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EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide
not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In
this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication
system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics
to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-
time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for
control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with
five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional
video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min,
demonstrating its efficacy and robustness in real-time control.

1. Introduction

Electroencephalogram (EEG) is a noninvasive technique for
measuring electrical potentials from electrodes placed on the
scalp produced by brain activity and some other artifacts such
as Electrooculogram (EOG) and Electromyogram (EMG).
Nowadays, EEG technique has been used to establish portable
synchronous and asynchronous brain-computer interfaces
(BCIs). Noninvasive EEG-based BCIs are themost promising
interface for space applications. They can be classified as
“evoked” or “spontaneous.” An evoked BCI exploits a strong
characteristic of the EEG, the so-called evoked potential,
which reflects the immediate automatic responses of the brain
to some external stimuli. Spontaneous BCIs are based on the
analysis of EEG phenomena associated with various aspects

of brain function related to mental tasks carried out by the
subject at his/her own will.

BCIs offer people with movement disabilities a means
of interaction with their environment by translating brain
activity into device control [1]. Recently, several BCIs have
been developed based on evoked potentials such as P300 and
steady-state visual evoked potential (SSVEP) or based on slow
potential shifts and variations of rhythmic activity [2]. Many
critical issues are faced on the development of a BCI such as
classification accuracy, number of degrees of freedom, and
training process (i.e., how users learn to operate the BCI).
Some researchers have demonstrated that BCI users can learn
to control their brain activity through video games [3, 4].
Therefore, EEG-controlled gaming applications can provide
strong motivation for practicing. In this respect, a main issue
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Table 1: Comparison table of EOG- and video-based eye-tracking techniques.

Criteria EOG electrodes Video-based eye tracking

Intrusiveness Intrusive with electrodes attached to the face (i.e.,
electrodes mounted on the skin around the eye).

Intrusive for cameras attached to glasses; nonintrusive
for cameras mounted independently.

Complexity

(i) Electrodes number reduces the portability of the
technique (many electrodes attached on the face).
(ii) EOG is a simple and easy method to measure eye
movements and it is still commonly used clinically for
testing eye movements in patients.

(i) The algorithm complexity of the image processing
system.
(ii) Calibration is a crucial problem: head distance,
head and pupil range of rotation with respect to sagittal
plane of the body must be estimated (in some case
manual corrections are still needed).

Influence of noise Facial muscles (EMG signal) can be influenced on EOG
signal.

(i) Light: big problem for image processing.
(ii) Head movement: must keep your eyes open and in
the vision field of the camera.
(iii) Hard to use it in real-life application (outside
environment).

Processing time Fast: training or calibration phase needed. Long: training or calibration phase needed; image
processing takes much memory.

Classification
accuracy

High, but related to visual angle, number of electrodes,
and algorithm applied.

High, but related to head angle, user environment, and
algorithm applied.

is how to develop medical and nonmedical games to improve
the robustness of BCIs with the goal of making it a more
practical and reliable technology.

Eye movements and blink artifacts are pervasive prob-
lems in EEG-based BCI research [5]. However, the present
authors feel that these artifacts are actually a valuable source
of information and are useful for communication and control.
In this paper, several participants were tested in different real-
time experiments on different days to examine the variability
and nonstationary nature of EEG signals. This study has
shown that the same control performances can be obtained
via either EOG or EEG signals with using suitable positions
and minimum number of sensors for EEG technique. The
control performances of participants were tested in natural
environment where they were asked to perform the move-
ments of their eyes, body, and head as naturally as possible.

In Section 2, BCI-based medical and nonmedical games,
popular techniques for eye tracking, and hybrid BCIs
based on brain activity and eye movement are reviewed.
In Section 3, materials and methods for developing several
paradigms of real-time experiment are introduced. These
experiments are based on real-time classification and control
with opened and closed eyes using our proposed algorithm
with minimum number of EEG sensors. In Section 4, results
of eye movements’ classification and video game control are
presented. Advantages and disadvantages of the proposed
idea in different scenarios are discussed with detailed aspects
in Section 5. Finally, conclusion and prospects of future work
are given in Section 6.

2. Related Work

2.1. BCI-Based Games. Simple BCI-based games can help
inexperienced users control via brain activity. Games based
on EEG have been designed to increase the intensity or
duration of attention, increase the speed and accuracy of
brain-signal control, and improve other capabilities [2]. Two

types of BCI-based games are frequently seen: medical and
nonmedical games. For medical purposes, Lalor et al. [3]
describe a game intended to improve the concentration
needed to operate a BCI that uses SSVEP. Other medical
games were designed to encourage rapid generation of motor
imagery-based BCI commands and enhance the user’s expe-
rience [4]. For entertainment purposes, several BCI-based
gameswere developed, for example, the one based on popular
video game “Tetris”, playing pinball, and dancing robot [6–8].
Most of these nonmedical games are based on concentration
level of the player [8].

2.2. Eye Tracking. In daily life conversation, eye movements
play an important role in interaction with environment
by indicating a person’s direction and level of attention.
Fortunately, most of handicapped people can still control
their eyes.Thus, eyemovement can be an additional option to
improve their quality of life. Eyemovements can bemeasured
as EOG signals or via cameras and applied to communication
or control systems [9–19]. Bothmethods have their respective
merits and demerits (Table 1).

2.3. Hybrid BCIs. Recent studies have shown that EOG sig-
nals acquired using EEG technique with a minimal number
of EEG sensors around the frontal lobe or ears are practical to
detect and classify eye movements [20–23]. Therefore, brain
activity was not extracted from EEG to be used as additional
information. Hybrid BCIs offer a potentially effective control
for complex systems through the combination of brain- and
non-brain-based activities. Wheelchair control, for example,
requires multiple degrees of freedom and fast intention
detection, making solely EEG-based wheelchair control a
challenge. Each type of BCIs has its limitations, but a hybrid
BCI combines different approaches to utilize the advantages
of multiple modalities [24, 25].

A hybrid BCI combining motor imagery and P300 was
proposed in Li et al. [26]. It was further used to control the
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Figure 1: Real-time experiment for controlling a white ball with opened and closed eyes based on eye movement.

direction and speed of a wheelchair in Long et al. [27]. How-
ever, a fast and accurate design for the stop command and
the forward and backward commands has not been obtained.
Wang et al. [28] proposed asynchronous wheelchair control
with a hybrid EEG-EOG BCI, combining motor imagery,
P300 potentials, and eye blinking. Their experimental results
not only demonstrated the efficiency and robustness of brain-
controlled wheelchair systems but also indicated that the
participants could control the wheelchair spontaneously and
efficiently without any other assistance. However, Wang et al.
used only a single eye movement, eye-blinks. Here, we show
that more than six classes of eye movements can be classified
and used for real-time control, demonstrating the utility of
EOG signals in EEG data. Hereafter we provide explanations
of the experiment paradigm, EEG recording, and real-time
video game control, describe and discuss our classifica-
tion and control results, and then conclude with future
prospects.

3. Materials and Methods

3.1. Experimental Paradigm. Five participants (4 males, 1
female) with a mean age of 26.2 years (standard deviation
(SD): 2.5) were seated in a chair and instructed to watch a
monitor screen located in different positions away at eye level.
All subjects reported normal or corrected-to-normal vision
and had no prior BCI experience. One of them suffers from
Amblyopia (vision problem also called lazy eye). Subjects
participated in a real-time test experiment, followed by an
eye-controlled video game. The real-time test experiment
was created to evaluate the performance of the proposed
algorithm. Participants then played the video game using
eye movements. In this study, classification accuracy was
calculated using the real-time test experiment, and control
performance was evaluated using the video game.

In the real-time test experiment (Figure 1), five partici-
pants were asked to move a white ball to five positions (up,
down, left, right, and center) using eye movements or change
its color by blinking.The participants did not move their eyes
on consistent time interval during control period. Subjects
performed ten runs (10 trials for each eye movement), with
each run lasting 60 s. During the first 10 s, the participants
were asked to fixate a white ball in the center. Then they
were asked to move the white ball to one of the four cardinal
directions (up, down, right, or left) using eye movements.
In the last 10 s, the participants were asked to blink three
times to change the color of the ball from white to yellow.
The participants were asked then to move a white ball to
five positions with closed eyes using voice instructions to
show the feasibility of sending commands in real time by
blind persons for autonomous eye movement based control
systems. After testing the performances of the proposed
algorithm in this real-time experiment, the participants were
able to play a video game during 20 minutes using eye
movements without any training or calibration phase. In
real-time control of video game, the subjects can move their
head position and direction and watched the motion of both
a game character and meteors in various timings. Figure 2
shows the experiment framework and electrode positions for
eye-controlled gaming.

3.2. EEG Recording. EEG signals were acquired during real-
time experiments using a g.USBamp system (g.tec medical
engineering, Austria) at a sampling frequency of 256Hz.
Two EEG electrodes were applied on the upper area behind
the left and right ears (Figure 2). This proposed position
was favorable because it was not obstructed by hair and
allowed for capture of EOG without the discomfort that
might occur with electrodes on the face. A clip electrode
was attached to the right earlobe as reference and ground
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Figure 2: Setup for EEG recording and game control.

electrode was placed on the forehead. To prevent muscle
artifacts, participants were asked to avoid strong blinking and
head movements.

An 8th-order Butterworth band-pass filter with a lower
cut-off frequency of 0.5Hz and an upper cut-off frequency
of 100Hz was applied to the recorded signals. A 4th-order
48–52Hz notch filter was used to suppress 50Hz power-line
noise.

3.3. Classification Algorithm. After recording the EEG signals
from right and left hemispheres, a real-time algorithm was
applied to distinguish between six classes: blink, center, right,
left, up, and down. Signal data were sent from the amplifier
to the computer in 1 s blocks.The EEG signals were separated
into low and high frequency components to separate EOG
activity from brain activity (1). Thus, 4th-order Butterworth
high and low pass filters with cut-off of 10Hz were used to
decompose EEG signals into two frequency bands: low [0.5–
10Hz] and high [10–100Hz]. For preprocessing phase, the
baseline artifact was corrected by subtracting the smoothed
signal with its mean (2). In the current study, EOG signal and
eye-blink artifact included in observed EEG signal were used
as valuable sources of information:
EEG (𝑡)Observed = EEG (𝑡)source + EOG (𝑡) + EMG (𝑡)

+ Artifacts,
(1)

𝑋
𝑖
= (EEG

𝑖
− 𝜇 (EEG (𝑛𝑇))) ,

EEG
𝑖
= EEG (𝑖𝑇) ,

𝜇 (EEG (𝑛𝑇)) =
𝑛

∑
𝑖=1

EEG (𝑖𝑇)
𝑛
,

(2)

where 1/𝑇 is sampling frequency of the EEG signal (𝑡 = 𝑛𝑇,
𝑛 = 1, 2, . . . , 256). After baseline correction, two signals 𝑌

1

and𝑌
2
were calculated (3).𝑌

1
maximized themargin between

classes left and right by using the difference between the
left (𝑋

𝐿,EEG) and right (𝑋
𝑅,EEG) electrode signals. 𝑌2 distin-

guished between classes up and down using the smoothed
sum of the two electrodes. A real-time detection was added
before classification phase because the length of time interval
of eye movements was not fixed. The length of time interval
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was varying depending on each trial of natural eyemovement
and control timing for each participant (Figure 3):

𝑌
1
= 𝑋
𝐿,EEG − 𝑋𝑅,EEG,

𝑌
2
= 𝑋
𝐿,EEG + 𝑋𝑅,EEG.

(3)

In our previous work [20], we tested an offline algorithm
for classifying between eye movements in four cardinal
directions using area under the curve for signals 𝑌

1
and 𝑌

2
.

Thenwe added features for online discrimination between six
classes of eye movements [21]. Signals corresponding to each
eye orientation have a specific shape (Figure 3), and the blink
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Figure 4: Control flowchart for the real-time eye-controlled game.

pulse is similar to a Gaussian pulse. The wavelet scalogram
was used for detection phase of eye movement. We applied
a continuous wavelet transform on signals 𝑌

1
and 𝑌

2
. For 𝑎

scale parameter, 𝑎 > 0, and position, 𝑏, the CWT is

EEG
𝑎,𝑏 (𝜔) = 𝐶𝑎,𝑏 = ∫

1 s

0

EEG (𝑡) 𝜓𝑎,𝑏 (𝑡) 𝑑𝑡,

𝜓
𝑎,𝑏 (𝑡) =

1

√|𝑎|
𝜓
∗
(
𝑡 − 𝑏

𝑎
) ,

(4)

where 𝐶
𝑎,𝑏

is the continuous wavelet transform coefficients,
𝑎 is positive and defines the scale, 𝑏 is any real number
and defines the shift, 𝜓

𝑎,𝑏
(𝑡) is a wavelet function of Haar,

∗ denotes the complex conjugate, and EEG(𝑡) is 𝑌
1
or 𝑌
2

signal. CWT is a real-valued function of scale and position
because the signal EEG(𝑡) is real-valued. By continuously
varying the values of the scale parameter, 𝑎, and the position
parameter, 𝑏, we obtained the wavelet coefficients. Then the
wavelet scalogram was obtained by computing:

𝑆 = |coefs ∗ coefs| ,

𝐸 = ∑𝑆 (:) ,
(5)

where coefs is the CWT coefficients, 𝑆 is the energy for
each wavelet coefficient, and 𝐸 is the energy of the wavelet
coefficients for 1 s. For both 𝑌

1
and 𝑌

2
signals, area under the

curve of the positive and negative peaks was used for feature
extraction. The area was calculated over a 200-ms window
centered on the position of maximum wavelet coefficient
using the trapezoidal method. The waves were situated in
between the maximum wavelet coefficient.

Hierarchical classification was used to discriminate
between patterns obtained from 𝑌

1
and 𝑌

2
signals. Fixed

thresholds for four features, maximum wavelet coefficient,
area under the curve, amplitude, and velocity, were set prior
to the real-time experiments by calculating their means
and standard deviations based on our previous studies [20,
21]. The classification results were converted into vectors to
produce binary outputs. These outputs were used to move a
cursor on a screen and control a video game.

3.4. Eye-ControlledGame. Todemonstrate the efficacy of eye-
based control in real world applications, we created a simple
game.The gamewas an obstacle evasion 2D platformer game.
In the game, a character had to run in two directions to avoid
being hit by falling meteors which appeared in semirandom
sequences on a closed stage. The character’s movement was
controlled with the player’s eye movements (Figure 4).

The implementation of the game was divided into two
modules, the EEG signal classification module and the
graphic game module. The EEG signal classification module
was implemented in MATLAB (MathWorks, Natick, MA),
the graphic game module was implemented using the Unity
4 game development ecosystem (Unity Technologies, San
Francisco, CA), and the game’s logic was written in C#. The
twomodules interfaced with each other via TCP/IP protocol.

3.5. Character’s Movement Mechanism. The classification
module was capable of discriminating between 6 eye move-
ment classes (left, right, center, up, down, and blink). How-
ever, the video game required only 3 commands: “left,”
“right,” and “idle,” so the left and right classes were mapped
to their respective commands and the remaining classes were
mapped to the “idle” command.The character’s direction and
speedwere defined by the sign andmagnitude of a unit vector,
respectively. Initially, the vector was set to 0, so the character
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Table 2: Vocabulary of real-time commands for eye-controlled gaming.

EEG signal Character action
Command 1 Eyes moving to the up position and then returning back Stop
Command 2 Eyes moving to the down position and then returning back Stop
Command 3 Eyes moving to the left position and then returning back Move at the left side
Command 4 Eyes moving to the right position and then returning back Move at the right side
Command 5 Blinking Stop
Command 6 No eye movement (fixation) Stop
Command 7 Two successive similar movements of eyes to the left or right direction Increase the speed
Command 8Two successive opposite movements of eyes such as moving to the left then right position or vice versa Decrease the speed

stood still when the game started. A positive vector made
the character move to the right, and a negative vector made
it move to the left. Left commands from the classification
module decreased the vector magnitude by 0.1 units, while
right commands increase the magnitude by 0.1 units. The
character’s speed changed by increasing or decreasing a fixed
magnitude for character’s acceleration. Commands were
received discretely every 1 s to control the character’s motion
continuously. So the character’s movement direction was
determined as the dominant command in a given command
sequence window.This approach was used to compensate the
natural sudden change in eye movement direction when the
eyesmove back to the center position.The idle commandwas
different from the movement commands in that the vector
magnitude was set to 0 immediately after the idle command
was received, allowing the character to stop when the player
intended with no delay. The maximum speed of the meteors
was defined by a vector of units 0.1, and the initial speedwas 0.
Acceleration downwards was defined as a vector of units 0.01.
The number of meteors was semirandomized, but no more
than 5 appeared at one time. There were 5 meteors release
points lined up evenly across the top of the screen (Figure 4).
Each point had its own set of semirandomized release times
and delay values. We set the values to release, on average,
3 meteors per repetition. Difficulty was controlled by the
number of meteors and their speed. Therefore, classification
accuracy was based on stopping and moving the character
and not on avoidance of the meteors. Table 2 summarizes the
actions to be performed by the character shown in Figure 3
corresponding to each eye movement.

3.6. Evaluation Criteria. The performance of the proposed
algorithm was evaluated in the real-time experiments by
calculating the classification accuracy for six and three classes
based on success or failure to move the ball or character to a
desired direction, respectively. For control of the video game,
precision, sensitivity, and specificity were calculated for three
classes (right, left, and idle) such that

Precision = TP
TP + FP

× 100,

Sensitivity (Recall) = TP
TP + FN

× 100,

Specificity = TN
TN + FP

× 100,

(6)

Table 3: Confusion matrix of the six classes and accuracies
(rounded %) averaged across all participants.

Up Down Right Left Center Blink
Up 42 14 0 2 28 14
Down 6 50 0 0 24 20
Right 0 0 96 4 0 0
Left 0 0 0 100 0 0
Center 4 0 0 2 88 6
Blink 0 0 6 4 2 88

Table 4: Confusion matrix of the five classes and accuracies
(rounded %) averaged across all participants with closed eyes.

Up Down Right Left Center
Up 65 5 0 10 20
Down 12 46 19 15 8
Right 0 0 98 2 0
Left 0 0 2 97 1
Center 4 1 0 0 95

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives.

4. Results

Calculating 𝑌
1
and 𝑌

2
resulted in unique signatures for each

class (Figure 3) which could be exploited for classification.
Table 3 shows a confusion matrix of the six classes and accu-
racies averaged across five participants (16.67% chance level).
All participants demonstrated reliable control of the white
ball in the first experiment, achieving an average accuracy
of 77.33 (SD: 2.52%). The proposed algorithm showed high
classification accuracy for right, left, center, and blink classes
using 0% of the data for training or calibration phase and
100% of the data for testing.

We used a one-way ANOVA to evaluate real-time classi-
fication results of the six eye movement classes among par-
ticipants. No significant differences were observed between
participants for accuracy (𝐹(4, 25) = 0.06, 𝑃 = 0.993).

Table 4 shows a confusion matrix of the five classes
(up, down, left, right, and center) and accuracies averaged
across five participants with closed eyes using the same
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threshold values. All participants resulted in almost the
same classification accuracy with opened or closed eyes,
achieving an average accuracy of 80.2% (SD: 1.87%) using
auditory feedback with closed eyes (20% chance level) with
no significant difference between participants (𝐹(4, 20) =
0.08, 𝑃 = 0.989).

We observed that classification accuracies using closed
eyes of “center” and “up” classes were increased compared
to the case of using opened eyes. This accuracy difference
between up class in the case of “opened eyes” and “closed
eyes” is due to similarity of the wave shape of “up direction”
and “eye-blink” signals. The “up” and “blink” classes were
combined in one class in eye-closed experiment. Therefore,
the classification accuracy of up class was increased. The
accuracy of center class was also increased because there is
no noise related to the visual information. The algorithm
showed a high accuracy and robustness using a single trial
for controlling the white ball in real time in the opened-
and closed-eyes situations with no significant difference
between all users using the same thresholds values for all of
them. The participant with Amblyopia disease showed the
lowest classification accuracy compared to others due to the
difficulty in moving his eyes correctly.

In real-time control of video game, the subjects can
move their eyes position and direction and watched the
motion of game character andmeteors in the various timings.
Table 5 shows precision, sensitivity, and specificity for each
participant.These values were calculated based on accuracies
(Table 2), with up, down, center, and blink classes considered
as the idle class. Average sensitivity was over 90%, and
participant 3 achieved an accuracy of around 100% using a
single trial to make decision. No significant differences were
found between participants for accuracy (𝐹(4, 10) = 1.23,
𝑃 = 0.359), sensitivity (𝐹(4, 10) = 0.63, 𝑃 = 0.653), or
specificity (𝐹(4, 10) = 0.94, 𝑃 = 0.478).

Response speed and timing are also important in full con-
trol of a BCI. Using serial communication, the classification
algorithm processed 60 bits/min, but the control algorithm
processed the first bit and ignored the second. Therefore, the
bit rate for controlling the video game was 30 bits/min. The
proposed algorithm was useful in classification accuracy and
time-saving because the main problem faced by real-time
application is the computing and processing time.

5. Discussion

In this study, subjects were able to perform real-time control
of an interface using six eyemovements andplay a video game
with three eye movement based commands. Because the
resting position of human eyes is forward-facing, we return
our eyes back to the center position after looking at any other
direction. This action would have resulted in classifications
opposite to the intended direction and, in turn, adversely
affect interface control. To solve this problem, the game
character’s movements did not follow the commands sent
from classification module verbatim. The movement of the
character was defined as a unit vector of acceleration along
𝑥-axis, with “right” being positive values and “left” being

Table 5: Precision, sensitivity, and specificity values (rounded%) for
each participant during real-time game play.

Right Idle Left
Participant 1 (M) 100/90/100 95/100/100 70/100/94
Participant 2 (M) 83.3/100/95.9 92.5/97.4/100 90.9/100/97.9
Participant 3 (M) 100/100/100 100/100/100 100/100/100
Participant 4 (F) 90.9/100/98 95/100/95.3 90.9/100/98
Participant 5 (M) 100/90.9/100 100/100/100 90.9/100/97.5

negative values. Movement commands gradually increased
the acceleration value in the intended direction. This tech-
nique reduced the effect of the eyes returning to the center
position. For the “idle” or stop command, which required
an immediate response, themovement vector magnitude was
immediately returned to zero to stop the character stop as
soon as the player intended.

For classes up and down, even though the two sensors
were located at the same points behind the right and left ears,
wewere able to obtain discriminable EOGactivity.We believe
that the eyes did not move at mirrored angles across the
central axis.This dissimilarity likelymade detection of up and
down directions possible and was amplified by calculating
𝑌
2
. Table 6 summarizes the advantages and disadvantages of

the proposed robust real-time control system based on EEG
signal.

Since the magnitude of the electrical signal generated by
the eye movement depends on the angular velocity, many
researchers have used a big visual angle of between 30∘
and 45∘ to get a high accuracy for detecting the directions
or positions of the eye movement [12, 29–33]. This large
visual angle is not suitable for daily life applications because
it leads almost immediately to eye fatigue, exhausting the
user. Comparing the real-time results using opened eyes
from this study with those of our previous offline and
online classificationwork [20, 21], we found that classification
accuracy using a small visual angle decreased from almost
90% to 77%. This was likely due to the complexity of the
real-time application, environment conditions, and users’
behavior. The participants were asked to make themselves
comfortable and perform the movements as naturally as
possible. There were instances where eye movements were
misclassified, but the signal data showed no serious influence
by head or body movements. Although future versions of
the proposed algorithm would benefit from an automatic
thresholding subroutine instead of a calibration phase, results
showed that the current algorithm holds promise in real-time
applications.

Through this work, we can help not only handicapped
people but also the blind persons to use their eye movements
using voice commandswith auditory feedback for controlling
smart-home applications. For able-bodied users, the idea
of sending commands with closed eyes can decrease the
fatigue issue related to rich detailed visual environments. In
some special eye movement based applications, the visual
information can be replaced by information from the tactile,
olfactory, or auditory senses such as the case of reducing or
increasing the room temperature and the volume of music.
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Table 6: Advantages and disadvantages of eye movements classification based on EEG signal.

Criteria Advantage Limitation

Visual angle

A small visual angle between 5∘ and 10∘ was used to decrease fatigue
issue (a large visual angle of 30∘ or more is required to detect eye
movement in most research using EOG signals. This large visual
angle leads almost immediately to eye fatigue, exhausting the user).

It becomes difficult to detect eye
movements if the visual angle is less than
5∘.

User
Several participants were tested (offline [20], online [21], and in
different real-time experiments in this study) on different days to
examine the variability and nonstationary nature of EEG signals.

Absence of testing the proposed
algorithm on handicapped users.

Sensors
position &
number

(i) The position of sensors around the ears is more robust to muscles
activity noise (body or head movements do not influence so much the
classification accuracy).
(ii) Two temporal EEG sensors were used (4 attached sensors on the
face are used as minimum requirement to get good classification
accuracy in EOG technique).

A low-cost wireless device based on the
proposed idea is not yet developed.

Comfort and
portability

The most suitable sensors position for daily life applications to record
eye movements compared with EOG sensors (the sensors can be
attached to the end of the glasses arms (temples), headset, and
headband).

Less comfort [21].

Real-time
classification

(i) Single trial was used for real-time classification.
(ii) No training or calibration phase was added before real-time
classification (fixed and common thresholds for all subjects were
used).
(iii) No fixed time interval for eye movements (the user is free to
move his/her eyes and send commands at any moment).
(iv) Six classes were distinguished using a linear clarifier.
(v) Eye movements were detected and classified in open- and
closed-eyes cases.
(vi) The proposed algorithm was tested in several real-time scenarios.

Using average or loop to make a decision
or machine learning methods can
improve the classification accuracy but
decrease the response time [9–13, 29].

Real-time
control

(i) Asynchronous control (the user can send commands even with
closed eyes using noninvasive technique).
(ii) The classification results were used for full control of continuous
character’s movement in 2D video game.
(iii) The bit rate for controlling the video game was 30 bits/min.

For each application, we need to develop
an interface between classification results
and the controlled device.

Classification
accuracy

Classification accuracy with chance level of 16.67% was greater than
70%, the suggested minimum for reliable BCI control with chance
level of 50% [34].

As same as EOG technique [20].

We sought to contribute to the development of noninvasive,
asynchronous, and hybrid BCIs combining brain activity
and eye movements. This kind of BCI could offer utility in
daily life applications and practical machine control. Though
most approaches in the BCI field focused solely on brain
activity, we see an opportunity for advancement of this field
by combining EEG and EOG. This approach could be used
to assist both able-bodied and disabled persons with high
efficiency compared to existing BCIs.

6. Conclusions

This paper presented asynchronous and robust real-time
control of a video game through eye movements detected
using two temporal EEG sensors.The algorithmwas designed
for multiclass control in a visually elaborate immersive 2D
game. Results of the study indicated that successful multiclass
control is possible using suitable position of sensors to detect
and classify eye movements in opened- and closed-eyes
situations.

In the near future, for rehabilitation, medical therapy,
and entertainment, we would like to design portable, non-
invasive, and asynchronous hybrid EEG-EOG-based games
and smart-home applications using minimum number of
wearable wireless sensors.
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