom panel) for (A) delay-state
concatenation, (B) delay-state concatenation with one transient state, and (C) drift-state concatenation. Error
bars show the standard deviation of the results of 10 trials.

10

Vol:.(1234567890)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

Here, we note the relationship between our work and the relevant previous works23,49. In Ref.23, the authors
proposed the time-delay reservoir that consists of a single node with delayed feedback. The states of the single
node at multiple time steps correspond to virtual nodes, which may look similar to the delay-state concatena-
tion. However, these two methods are different because the virtual nodes have output connections only to the
current outputs, whereas the delay-state concatenation adds output connections from the nodes in the reservoir
not only to the current outputs but also to future outputs. We also note that the delay-state concatenation can
be also applied to the time-delay reservoir. In Ref.49, the authors proposed a method that is similar to delay-
state concatenation. Their proposed model corresponds to the case when the number of additional connected
past states is one (i.e., P = 1 ). They observed that performance enhancement depends on the value of Q, as we
showed in this paper. However, to the best of our knowledge, the dependence of the performance on the value
of P has not been reported. In addition, the other two proposed methods, drift-state concatenation and delay-
state concatenation with transient states, are introduced for the first time in this paper. Moreover, the authors
of Ref.49 explained the mechanism of their proposed method in terms of the delayed embedding theorem50. In
contrast, we have provided a more intuitive explanation based on the IPC40.

Because the proposed methods do not assume a specific topology for the reservoir, they can readily be imple-
mented in FPGAs and physical reservoir systems, such as photonic reservoirs39. Therefore, the proposed methods
could be an important set of techniques that facilitates the introduction of RC in edge computing.

Methods
Training output weights.  The training procedures are the same as those for standard RC models9. The
output weights are trained by minimizing

Adding a regularization term �Ŵout�22 did not improve the performance in our case.

Delay‑state concatenation with transient states.  We inserted transient states in the RC system with
delay-state concatenation as follows:

where N tran is the number of inserted transient states.

IPC.  Following the same procedure given in Ref.40, the IPCs are calculated as follows: The total IPC is defined
as

where Ctotal is the total IPC and C({di}) is the IPC for a basis represented with a list {di} = {d0, d1, . . . } . The
list represents an orthogonal basis in Hilbert space. We employed the following Legendre polynomials as the
orthogonal basis:

where Pdi (·) is the dith-order Legendre polynomial and u(t) is drawn from uniform distribution on [−1, 1] . A
constant τmax is the maximum delay, which must be large enough to converge the calculation. In our simulations,
we set τmax to 50 for ρin = 0.1 or otherwise to 25. Then, the IPC C({di}) can be calculated as

where
〈

y(t)
〉

:= 1
T

∑T
t=1 y(t) . We set the simulation steps T to 106 in all experiments. To avoid overestimation,

the value of C({di}) was set to zero when the value is less than threshold of 7N res(P + 1)× 10−5.

(13)
T
∑

t=1

||y(t)− ytc(t)||22.

(14)
x(t) = tanh

(

W resx(t − 1)

+W inu

(⌊

t

N tran + 1

⌋))

,

(15)x̂(t) =











x(t)
x(t − Q)

.

.

.

x(t − QP)











,

(16)y(t) = Ŵoutx̂
(

(N tran + 1)t + N tran
)

,

(17)Ctotal =
∑

{di}

C({di}),

(18)y{di}(t) =

τmax
∏

i=0

Pdi (u(t − i)),

(19)C({di}) = 1−

〈

|y(t)− y{di}(t)|
2
〉

〈

|y(t)− �y(t)�|2
〉 ,

11

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

We define the kth-order IPCs as

The kth-order IPC was decomposed into components corresponding to a subset of a basis whose maximum
delay is τ as follows:

Dataset.  The mth-order generalized Hénon-map51 is given by

where σ is Gaussian noise with zero mean and standard deviation of 0.05. The inputs and outputs of the RC are
the time series of an n-dimensional generalized Hénon-map. The task is to predict one step forward y(t + 1)
with past inputs y(t), y(t − 1), . . . . The NARMA time series is obtained with a nonlinear auto-regressive moving
average as follows:

where s(t) is drawn from uniform distribution of [0, 0.5]. The NARMA5 and NARMA10 time series correspond
to the case when m = 5 and m = 10 , respectively. The inputs of the RC are s(t). The task is to predict y(t) from
the inputs s(t).

For both tasks, we used 2000 steps as a training dataset and used 3000 steps as a test dataset. We removed the
first 200 steps (free run) both during the training and test phases to avoid the effects of the initial conditions in
the reservoirs9. We evaluated the performance based on the normalized mean-squared error (NMSE) during
the test phase following:

where
〈

y(t)
〉

= 1
T

∑T
t=1 y(t) . We averaged the NMSEs over 10 trials. For each iteration, the dataset and connec-

tion matrix of the reservoir were generated using their corresponding probabilistic distributions.

Received: 7 September 2020; Accepted: 23 November 2020

References
	 1.	 Greff, K., Srivastava, R. K., Koutnk, J., Steunebrink, B. R. & Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural

Netw. Learn. Syst. 28, 2222–2232 (2017).
	 2.	 Werbos, P. J. Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 1550–1560 (1990).
	 3.	 Lillicrap, T. P. & Santoro, A. Backpropagation through time and the brain. Curr. Opin. Neurobiol. 55, 82–89 (2019).
	 4.	 Shi, W., Cao, J., Zhang, Q., Li, Y. & Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 3, 637–646 (2016).
	 5.	 Zhou, Z. et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–1762

(2019).
	 6.	 Jaeger, H. The echo state approach to analysing and training recurrent neural networks. Technical Report GMD Report 148, German

National Research Center for Information Technology (2001).
	 7.	 Maass, W., Natschlger, T. & Markram, H. Real-time computing without stable states: A new framework for neural computation

based on perturbations. Neural Comput. 14, 2531–2560 (2002).
	 8.	 Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149

(2009).
	 9.	 Lukoševičius, M. A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade 659–686, (2012).
	10.	 Scardapane, S. & Wang, D. Randomness in neural networks: An overview. WIREs Data Min. Knowl. Discov. 7, e1200 (2017).

(20)Ckth =
∑

{di}∈Ŵk

C({di}),

(21)Ŵk =

{

{di}

∣

∣

∣

∣

∣

τmax
∑

i=0

di = k

}

.

(22)Ckth =

τmax
∑

τ=0

Ckth
τ ,

(23)
Ckth
τ =

∑

{di}∈Ŵk
τ

C({di}),

(24)Ŵk
τ =

{

{di}

∣

∣

∣

∣

∣

τmax
∑

i=0

di = k, max{i|di ≥ 1} = τ

}

.

(25)ytc(t) = 1.76− ytc(t −m+ 1)2 − 0.1ytc(t −m)+ σ(t) (m ≥ 2),

(26)
ytc(t) = 0.3ytc(t − 1)+ 0.05ytc(t − 1)

m
∑

i=1

ytc(t − i)

+ 1.5s(t −m+ 1)s(t)+ 0.1,

(27)NMSE =

〈

|y(t)− ytc(t)|2
〉

〈

|y(t)− �y(t)�|2
〉 ,

12

Vol:.(1234567890)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

	11.	 Soures, N., Merkel, C., Kudithipudi, D., Thiem, C. & McDonald, N. Reservoir computing in embedded systems: Three variants of
the reservoir algorithm. IEEE Consumer Electron. Mag. 6, 67–73 (2017).

	12.	 Jaeger, H. & Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science
304, 78–80 (2004).

	13.	 Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A
reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018).

	14.	 Pathak, J. et al. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
Chaos 28, 041101 (2018).

	15.	 McDermott, P. L. & Wikle, C. K. An ensemble quadratic echo state network for non-linear spatio-temporal forecasting. Stat 6,
315–330 (2017).

	16.	 Tian, Z., Wang, G. & Ren, Y. Short-term wind speed forecasting based on autoregressive moving average with echo state network
compensation. Wind Eng. 44, 152–167 (2020).

	17.	 Lin, X., Yang, Z. & Song, Y. Short-term stock price prediction based on echo state networks. Expert Syst. Appl. 36, 7313–7317
(2009).

	18.	 Tsai, C.-Y., Dutoit, X., Song, K.-T., Van Brussel, H. & Nuttin, M. Robust face tracking control of a mobile robot using self-tuning
Kalman filter and echo state network. Asian J. Control 12, 488–509 (2010).

	19.	 Antonelo, E. A. & Schrauwen, B. On learning navigation behaviors for small mobile robots with reservoir computing architectures.
IEEE Trans. Neural Netw. Learn. Syst. 26, 763–780 (2015).

	20.	 Jalalvand, A., Wallendael, G. V. & Walle, R. V. D. Real-time reservoir computing network-based systems for detection tasks on
visual contents. In 2015 7th International Conference on Computational Intelligence, Communication Systems and Networks, 146–151
(2015).

	21.	 Buteneers, P. et al. Real-time detection of epileptic seizures in animal models using reservoir computing. Epilepsy Res. 103, 124–134
(2013).

	22.	 Panda, P. & Srinivasa, N. Learning to recognize actions from limited training examples using a recurrent spiking neural model.
Front. Neurosci. 12, 126 (2018).

	23.	 Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).
	24.	 Ozturk, M. C., Xu, D. & Príncipe, J. C. Analysis and design of echo state networks. Neural Comput. 19, 111–138 (2007).
	25.	 Rodan, A. & Tino, P. Minimum complexity echo state network. IEEE Trans. Neural Netw. 22, 131–144 (2011).
	26.	 Strauss, T., Wustlich, W. & Labahn, R. Design strategies for weight matrices of echo state networks. Neural Comput. 24, 3246–3276

(2012).
	27.	 Katori, Y., Tamukoh, H. & Morie, T. Reservoir computing based on dynamics of pseudo-billiard system in hypercube. In 2019

International Joint Conference on Neural Networks (IJCNN), 1–8 (2019).
	28.	 Alomar, M. L. et al. Digital implementation of a single dynamical node reservoir computer. IEEE Trans. Circuits Syst. II Exp. Briefs

62, 977–981 (2015).
	29.	 Loomis, L., McDonald, N. & Merkel, C. An FPGA implementation of a time delay reservoir using stochastic logic. J. Emerg. Technol.

Comput. Syst. 14, 46 (2018).
	30.	 Alomar, M. L. et al. Efficient parallel implementation of reservoir computing systems. Neural Comput. Appl. 32, 2299–2313 (2018).
	31.	 Penkovsky, B., Larger, L. & Brunner, D. Efficient design of hardware-enabled reservoir computing in FPGAs. J. Appl. Phys. 124,

162101 (2018).
	32.	 Brunner, D. et al. Tutorial: Photonic neural networks in delay systems. J. Appl. Phys. 124, 152004 (2018).
	33.	 de Lima, T. F., Shastri, B. J., Tait, A. N., Nahmias, M. A. & Prucnal, P. R. Progress in neuromorphic photonics. Nanophotonics 6,

577–599 (2017).
	34.	 Peng, H., Nahmias, M. A., de Lima, T. F., Tait, A. N. & Shastri, B. J. Neuromorphic photonic integrated circuits. IEEE J. Select. Top.

Quantum Electron. 24, 1–15 (2018).
	35.	 Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
	36.	 Dion, G., Mejaouri, S. & Sylvestre, J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl.

Phys. 124, 152132 (2018).
	37.	 Bauer, F. C., Muir, D. R. & Indiveri, G. Real-time ultra-low power ECG anomaly detection using an event-driven neuromorphic

processor. IEEE Trans. Biomed. Circuits Syst. 13, 1575–1582 (2019).
	38.	 Yamaguchi, M., Katori, Y., Kamimura, D., Tamukoh, H. & Morie, T. A chaotic Boltzmann machine working as a reservoir and its

analog VLSI implementation. In 2019 International Joint Conference on Neural Networks (IJCNN), 1–7 (2019).
	39.	 Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115, 100–123 (2019).
	40.	 Dambre, J., Verstraeten, D., Schrauwen, B. & Massar, S. Information processing capacity of dynamical systems. Sci. Rep. 2, 514

(2012).
	41.	 Jaeger, H. Short term memory in echo state networks. Technical Report GMD Report 152, German National Research Center for

Information Technology (2002).
	42.	 White, O. L., Lee, D. D. & Sompolinsky, H. Short-term memory in orthogonal neural networks. Phys. Rev. Lett. 92, 148102 (2004).
	43.	 Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M. & Asada, M. Information processing in echo state networks at the edge of chaos.

Theory Biosci. 131, 205–213 (2012).
	44.	 Farkaš, I., Bosák, R. & Gerge, P. Computational analysis of memory capacity in echo state networks. Neural Netw. 83, 109–120

(2016).
	45.	 Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical systems. Proc. Natl. Acad. Sci. 105, 18970–18975 (2008).
	46.	 Yildiz, I. B., Jaeger, H. & Kiebel, S. J. Re-visiting the echo state property. Neural Netw. 35, 1–9 (2012).
	47.	 Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process.

Syst. 25, 2951–2959 (2012).
	48.	 Frazier, P. I. A tutorial on Bayesian optimization. arXiv​:1807.02811​ (2018).
	49.	 Marquez, B. A., Suarez-Vargas, J. & Shastri, B. J. Takens-inspired neuromorphic processor: A downsizing tool for random recurrent

neural networks via feature extraction. Phys. Rev. Research 1, 033030 (2019).
	50.	 Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Lecture Notes in Mathematics (Springer,

Berlin, 1981).
	51.	 Richter, H. The generalized Hénon maps: Examples for higher-dimensional chaos. Int. J. Bifurcation Chaos 12, 1371–1384 (2002).

Acknowledgements
The authors would like to thank Makoto Ikeda, Hiromitsu Awano, and Gouhei Tanaka for the fruitful discussion.
This work was partially supported by the “Brain-Morphic AI to Resolve Social Issues” project at UTokyo, the
NEC Corporation, and AMED (JP20dm0307009).

http://arxiv.org/abs/1807.02811

13

Vol.:(0123456789)

Scientific Reports | (2020) 10:21794 | https://doi.org/10.1038/s41598-020-78725-0

www.nature.com/scientificreports/

Author contributions
All the authors designed the research. Y.S. performed all simulations, and all the authors confirmed the theory.
Further, they all wrote the paper.

Competing interests 
Y.S., K.M., and K.A. have applied for a patent related to the proposed methods (Japanese Patent Application No.
2019-206438). The remaining author has no conflict of interest to declare.

Additional information
Correspondence and requests for materials should be addressed to Y.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Model-size reduction for reservoir computing by concatenating internal states through time
	Results
	RC framework.
	Proposed methods.
	Quantitative analysis based on IPC.
	Effectiveness on complex data.

	Discussion
	Methods
	Training output weights.
	Delay-state concatenation with transient states.
	IPC.
	Dataset.

	References
	Acknowledgements

