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Abstract

Late-phase long term potentiation (L-LTP) is thought to be the cellular basis for long-term memory (LTM). While LTM as
well as L-LTP is known to depend on transcription and translation, it is unclear why brain-derived neurotrophic factor
(BDNF) could sustain L-LTP when protein synthesis is inhibited. The persistently active protein kinase f (PKMf) is the only
molecule implicated in perpetuating L-LTP maintenance. Here, in mouse acute brain slices, we show that inhibition of
PKMf reversed BDNF-dependent form of L-LTP. While BDNF did not alter the steady-state level of PKMf, BDNF together
with the L-LTP inducing theta-burst stimulation (TBS) increased PKMf level even without protein synthesis. Finally, in the
absence of de novo protein synthesis, BDNF maintained TBS-induced PKMf at a sufficient level. These results suggest that
BDNF sustains L-LTP through PKMf in a protein synthesis-independent manner, revealing an unexpected link between
BDNF and PKMf.
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Introduction

LTP in acute hippocampus slices has long been used as a model

to study the cellular mechanisms underlying learning and memory.

There are temporally distinct types of LTP: protein synthesis-

independent early phase LTP (E-LTP) and protein synthesis-

dependent late phase LTP (L-LTP) [1,2,3], paralleling the two

forms of memory – short-term and long-term memories [4]. While

numerous studies have been done on E-LTP, much less is known

about the mechanisms for L-LTP. The secreted trophic protein

BDNF and intracellular signaling molecule PKMf are the two

best-studied molecules; both are necessary and sufficient to

maintain L-LTP [5,6,7,8,9]. BDNF through its presynaptic or

postsynaptic TrkB receptor activates the downstream mitogen-

activated protein kinase (MAPK), phosphatidylinositol 3- kinase

(PI3K) and phospholipase C-c (PLC-c) pathways [10]. PKMf is

a brain-specific, atypical isoform of protein kinase C. It is per-

sistently active, due largely to the lack of regulatory domain and

therefore second-messenger-independent [11]. BDNF and PKMf
share several common characteristics in regulating hippocampal

L-LTP. First, either perfusion of BDNF or intracellular introduc-

tion of PKMf directly facilitates synaptic transmission by pro-

moting postsynaptic responses [9,12,13,14]. Second, inhibition of

either BDNF or PKMf abolishes L-LTP [5,15]. Third, BDNF and

PKMf could modulate the morphological changes of dendritic

spines [12,16]. However, the relationships between the two mole-

cules in regulating L-LTP remain unclear.

Substantial evidence suggests that the expression of BDNF gene

is controlled by neuronal activity [17]. In the hippocampus, the

BDNF mRNA levels in the CA1 region are rapidly increased in

response to the L-LTP inducing tetanic stimulation [18,19]. Weak

tetanic stimulation, which normally induces only E-LTP, could

induce L-LTP as long as the BDNF levels are elevated [5]. With

these results, one can hypothesize that strong tetani trigger the

expression of BDNF which in turn enhances the synthesis of

PKMf in the hippocampus, leading to L-LTP. However, appli-

cation of BDNF could rescue L-LTP deficits even when protein

synthesis is completely blocked [5]. These perplexing results raise

the possibility that BDNF may increase the PKMf level not by

enhancing its synthesis but by reducing degradation to achieve

LTP maintenance.

The present study attempts to reveal a mechanistic link between

BDNF and PKMf. We found that BDNF-related neuronal activi-

ties augmented PKMf expression but BDNF alone did not modu-

late steady-state PKMf protein level. Moreover, in the absence of

protein synthesis, BDNF sustained L-LTP by maintaining activity-

induced PKMf at a sufficient level. These results together suggest

that BDNF-dependent L-LTP is mediated by PKMf, and explain

how BDNF can maintain L-LTP even when protein synthesis is

completely blocked.

Results

PKMf mediates BDNF-dependent late phase LTP
Previous studies indicate that L-LTP can be further divided into

the BDNF-dependent form which can be induced by theta burst

stimulation (12 TBS) or a perfusion of cAMP analogs such as

forskolin, and the BDNF-independent form which is triggered by
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the classic 4 sets of tetanus (46tetani) [20]. PKMf is known to

mediate L-LTP induced by 4 tetani [21]. To determine whether

PKMf is also responsible for BDNF-dependent form of L-LTP, we

applied ZIP, a myristoylated PKMf-substrate peptide inhibitor

(5 mM), well after the BDNF-dependent L-LTP was expressed. In

12 TBS-induced L-LTP, ZIP applied 1 hour after stimulation suc-

cessfully reversed L-LTP (Fig. 1A, 1B, 9968% at 175–180 min,

p,0.01 compared with control). In contrast, a scrambled ZIP

peptide (5 mM) did not affect L-LTP maintenance (166613% at

175–180 min). Forskolin-induced L-LTP was induced by a 15-min

perfusion of a combined forskolin (50 mM) and the phosphodies-

terase inhibitor IBMX (30 mM). ZIP was applied 80 min after

LTP induction when a stable L-LTP was fully established. Again,

ZIP abolished L-LTP (Fig. 1C, 1D, 10366% for ZIP, 184618%

for Scrambled ZIP, at 175–180 min, p,0.001). These results

suggest that PKMf is required for the maintenance of BDNF-

dependent

L-LTP.

Steady-State PKMf level is not maintained by BDNF
To investigate whether and how BDNF regulates PKMf ex-

pression, we tested steady-state PKMf expression in wild-type

(WT) and homozygous BDNF knockout (KO) mice. At postnatal

day 18 (P18), brain tissues were dissected and subjected to Western

Figure 1. BDNF-dependent late phase LTP is mediated by PKMf. (A, B) 12 TBS-induced L-LTP was reversed by PKMf inhibitor ZIP. Field EPSP
(fEPSP) was evoked in CA1 stratum radiatum by stimulating Schaffer Collateral in adult C57BL/6 mice. (A) After a stable baseline was obtained, 12 TBS
was conducted. LTP was sustained at least for 3 hours. ZIP (5 mM) or scrambled ZIP peptide (5 mM) was applied at 1 hour after stimulation. (B)
Quantification of the initial slope value from the last 5 minutes recording. (C, D) Forskolin-induced L-LTP was abolished by PKMf inhibitor ZIP. The
experiments were done identically as in (A), except that L-LTP was induced by a transient perfusion of forskolin (50 mM) and IBMX (30 mM) for
15 minutes. ZIP or scrambled ZIP was applied at 80 minutes after chemical induction when stable L-LTP was fully established. Numbers of slices and
mice used in each condition are indicated at the top of each plot. In this and all other figures, data are presented as mean 6 s.e.m. * p,0.05,
** p,0.01,*** p,0.001, Student’s t-Test.
doi:10.1371/journal.pone.0021568.g001
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blot analysis. Surprisingly, there was no significant difference of

endogenous PKMf expression between WT and KO mice in the

cortex and hippocampus, respectively (Fig. 2A, Cortex, p = 0.79;

Hippocampus, p = 0.52).

A number of studies have demonstrated that BDNF promotes

gene transcription and translation [22]. We next investigated

whether exogenous BDNF treatment affected PKMf protein level

in primary neuron culture. Embryonic neurons derived from WT,

heterozygous (Het) and KO mice were cultured for 7 days (DIV 7)

and then exposed to BDNF (100 ng/ml) or vehicle for 24 hours,

and total PKMf protein level was measured by Western blot.

Addition of BDNF did not cause any significant change in the

levels of PKMf in WT or BDNF mutant genotypes (Fig. 2B, WT,

p = 0.91; Het, p = 0.44; KO, p = 0.34). Thus, it appears that

without substantial enhancement of neuronal or synaptic activities,

BDNF does not alter the steady-state level of PKMf protein.

BDNF modulates activity-dependent PKMf levels to
sustain L-LTP in the absence of protein synthesis

We have previously shown that treatment with BDNF is

sufficient to rescue L-LTP impairment when protein synthesis is

completely blocked [5]. We attempted to examine whether BDNF

could modulate PKMf to sustain the L-LTP at this situation.

Consistent with the previous study, L-LTP was fully established by

Figure 2. Steady-State PKMf protein level is not regulated by BDNF. (A) PKMf protein level in cortex and hippocampus of BDNF KO and WT
littermates. At postnatal day 18, cortex or hippocampus from BDNF KO and WT littermates were dissected and subjected to Western blot.
Representative blots and quantification of data were shown. GAPDH was used as loading control. (n = 5–8 independent experiments). (B) PKMf
expression in primary neuron cultures derived from different genotypes after BDNF treatment. DIV 7 cortical primary cultures of WT, Het or KO
genotype were separately treated with BDNF (100 ng/ml) or vehicle for 24 hours. For each experiment, BDNF treatment group was normalized
against vehicle treatment group. Representative blots are shown on top of the quantification of data. (n = 5 independent experiments).
doi:10.1371/journal.pone.0021568.g002

BDNF Facilitates L-LTP Maintenance through PKMf

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21568



Figure 3. BDNF modulates activity-dependent PKMf level to sustain L-LTP in the absence of protein synthesis. (A, B) Rescuing L-LTP
impairment by BDNF in the presence of anisomycin is PKMf-dependent. (A) Applications of various drugs were indicated by horizontal bars.
Anisomycin (40 mM) was used throughout the entire experiment. BDNF (200 ng/ml) was applied 3 minutes after 12TBS stimulation and successfully
rescued L-LTP impairment. ZIP was applied at 1 hour after stimulation and completely abolished L-LTP. (B) Quantification of the initial slope from the
last 5 minutes of recording. (C) PKMf protein level of hippocampal CA1 derived from WT mice at 1 hour and 3 hours after 12TBS stimulation. Tubulin
was used as loading control. The 12 TBS group was normalized against control group. The 12 TBS plus BDNF and anisomycin treatment groups were
normalized against that without BDNF treatment. Representative blots are shown on top of the quantification of data (3–5 slices per treatment, n = 3
independent experiments).
doi:10.1371/journal.pone.0021568.g003
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BDNF (200 ng/ml) despite of protein synthesis inhibition by

anisomycin (40 mM). We next applied PKMf inhibitor ZIP at

1 hour after tetanus and found L-LTP was completely reversed

(Fig. 3A–3B, 9466% for ZIP, 160615% for Scrambled ZIP, at

175–180 min, p,0.001). These results raise the possibility that

BDNF regulates PKMf to ensure a sustained L-LTP through a

protein synthesis independent mechanism.

To further characterize how BDNF regulates PKMf, we com-

pared PKMf level in the hippocampal slices at different time

points after 12 TBS. The 12 TBS group was normalized against

control condition in which slices were not stimulated. The 12

TBS plus BDNF and anisomycin treatment groups were nor-

malized against that without BDNF treatment. The PKMf
signals on the Western blot were normalized to that of b-tubulin

on the same lane. At the early stage of L-LTP (around 1 hour

after tetanus), synaptic activation induced a small but statistically

significant increase of PKMf level (Fig. 3C, 11665.8%, p,0.05).

This elevation of PKMf level was protein synthesis dependent.

Application of BDNF (200 ng/ml) together with 12TBS did not

further increase PKMf level. At the late stage of L-LTP (around

3 hour after tetanus), the BDNF-treated slices exhibited a much

higher level of PKMf compared with the one in the presence of

anisomycin (Fig. 3C, 161.6620.5%, p,0.05). Thus, BDNF

combined with strong tetanus could increase the steady-state level

of PKMf when protein synthesis is completely blocked. These

results suggest that in the absence of protein synthesis strong

tetanic stimulation together with BDNF could somehow elevate

PKMf protein level, which in turn is responsible for L-LTP

maintenance.

Discussion

Although L-LTP is known to be dependent on translation, it

has been puzzling why BDNF could rescue the L- LTP deficit in

the presence of the protein synthesis inhibitor anisomycin [5].

Considering that anisomycin may elicit unspecific stress-related

pathways [23], we previously also applied emetine (20 mM) to

block protein synthesis. A similar rescuing effect of BDNF was

observed in L-LTP impairment, validating the notion that BDNF

promotes L-LTP maintenance in the absence of protein synthesis

[5]. In the present study, we have revealed an unexpected role of

PKMf in mediating this BDNF-dependent form of L-LTP. In the

absence of protein synthesis, BDNF seems to sustain L-LTP by

means of maintaining a sufficient level of activity-induced PKMf.
These data provide a mechanistic link between BDNF and PKMf
and suggest their critical role in the maintenance of L-LTP despite

of protein synthesis inhibition.

Unlike the classic, tetanus-induced L-LTP, the cAMP or 12TBS

induced L-LTP requires an increase in local concentration of

dendritic proteins but not nucleus activity [24], and is dependent

on BDNF [20]. Similar to the classic L-LTP, however, we now

demonstrate that the BDNF-dependent L-LTP also requires

PKMf. Interestingly, in primed L-LTP through type I mGluRs

activation, neither suppression of BDNF nor PKMf alone could

reverse L-LTP. But a co-inhibition of BDNF and PKMf com-

pletely abolishes its maintenance [25]. These results could be

interpreted as PKMf acts either in parallel or synergistically with

BDNF. However, we provide several lines of evidence suggesting

that PKMf could be downstream of BDNF, at least in BDNF-

dependent L-LTP. First, application of the PKMf inhibitor ZIP

after cAMP or 12 TBS reverses the BDNF-dependent LTP.

Second, BDNF together with 12TBS increases hippocampal

PKMf level. Finally, in the presence of anisomycin, BDNF rescue

of L-LTP deficit could be reversed by ZIP.

In general, BDNF-TrkB signaling is crucial for activity-induced

new protein synthesis [22]. Moreover, synthesis of PKMf is a

common target of many signaling pathways in LTP induction,

including the major BDNF downstream pathways, such as PI3-

kinase, MAPK, mTOR, etc [26,27]. However, we did not detect a

difference of steady-state PKMf expression between WT and

BDNF KO mice. Further, application of BDNF to cultured WT

neurons did not increase PKMf protein level. We reasoned that

BDNF may need to work together with high frequency neuronal

activity to up-regulate PKMf through a protein synthesis inde-

pendent mechanism. Indeed, we found that BDNF together with

the L-LTP inducing 12TBS increases the PKMf protein level,

even in the presence of anisomycin.

How BDNF maintains PKMf level without protein synthesis?

One attractive hypothesis is that BDNF inhibits TBS-induced

degradation of PKMf through the ubiquitin-proteasome system

(UPS). A balance in protein synthesis and degradation has been

implicated in the maintenance of long term plasticity, structurally

and functionally [28]. When protein synthesis is inhibited, PKMf
level decreases primarily through UPS-mediated degradation.

Given that BDNF-TrkB signaling acts upstream of UPS coupling

neuronal activity with protein turnover [29], it is possible that

BDNF counters PKMf degradation to maintain L-LTP. Indeed,

without BDNF treatment, PKMf level keeps low under anisomy-

cin perfusion [30]. Moreover, there is a critical window for BDNF

to rescue L-LTP impairment — no later than 10 minutes after

tetanus [5]. An alternative hypothesis is that BDNF regulates

PKMf protein translocation to the stimulated synaptic site.

According to ‘‘synaptic tagging’’ theory, PKMf is suggested as a

plasticity-related protein (PRP) that not only potentiate synaptic

responses at strongly tetanized pathways, but also at weakly

stimulated pathways as long as synaptic tags are set [31]. BDNF

may facilitate PKMf translocation from cytoplasm to synaptic

sites. Specifically, when protein synthesis is inhibited, a local short-

age of newly synthesized PKMf may drive the need for PKMf
translocation and BDNF may facilitate this process. Regardless, it

is critical for BDNF to hold PKMf at a sufficient level within this

window before it is completely consumed by dynamic neuronal

activities.

Taken together, these results expand the range of BDNF

modulation of long term plasticity beyond a protein synthesis

dependent manner and provide a strong mechanistic link between

BDNF and PKMf in the maintenance of L- LTP.

Materials and Methods

Ethics Statement
All experiments were approved by the National Institutes of

Health (NIH) Animal Care and Use Committee and followed the

NIH Guidelines ‘‘Using Animals in Intramural Research’’. The

NICHD Animal Use Proposal Number is 07-020.

Animals
Homozygous BDNF knockout mice (KO), and wild type (WT)

littermates were derived from BDNF heterozygous breeding pairs

in C57BL/6 background as described [32].

Western Blotting
Brain tissues or primary neuron cultures were lysed in RIPA

buffer containing (in mM): 50 Tris-HCl (pH 7.4), 150 NaCl, 2

EDTA, 1% IGEPAL, 0.1% SDS, a cocktail of protease inhibitor

(Calbiochem, San Diego, CA) and phosphatase inhibitor (Calbio-

chem, San Diego, CA). Lysates were homogenized by sonication.

Supernatants were collected after centrifugation at 13,200 rpm for
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15 min at 4uC. Protein concentration was measured by Bio-Rad

DC protein assay (Bio-Rad, Hercules, CA). For Western blot

analysis, protein samples were mixed with LDS sample buffer

(Invitrogen, Carlsbad, CA) and separated by Bis-Tris 4–12% gel

(Invitrogen, Carlsbad, CA). Proteins were transferred to a PVDF

membrane by iBlot (Invitrogen, Carlsbad, CA). After blocking in

Tris buffer saline-1% non-fat dry milk for 1 hour, membranes

were probed with rabbit anti-PKMf (C-terminal, 1:500, kindly

provided by Dr. Sacktor Todd) overnight at 4uC. HRP-conjugated

secondary antibody (Pierce, Rockford, IL) was used for detec-

tion in a chemiluminescent system. Glyceraldehydes-3-phosphate

dehydrogenase (GAPDH) (1:10,000, Abcam, Cambridge, MA) or

Tubulin (1:5000, Abcam, Cambridge, MA) was used as loading

control in the same sample. Densitometric analysis was conducted

using ImageJ software (NIH, Bethesda, MD). All experiments were

repeated at least 3 times (n = 3), using independent samples.

Primary Neuron Culture
Primary cortical neurons were cultured from embryos produced

by crossing BDNF heterozygous animals. Each fetus (E18) was

dissected carefully to prevent blood contamination. A tissue chunk

was pinched off for genotyping. Cortices from fetuses of the same

genotype were digested with trypsin, dissociated and plated

together. At DIV 7, vehicle or BDNF (100 ng/ml) was applied

to cultures for 24 hours.

Electrophysiological Recording
Animals (6–10-week old, in C57BL/6 background) were

anesthetized and decapitated. Brains were placed in ice-cold high

Mg2+ artificial cerebrospinal fluid (ACSF) (in mM: 124 NaCl, 26.2

NaHCO3, 1 NaH2PO4, 4.4 KCl, 1.25 CaCl2, 2.6 MgSO4, 10 D-

Glucose) bubbled with 95% O2 and 5% CO2. Transverse

hippocampus slices (400 mm thick) were prepared with a vibrating

microtome (Leica, Germany). The slices were stored submerged in

recording ACSF (124 NaCl, 26.2 NaHCO3, 1 NaH2PO4, 4.4

KCl, 2.5 CaCl2, 1.3 MgSO4, 10 D-Glucose) for 30 minutes at

34uC and 30 minutes at room temperature. Recording was made

in a submersion chamber (30uC, flow rate around 2 ml/min)

perfused with recording ACSF.

Field excitatory postsynaptic potentials (fEPSP) were evoked in

CA1 stratum radiatum by stimulating Schaffer Collateral with a

bipolar tungsten electrode and recorded with ACSF-filled glass

pipettes using an Axoclamp-2B amplifier (Axon Instruments,

Sunnyvale, CA). Recordings with maximal fEPSP less than 1 mV

or with substantial changes in the fiber volley were rejected.

Baseline responses were set to ,40% of maximal response and

were recorded for 15 minutes. Late phase long-term potentiation

was induced by tetanic stimulation, which contains 12 bursts, each

with 4 pulses at 100 Hz and an inter-burst interval of 200 msec.

For pharmacologically induced long-term potentiation, forsko-

lin (50 mM, Sigma, St. Louis, MO) and IBMX (30 mM, Sigma, St.

Louis, MO) were applied in bath for 15 minutes and washed out

with recording ACSF. The myristoylated zeta-pseudosubstrate

peptide (ZIP, 5 mM, myr-SIYRRGARRWRKL-OH, Invitrogen,

Carlsbad, CA) and its corresponding scrambled control peptide

(5 mM, myr-RLYRKRIWRSAGR-OH, Invitrogen, Carlsbad, CA)

were dissolved in Dimethylsulfoxide (DMSO). ZIP and scrambled

ZIP were applied to the bath 1 hour after stimulation.

The initial slope of the fEPSP was measured as an index of

synaptic strength. Data was analyzed by Clampfit 9 (Molecular

Devices, Sunnyvale, CA) and presented as mean 6 s.e.m..
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