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Background and aims: The exact function of Phosphatidylinositol Glycan

Anchor Biosynthesis, Class C (PIGC) gene has yet to be elucidated. In the

study, we attempted to clarify the correlations of PIGC to prognosis and tumor-

infiltrating lymphocytes in hepatocellular carcinoma (HCC).

Methods: PIGC expression was analyzed via the Oncomine database, Gene

Expression Profiling Interactive Analysis, Hepatocellular carcinoma data base,

Human Protein Atlas database and Tumor Immune Estimation Resource

(TIMER). We showed the correlation of PIGC with the clinical characteristics

using UALCAN. We evaluated the influence of PIGC on clinical prognosis using

Kaplan-Meier plotter databases. And co-expressed genes with PIGC and its

regulators were identified using LinkedOmics. The correlations between PIGC

and cancer immune infiltrates were investigated via TIMER. We analyzed the

drug sensitivity and immunotherapy response via R package.

Results: PIGC was found up-regulated in tumor tissues in multiple HCC

cohorts, also increased in HCC patient with different clinical characteristics.

High PIGC expression was associated with poorer overall survival. PIGC

expression showed a strong positive association with the expression of

ACBD6, a strong negative association with AGXT212. The cell components

and distribution in treatment and non-treatment of HCC patients were quite

distinct, which may reveal the relationship between the immunotherapy with

tumor microenvironment. Notably, PIGC expression was positively correlated

with infiltrating levels of immune cells.

Conclusion: These findings suggest that PIGC is correlated with prognosis and

immune infiltrating in HCC, which can be used as a prognostic biomarker for

determining prognosis, laying a foundation for further study of the immune

regulatory role of PIGC in HCC.
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Introduction

According to the International Agency for Research on

Cancer (IARC), hepatocellular carcinoma (HCC) accounts for

approximately 90% of all cases of primary liver cancer and is

the third leading cause of cancer related deaths (8.3% of the

total number of deaths by cancer) (Cancer IAfRo, 2020). Due to

the high rate of recurrence and metastasis, the 5-year survival

rate for patients with advanced HCC is poor. Existing drugs are

all associated with unsatisfactory efficacy; this is due to a

combination of factors spanning an array of different

clinical and biological behaviors and the development of

anti-HCC drug resistance. There is a clear need to identify

novel targets that are critical for carcinogenesis and exploit

these as therapeutic interventions to sustain the numerous

innovations we have witnessed in patient care. Although

previous studies have provided important insights relating

to the molecular mechanisms of HCC, our understanding of

HCC is still lacking. Several pathways and processes have been

implicated in the progression of HCC, including telomere

maintenance, the Wnt/β-catenin pathway, the inactivation

of p53 and alterations in the cell cycle, chromatin

remodeling complexes and epigenetic regulators (Llovet

et al., 2016). The molecular mechanisms underlying tumor

formation and progression are poorly understood, thus further

complicating the effective treatment of HCC. It is also

imperative to investigate the molecular mechanisms

underlying HCC to develop new methods for the prevention

and therapy of HCC.

Glycosylphosphatidylinositol (GPI) anchoring is a post-

translational modification that tethers proteins to the plasma

membrane and is thought to play a role in protein sorting and

trafficking. In mammals, there are over 150 GPI-anchor

proteins (GPI-APs), including receptors, adhesion molecules

and enzymes. GPI-APs are functionally diverse and play vital

roles in signal transduction, immune response, cancer cell

invasion and metastasis, as well as the pathophysiology of

parasites (McKean and Niswander, 2012; Tsai et al., 2012;

Park et al., 2013). GPI-AP synthesis is divided into three

steps: GPI biosynthesis, protein-attachment to GPI (trans-

amidation), and GPI-AP remodeling. This complex process

is performed by 15 enzymes that are encoded by at least

26 phosphatidylinositolglycan (PIG) genes, of which 22 PIG

genes are involved in the GPI-core preassembly and following

attachment to the protein (Kinoshita, 2014; Guerrero et al.,

2019). In the current study, we focus on the

Phosphatidylinositol Glycan Anchor Biosynthesis, Class C

(PIGC) gene which encodes for a subunit of GPI-GlcNAc

transferase (GPI-GnT) enzyme. The PIGC gene is located on

chromosome 1 (1q24.3); the translated protein is composed of

297 amino acids and is localized to the endoplasmic reticulum

(ER). Even though the exact function of PIGC has yet to be

elucidated, it appears to be a crucial subunit of GPI-GnT, since

PIGC effectively rescues yeast homologue GPI2 absence (GPI

biosynthesis defect class C). PIGC is over-expressed in breast

cancer according to the Human Protein Atlas and cancer

genomics databases (Ponten et al., 2009; Gao et al., 2013;

Armanios et al., 2018). Finally, previous research has

identified single nucleotide polymorphisms (SNPs) in the

PIGC gene in patients with HCC, which screened the genes

with differentially expressed splicing variants between HCC and

adjacent non-cancerous tissues, PIGC included (Liu et al.,

2017).

In this present study, we comprehensively analyzed the

expression of PIGC and correlated this data with the prognosis

of cancer patients in databases such as Oncomine, Gene

Expression Profiling Interactive Analysis (GEPIA), UALCAN

and Kaplan-Meier plotter (KM plotter). We also investigated

the correlation between PIGC and tumor-infiltrating immune

cells in different tumor microenvironments via the Tumor

Immune Estimation Resource (TIMER). The findings in this

report shed light on the important role of PIGC in colorectal

cancer with HCC and highlights the potential relationship and an

underlying mechanism between PIGC and tumor-immune

interactions.

Materials and methods

The expression of PIG genes in various
cancers

GEPIA (http://gepia.cancer-pku.cn/) is a newly developed

interactive web server for analyzing the RNA sequencing

expression data of 9,736 tumors and 8,587 normal samples

from the TCGA and the GTEx projects. In this study, we

analyzed the expression levels of PIG genes in various cancers

using the GEPIA.

The expression of PIGC in HCC and
normal tissues

Hepatocellular carcinoma database (HCCDB) (http://

lifeome. net/database/hccdb) serves as a one-stop online

resource for exploring HCC gene expressions. And

Oncomine contains 65 gene expression datasets comprising

nearly 48 million gene expression measurements form over

4,700 microarray experiments. The expression levels of PIGC

mRNA in HCC and normal tissues were analyzed in the
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HCCDB and Oncomine database. The copy number of PIGC in

HCC and normal tissues was also analyzed in the Oncomine

database.

The Human Protein Atlas (HPA) (https://www.proteinatlas.

org/) is a program with the aim to map all the human proteins in

cells, tissues, and organs using an integration of various omics

technologies, including antibody-based imaging, mass spectrometry-

based proteomics, transcriptomics, and systems biology. The

expression levels of PIGC protein in HCC and normal tissues

were analyzed in immunohistochemistry images retrieved

from the HPA.

The relationship between PIGC expression
and the clinical characteristics of patients
with HCC

UALCAN is a user-friendly, interactive web resource for

analyzing cancer transcriptome data. In this study, we

performed sub-group analysis of the multiple clinico-

pathological features of The Cancer Genome Atlas Liver

Hepatocellular Carcinoma (TCGA-LIHC) samples using the

UALCAN database (http://ualcan.path.uab.edu/index.html).

PIGC mRNA expression in cancer was separately analyzed

with patient characteristics of sample types, individual cancer

stage, age, histological subtype, race, gender, and tumor grade

compared to the normal liver tissue expression. The statistical

analysis between two variables was performed by unpaired

t-test, and one-way ANOVA analysis was performed for more

than two variables.

The relationship between PIGC expression
and the survival of patients with HCC

The KM plotter can investigate the effect of 30,000 genes

on survival in 21 different types of cancer, including breast,

lung, ovarian, gastric, liver and pan-cancer. In the present

study, the correlation between PIGC expression and survival

in HCC patients was analyzed by the KM plotter (http://

kmplot. com/analysis/). We also computed the hazard

ratio (HR) with 95% confidence intervals and log-rank

p-values.

The profile of PIGC mutations in HCC

The cBio Cancer Genomics Portal (the cBio portal) (http://

cbioportal.org) is an open-access resource for interactive

exploration of multidimensional cancer genomics data sets,

currently providing access to data frommore than 5,000 tumor

samples from 20 cancer studies. The profile of PIGCmutations

in HCC was analyzed using the cBio Portal tool.

Performed a co-expression networks
in HCC

LinkedOmics is a publicly available portal that includes

multi-omics data from all 32 the Cancer Genome

Atlas(TCGA) cancer types. This portal also includes mass

spectrometry-based proteomics data generated by the Clinical

Proteomics Tumor Analysis Consortium (CPTAC) for TCGA

breast, colorectal and ovarian tumors. In the present study, we

used the online LinkedOmics database to identify genes that were

significantly correlated with PIGC in HCC. Spearman’s method

was used to determine the correlation. Further, we selected

enrichment analysis to reveal the co-altered genes signaling

pathway in HCC of the LinkedOmics. Program is running,

and 1,000 simulations were performed. We used

overrepresentation enrichment analysis (ORA) and gene set

enrichment analysis (GSEA) as tools, and selected criteria

FDR<0.05, positively correlated.

Correlation between PIGC and the tumor
immune microenvironment

Tumor Immune Single Cell Hub (TISCH) (http://tisch.

comp-genomics.org) collected data from Gene Expression

Omnibus (GEO) and ArrayExpress to formulate its scRNA-

seq atlas. TISCH includes 79 databases and 2,045,746 cells

from both tumor patients and healthy donors. The dataset

was uniformly processed to enable clarifying components of

the TME at both single-cell and annotated cluster levels. In

this work, we derived from TISCH to decipher the Tumor

Immune Microenvironment (TME) heterogeneity of HCC

sites at single cell level, and found the correlation between

PIGC and the TME.

The correlation of PIGC expression with
immune infiltration level in HCC

TIMER is a comprehensive resource for the systematic

analysis of immune infiltrates across a diverse array of cancer

types (https://cistrome.shinyapps.io/timer/). The TIMER

database includes 10,897 samples across 32 cancer types from

TCGA to estimate the abundance of immune infiltrates. We

analyzed the expression levels of PIGC in different types of cancer

and the correlation of PIGC expression with the abundance of

immune infiltrates, including B cells, CD4+ T cells, CD8+ T cells,

neutrophils, macrophages, and dendritic cells, via gene modules.

In addition, correlations between PIGC expression and gene

markers of tumor-infiltrating immune cells were investigated

via correlation modules. The gene markers of tumor-infiltrating

immune cells included markers of CD8+T cells, T cells (general),

B cells, monocytes, tumor-associated macrophages (TAMs),
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classically activatedmacrophages (M1macrophages), alternatively

activated macrophages (M2 macrophages), neutrophils, natural

killer (NK) cells, dendritic cells (DCs), T-helper 1 (Th1) cells,

T-helper 2 (Th2) cells, follicular helper T (Tfh) cells, T-helper 17

(Th17) cells, Tregs, and exhausted T cells. These gene markers

were described in previous studies (Sousa and Maatta, 2016;

Danaher et al., 2017; Siemers et al., 2017).

The online database GEPIA was used to further confirm the

significantly correlated genes inTIMER.Gene expression correlation

analysis was performed for given sets of TCGA expression data.

Analysis involved both tumor and normal tissue datasets.

Drug sensitivity and immunotherapy
response analysis

CellMiner is a web resource that provides tools for the

acquisition and analysis of quality-controlled NCI-60 data.

CellMiner tools allowed rapid data retrieval of transcripts for

22,379 genes and 360 microRNAs along with activity reports for

20,503 chemical compounds including 102 drugs approved by the

US Food and Drug Administration. We got the RNA-sequencing

and compound activity, and analyzed the prediction of drug

sensitivity via R package.

Also, RNA-sequencing expression profiles and

corresponding clinical information for HCC were downloaded

from the TCGA dataset to analyze the immunotherapy response.

Potential immune checkpoint blocksde (ICB) response was

predicted with TIDE algorithm.

Statistical analysis

Gene expression data from the Oncomine database were

analyzed using p-values, fold changes, and ranks. Survival curves

were produced by KM plots and the GEPIA database.

Correlations of gene expression or immune signature score

were determined in the TIMER and GEPIA databases using

Spearman’s correlation analysis. The threshold of p <
0.05 indicates the significance of correlation.

Results

The expression of PIG genes in various
cancers

We analyzed the expression levels of PIG genes in 33 different

types of human cancer and their paired normal tissues and

compared this data with expression data retrieved from a

combination of TCGA and GTEx data using GEPIA tools. Of

the 22 genes, PIGC、PIGT、PIGU、PIGY、GPAA1 exhibited

significantly higher expression level of 33 cancer types(Figure 1).

The expression of PIGCmRNA and protein
in HCC

HCCDB database analysis demonstrated the increased

expression levels of PIGC mRNA in 11 cohorts of 12 HCC

patient cohorts when compared to narmal tissues (Figure 2A).

Then, we examined the mRNA expression of PIGC in different

datasets. An Oncomine box plot showed that the PIGC mRNA

levels were significantly higher than those in normal tissues by

the data from Roessler Liver (p < 0.001), Roessler Liver2 (p <
0.001), Wurmbach Liver (p < 0.001) (Figure 2B), and copy

number in HCC were also significantly higher than those in

normal tissues by the data from Guichard Liver (p < 0.001),

Guichard Liver2 (p < 0.001) (Figure 2C). Next, we sought to

verify this trend at the protein level between HCC and normal

tissue. Analysis of immunohistochemistry data from The Human

Protein Atlas showed that 10 out of 11 HCC patient samples

exhibited moderate or weak staining signals, whereas normal

Hepatocytes in healthy liver tissue did not exhibit detectable

levels of PIGC expression (Figure 2D).

The association between PIGC expression
and the clinical characteristics of patients
with HCC

Next, we investigated the association between PIGC mRNA

expression and the clinical characteristics of HCC patients using

TCGA data and UALCAN. Compared to the normal tissue, the

expression levels of PIGC were higher regardless of the type of

sample (normal, primary tumor), patient gender (male, female),

patient age (20–40 years, 41–60 years, 61–80 years, and

81–100 years), patient race (Caucasian, African-American, and

Asian), individual cancer stages (S1, S2, S3, and S4), and tumor

grade (G1, G2, G3, G4). We found that PIGC expression was

highest in the early age group (21–40 years) of HCC patients

when compared to any other age group and that PIGC expression

in the females and the Asian was higher than all other genders

and races. The expression levels of PIGCmRNA were also higher

in all individual cancer stages, but particularly in stage 3. In terms

of tumor grading, the expression of PIGC was significantly up-

regulated in all tumor grades, particularly grade 3 (Figure 3).

The correlation between PIGC expression
and the survival of patients with HCC

To better understand the relevance and underlying

mechanisms of PIGC expression in cancer, we investigated the

specific relationship between PIGC expression and the clinical

characteristics of HCC patients in KM plotter databases. The

patients were separated into two groups according to the

expression levels of PIGC mRNA. Generally, Kaplan-Meier
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analysis showed that the high PIGC expression group had a

significantly shorter overall survival (OS) (log rank test, p =

0.00077) (Figure 4A), recurrence free survival (RFS) (log rank

test, p = 0.021) (Figure 4B), progression free survival (PFS) (log

rank test, p = 0.0021) (Figure 4C), and disease free survival (DFS)

(log rank test, p = 0.01) (Figure 4D). The overexpression of PIGC

was significantly associated with a worse OS and PFS in male and

female patients (p < 0.05). Furthermore, high levels of PIGC

mRNA expression were correlated with a worse OS in stage 1 and

stage 3, but were not associated with the PFS of stage 1, stage 2,

and stage 3. Specifically, high levels of PIGC mRNA expression

were correlated with a worse OS in grade 1, grade 2 and grade 3,

with a worse PFS for grade 1and grade 2, but were not associated

with the PFS of grade 3 (Table 1).

PIGC mutation in HCC

We logged on to the cBio Portal website to explore the

mutation rate of PIGC. As shown in Figure 5A, the mutation

rate of PIGC is 6% in patients with HCC based on the data from

TCGA-LIHC. Moreover, the styles of genetic alteration included

the missense mutation, splice mutation and

amplification(Figures 5A, B). Furthmore, Kaplan-Meier

FIGURE 1
PIG genes expression in various cancers.
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analysis showed that the PIGCmutation group had a significantly

shorter OS (log rank test, p < 0.001) and DFS (log rank test, p <
0.01) (Figure 5C).

The co-expression of genes with PIGC
in HCC

Next, we investigated genes that were co-expressed with

PIGC in HCC using LinkedOmics. Figure 6A shows a heat

map of the top 50 genes that were positively and negatively

correlated with PIGC expression. PIGC expression showed a

strong positive association with the expression of ACBD6

(positive rank#1, r = 0.6622, p < 0.001), VPS72 (r = 0.6501,

p < 0.001), and YY1AP1 (r = 0.6384, p < 0.001). Furthermore,

PIGC expression levels showed a strong negative association with

AGXT212 expression levels (r = -0.4911, p < 0.001),

CPT2 expression levels (r = -0.4818, p < 0.001), and HMGCL

expression levels (r = -0.4796, p < 0.001).

And, GO analysis was performed with PIGC using the ORA

tool to analyze functionality in biological processes, cellular

components and molecular functions. PIGC and positively

correlated genes were mainly related to the establishment of

protein localization to endoplasmic reticulum, cytosolic small

ribosomal subunit, and DNA-dependent ATPase activity,

respectively. KEGG pathway analysis revealed enrichment in

FIGURE 2
The PIGC Expression in HCC (A) The mRNA expression levels of PIGC in HCC using the HCCDB database. (B) the mRNA expression of PIGC in
Roessler Liver dataset, Roessler Liver two dataset and Wurmbach Liver dataset. (C) the copy number of PIGC in Guichard Liver dataset and Guichard
Liver two dataset. (D) the PIGC protein expression of tumor samples in the immunohistochemistry data from The Human Protein Atlas.
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the ribosome(Figure 6B). With regards to GSEA analysis, PIGC

and positively correlated genes were mainly related to the

regulation of chromosome segregation, chromosomal region,

structural constituents of the ribosomes and

spliceosome(Figure 6C).

Correlation between PIGC and the tumor
immune microenvironment

We used four datasets (LIHC_GSE125449,

LIHC_GSE140228_10X, LIHC_GSE140228_smartseq2 and

FIGURE 3
The relationship of PIGC Expression with Clinical Characteristics of HCC Patients based on gender, age, and other criteria (UALCAN).
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LIHC_GSE98638) of the TISCH database to evaluate PIGC

expression in TME-related immune cells. In

LIHC_GSE98638 dataset, PIGC expression level remains the

highest in tprolif cells, CD4Tconv and CD8Tex cells. In

LIHC_GSE140228_smartseq2 dataset, PIGC expression level

remains the highest in tprolif cells, CD4Tconv and NK cells.

In LIHC_GSE140228_10X dataset, PIGC expression level

remains the highest in tprolif cells, NK cells and treg cells. In

three datasets, PIGC expression level remains the highest in

tprolif cells. Violin plot showed the same trend of PIGC

expression in the HCC cell microenvironment (Figure 7A).

PIGC expression level in LIHC_GSE125449 is obviously

different with other database, maybe because of the

immunotherapy effect from LIHC_GSE125449.

In LIHC_GSE125449, malignant cells exhibited the most

abundant cell counts (n = 842) (Figure 7B). In

LIHC_GSE140228_10X, CD8T cells exhibited the most

abundant cell counts (n = 19969) (Figure 7C). In

LIHC_GSE140228_smartseq2, mono/macro cells exhibited the

most abundant cell counts (n = 1,699) (Figure 7D). In

LIHC_GSE98638, CD4Tconv cells exhibited the most

abundant cell counts (n = 2,466) (Figure 7E). Figures 7F–I

represented the distribution of various immune cells related to

Figures 7B–E. These results suggest that PIGC expression level

was quite different in distinct cell types, which might be the

source of HCC microenvironment heterogeneity.

PIGC expression was correlated with the
level of immune infiltration in HCC

Tumor-infiltrating lymphocytes are an independent

predictor of sentinel lymph node status and survival in

cancer. Therefore, we investigated whether PIGC expression

FIGURE 4
Kaplan–Meier plot of the Correlation of PIGC Expression and Patient Survival in HCC (A)Overall survival (OS). (B) Recurrence free survival (RFS).
(C) Progression Free Survival (PFS). (D) Disease Free Survival (DFS).
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was correlated with immune infiltration levels in HCC. The

expression levels of PIGC were significantly and positively

correlated with the infiltrating levels of B cells (r = 0.339, p <
0.001), CD8+ T cells (r = 0.194, p < 0.001), CD4+ T cells (r = 0.397,

p < 0.001), macrophages (r = 0.426, p < 0.001), neutrophils (r =

0.309, p < 0.001) and DCs (r = 0.326, p < 0.001) in HCC

(Figure 8).

Then, we investigated the correlation between PIGC

expression levels and the status of tumor-infiltrating immune

cells based on the gene expression levels of immunemarker genes

in HCC using the TIMER and GEPIA databases. Tumor purity is

an important factor that influences the analysis of immune

infiltration in clinical tumor samples by genomic approaches;

TIMER and GEPIA feature homologous data from TCGA. We

selected cancer types in which PIGC expression levels had a

significant positive correlation with tumor purity in TIMER and

a significant correlation with prognosis in GEPIA.

The immune cells analyzed in HCC tissues included CD8+

T cells, CD4+ T cells, B cells, (TAMs), monocytes, M1 and

M2 macrophages, neutrophils, DCs, and natural killer (NK)

TABLE 1 Correlation of PIGCmRNA expression and prognosis in hepatocellular carcinomawith different clinicopathological factors by Kaplan-Meier
plotter.

Clinicopathological
factors

Overall survival Progression-free survival

N Hazard ration p-value N Hazard ration p-value

Sex

Female 118 2.46 (1.31–4.62) 0.0039 120 1.84 (1.08–3.13) 0.022

Male 246 2.12 (1.35–3.34) 0.00085 246 1.78 (1.24–2.55) 0.0014

Stage

1 170 2 (1.08–3.69) 0.024 170 1.54 (0.94–2.54) 0.087

2 83 1.29 (0.59–2.83) 0.53 84 1.59 (0.85–3) 0.14

1 + 2 253 1.59 (0.98–2.56) 0.056 254 1.59 (1.08–2.32) 0.016

3 83 2.58 (1.39–4.76) 0.0018 83 1.72 (0.97–3.04) 0.061

4 4 - - 5 - -

3 + 4 87 2.68 (1.47–4.89) 0.00088 88 1.77 (1.02–3.07) 0.039

Grade

1 55 2.99 (1.16–7.7) 0.018 55 4.81 (1.71–13.49) 0.0013

2 174 2.02 (1.2–3.39) 0.0068 175 2.18 (1.39–3.42) 0.00054

3 118 2.37 (1.1–5.12) 0.024 119 1.47 (0.84–2.57) 0.17

4 12 - - 12 - -

AJCC_T

1 180 2.04 (1.13–3.66) 0.015 180 1.61 (0.99–2.61) 0.053

2 90 1.3 (0.63–2.7) 0.48 92 1.42 (0.8–2.54) 0.23

3 78 2.59 (1.39–4.86) 0.0021 78 1.92 (1.04–3.54) 0.033

4 13 - - 13 - -

Vascular invasion

Micro 90 1.85 (0.85–4.03) 0.12 91 1.88 (1.05–3.36) 0.03

Macro 16 - - 16 - -

None 203 2.34 (1.39–3.94) 0.0011 204 1.85 (1.17–2.93) 0.0076

Race

White 181 1.73 (1.09–2.74) 0.019 183 1.8 (1.21–2.68) 0.0031

Black or african american 17 - - 17 - -

Asian 155 3.17 (1.52–6.6) 0.0011 155 1.66 (1.03–2.7) 0.037

Alcohol consumption

Yes 115 3.18 (1.65–6.13) 3.00E-04 115 2.04 (1.21–3.43) 0.0061

None 202 1.6 (1.01–2.53) 0.045 204 1.49 (0.98–2.26) 0.059

Hepatitis virus

Yes 150 1.53 (0.8–2.94) 0.2 152 0.68 (0.42–1.09) 0.11

None 167 3.09 (1.92–4.98) 1.40E-06 167 2.43 (1.55–3.82) 7.70E-05

Bold values indicate p < 0.05.
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cells. Moreover, different subsets of T cells, namely, T helper 1

(Th1), Th2, follicular helper T (Tfh), Th17, regulatory T (Tregs),

and exhausted T cells were also analyzed. Since the tumor purity

of clinical samples influences the analysis of immune infiltration,

the correlation analysis was adjusted for purity. Specifically,

PIGC expression showed significant correlations with the

expression levels of markers of specific immune cells such as

T cell markers, CD3D (r = 0.225; p < 0.001), CD3E (r = 0.229; p <
0.001), and CD2 (r = 0.210; p < 0.001); B cell markers, CD19 (r =

0.276; p < 0.001), and CD79A (r = 0.222; p < 0.001); monocyte

markers, CD86 (r = 0.333; p < 0.001), and CD115 (r = 0.250; p <
0.001); TAMmarkers, CCL2 (r = 0.214; p < 0.001), and CD68 (r =

0.222; p < 0.001); M1 macrophage markers, IRF5 (r = 0.480; p <
0.001), and COX2 (r = 0.265; p < 0.001); neutrophil markers,

CD11b (r = 0.288; p < 0.001), and CCR7 (r = 0.246; p < 0.001);

DC markers, HLA-DPB1 (r = 0.230; p < 0.001), HLA-DRA (r =

0.262; p < 0.001), HLA-DPA1 (r = 0.243; p < 0.001), BDCA-1 (r =

0.281; p < 0.001), BDCA-4 (r = 0.447; p < 0.001), and CD11c (r =

0.326; p < 0.001); Th1 markers, STAT1 (r = 0.461; p < 0.001), and

TNF-α (r = 0.269; p < 0.001); Th2 markers, GATA3 (r = 0.238;

p < 0.001), STAT6 (r = 0.307; p < 0.001), and STAT5A (r = 0.329;

p < 0.001); Tfhmarker, BCL6 (r = 0.331; p < 0.001); Th17marker,

STAT3 (r = 0.253; p < 0.001); Treg markers, CCR8 (r = 0.394; p <
0.001), STAT5B (r = 0.415; p < 0.0016), and TGFβ (r = 0.393; p <
0.001); exhausted T cells markers, PD-1 (r = 0.281; p < 0.001),

CTLA4 (r = 0.270; p < 0.001), and TIM-3 (r = 0.312; p < 0.001).

These findings strongly suggested that PIGC expression

correlates with the infiltration of immune cells in HCC

FIGURE 5
The profile of the PIGCmutation (A) The profile of the PIGCmutation of the Cbio Portal. (B) The alteration frequency of different HCC datasets.
(C) The Kaplan–Meier plot of the Correlation of PIGC Expression and mutation.
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(Table 2). Analysis of the GEPIA databases showed that PIGC

expression in HCC tissues were significantly correlated with the

expression of marker genes from tumor infiltrating

M1 macrophages, Th2 cells, Tfh cells, and Treg cells (Table 3).

Drug sensitivity and immunotherapy
response analysis

We estimated IC50 values via R package for drug sensitivity

evaluations of several chemotherapeutics drugs and compared

among different PIGC expression. As shown in Figure 9A, the

estimated IC50 values of Vorinostat were significantly increased

with higher PIGC expression, implying that might be less

sensitive to the drug (r = 0.368; p = 0.004). Futhermore, we

assessed the immunotherapy responses of the different PIGC

levels via TIDE algorithm. The higher PIGC expression group

(Group 1) has the higher TIDE score (p < 0.001) (Figure 9B).

Discussion

HCC remains one of the major causes of cancer-related

deaths worldwide. Hepatocarcinogenesis is a complex

FIGURE 6
The co-expression of genes with PIGC in HCC (A) The global PIGC highly correlated genes identified by Pearson test in LIHC cohort. Significant
positive correlations highlighted in red, significant negative correlations in green. And the heat maps showing top 50 genes positively and negatively
correlated with PIGC in LIHC. Red indicates positively correlated genes and blue indicates negatively correlated genes. (B)Co-expressed genes
profile with the PIGC gene involved in signaling pathways in HCC via ORA tool. (C) Co-expressed genes profile with the PIGC gene involved in
signaling pathways in HCC via GSEA tool.
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FIGURE 7
Correlation between PIGC and the tumor immune microenvironment using TISCH. (A) Average expression of PIGC in different cell types, and
the distribution of PIGC expression in different cell types using violin plot. (B–E) The cell types and their distribution in LIHC_GSE125449,
LIHC_GSE140228_10X, LIHC_GSE140228_smartseq2 and LIHC_GSE98638 datasets. (F–I) Distribution of PIGC in different cells in
LIHC_GSE125449, LIHC_GSE140228_10X, LIHC_GSE140228_smartseq2 and LIHC_GSE98638 datasets.

FIGURE 8
Correlation of PIGC expression with immune infiltration level in HCC. PIGC expression is significantly positively related to tumor purity and has
significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in COAD.
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multistep process driven by chronic hepatitis that alters the

hepatic microenvironment. The number of deaths is

proportional to the global incidence, thus highlighting the

aggressive tumor biology and the lack of effective therapies.

Identifying new targets for the treatment of HCC is very

TABLE 2 Correlation analysis between PIGC and relate genes and
markers of immune cells in TIMER.

Description Gene marker HCC

NONE Purity

Cor p Cor P

CD8+ T cell CD8A 0.049 0.344 0.190 **

CD8B -0.005 0.929 0.128 0.017

T cell (general) CD3D 0.073 0.162 0.225 ***

CD3E 0.043 0.410 0.229 ***

CD2 0.034 0.512 0.210 ***

B cell CD19 0.170 * 0.276 ***

CD79A 0.053 0.304 0.222 ***

Monocyte CD86 0.146 * 0.333 ***

CD115(CSF1R) 0.074 0.155 0.250 ***

TAM CCL2 0.063 0.227 0.214 ***

CD68 0.098 0.058 0.222 ***

IL10 0.067 0.198 0.200 **

M1 Macrophage INOS(NOS2) 0.094 0.070 0.100 0.063

IRF5 0.455 *** 0.479 ***

COX2(PTGS2) 0.100 0.054 0.265 ***

M2 Macrophage CD163 -0.023 0.661 0.103 0.055

VSIG4 0.033 0.521 0.177 **

MS4A4A 0.015 0.775 0.168 0.002

Neutrophils CD66b (CEACAM8) -0.030 0.565 (0.005) 0.927

CD11b (ITGAM) 0.173 ** 0.288 ***

CCR7 0.063 0.229 0.246 ***

Natural killer cell KIR2DL1 -0.092 0.077 (0.115) 0.033

KIR2DL3 0.145 * 0.201 **

KIR2DL4 0.080 0.124 0.136 0.011

KIR3DL1 -0.012 0.810 0.022 0.688

KIR3DL2 0.067 0.199 0.147 *

KIR3DL3 -0.008 0.877 (0.012) 0.831

KIR2DS4 -0.003 0.958 (0.006) 0.906

Dendritic cell HLA-DPB1 0.072 0.167 0.230 ***

HLA-DQB1 0.015 0.767 0.159 *

HLA-DRA 0.105 0.042 0.262 ***

HLA-DPA1 0.088 0.090 0.244 ***

BDCA-1(CD1C) 0.147 * 0.281 ***

BDCA-4(NRP1) 0.404 *** 0.447 ***

CD11c (ITGAX) 0.162 * 0.326 ***

Th1 T-bet (TBX21) -0.009 0.867 0.119 0.027

STAT4 0.097 0.063 0.189 **

STAT1 0.380 *** 0.461 ***

IFN-γ (IFNG) 0.095 0.069 0.205 **

TNF-α (TNF) 0.117 0.025 0.269 ***

Th2 GATA3 0.062 0.232 0.238 ***

STAT6 0.318 *** 0.307 ***

STAT5A 0.242 *** 0.329 ***

(Continued in next column)

TABLE 2 (Continued) Correlation analysis between PIGC and relate
genes and markers of immune cells in TIMER.

Description Gene marker HCC

NONE Purity

Cor p Cor P

IL13 0.004 0.941 0.018 0.739

Tfh BCL6 0.331 *** 0.331 ***

IL21 0.043 0.407 0.098 0.069

Th17 STAT3 0.198 ** 0.253 ***

IL17A 0.102 0.049 0.112 0.038

Treg FOXP3 0.089 0.087 0.146 *

CCR8 0.266 *** 0.394 ***

STAT5B 0.448 *** 0.415 ***

TGFβ (TGFB1) 0.242 *** 0.393 ***

T cell exhaustion PD-1 (PDCD1) 0.148 * 0.281 ***

CTLA4 0.127 0.015 0.270 ***

LAG3 0.096 0.066 0.174 *

TIM-3(HAVCR2) 0.121 0.019 0.312 ***

GZMB 0.008 0.875 0.084 0.121

HCC:hepatocellular carcinama; TAM: tumor-associated macrophage; Th: T helper cell;

Tfh: Follicular helper T cell; Treg, regulatory T cell; Cor, R value of Spearman’s

correlation; None, correlation without adjustment. Purity, correlation adjusted by

purity. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 3 Correlation analysis between PIGC and marker genes of
immune cells in GEPIA.

Description Gene markers HCC

Tumor Normal

R p R P

M1 Macrophage IRF5 0.45 *** 0.68 ***

COX2(PTGS2) 0.13 * 0.49 ***

Th2 GATA3 0.088 0.091 0.43 **

STAT6 0.32 *** 0.76 ***

STAT5A 0.26 *** 0.7 ***

Tfh BCL6 0.33 *** -0.036 8.00E-01

Th17 STAT3 0.2 *** -0.018 9.00E-01

Treg CCR8 0.25 *** 0.37 **

STAT5B 0.45 *** 0.58 ***

TGFβ (TGFB1) 0.21 *** 0.52 ***

*p < 0.05, **p < 0.01, ***p < 0.001.
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important. The multistep sequence of epigenetic and genetic

alterations in the pathogenesis of liver cancer disrupts core

cellular processes such as proliferation, cell death, and genome

maintenance. In a manner similar to the phenotypic

heterogeneity of HCC, the landscape of molecular alterations

in HCC is quite extensive. To gain more detailed insights into the

potential functions of PIGC in HCC and its regulatory network,

we performed bioinformatics analysis using public data to guide

future research in HCC.

The present systematic clearly demonstrated the prognostic

value of PIGC in HCC. In our study, we found that the expression

levels of PIGC are upregulated in brain and CNS, cervical,

esophageal, head and neck, and liver cancer, along with

myeloma and sarcoma. Furthermore, the highest expression

levels of PIGC was greatest in liver cancer according to

Oncomine, GEPIA and TIMER analyses. Furthermore, the

expression levels of PIGC mRNA and protein were

significantly higher in HCC than in normal tissues. These

findings indicated a relationship between PIGC and HCC.

Additional findings showed that PIGC expression was

significantly elevated in HCC patients irrespective of sample

type, gender, age, race, cancer stage and tumor grade. In

addition, high expression levels of PIGC were significantly

related to OS, RFS, PFS, and DFS. Our study also found that

mutations in PIGC in HCC patients were associated with patient

prognosis. Thus, our results suggest that the upregulation of

PIGC occurs in many cases of HCC and deserves further clinical

validation as a potential diagnostic and prognostic marker.

To investigate alterations in PIGC related pathways in HCC,

we also analyzed genes that were co-altered along with PIGC. Of

the positively correlated genes analyzed in the LinkedOmics

database, the expression levels of ACBD6 showed the greatest

co-alteration with PIGC expression. ACBD6 is an acyl-CoA

binding protein that is expressed in hematopoietic tissues and

appears to be restricted to primitive stem cells present in such

tissues (Soupene et al., 2008). Our results provide evidence that

ACBD6 proteins play an important role in the myristoylation of

proteins in eukaryotic cells (Soupene and Kuypers, 2019).

Myristoylation-AKT appears to reverse the effect of

CDHR2 and can inhibit the proliferation of HCC cells. (Xia

et al., 2019; Wang et al., 2021a). Furthermore, the expression

levels of ACBD6 in HCC samples were increased when compared

to paired normal tissues according to GEPIA2 analysis. It is

possible that PIGC can influence the growth of HCC cells via the

ACBD6-Myristoylation-AKT pathway. Of the negatively

correlated genes determined by the LinkedOmics databse,

PINK1 expression showed the highest co-alterations with

PIGC expression. PINK1 is a serine/threonine kinase that can

be imported into the mitochondrial inner membrane via the

outer/inner mitochondrial membrane translocase complex, and

can be degraded by mitochondrial processing peptidase and

mitochondrial inner protease presenilin associated rhomboid

like (PARL) (Jin et al., 2010; Lazarou et al., 2012). Recent

insights in mitophagy suggest that PINK1 and an E3 ubiquitin

ligase (Parkin) play a central role in the quality control of

mitochondria (Mancias and Kimmelman, 2016). The role of

FIGURE 9
The analysis of drug sensitivity and immunotherapy response via R package (A) The correlation between the PIGC expression with the IC50. (B)
TIDE score in different PIGC expression levels.
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PINK1-Parkin-mediated mitophagy in the regulation of cell

death is the source of much debated and results tend to

depend upon the specific context (Zheng et al., 2021).

In addition, we utilized Enrich web tools to identify pathways

associated with genes that showed the most correlation with

PIGC in HCC. From a functional classification viewpoint, the

results revealed that the ribosome was associated with the

occurrence and progression of HCC. Ribosomes are

responsible for the translation of information contained in

mRNAs into functional proteins, the ultimate step in the

genetic programme. The hyperactivation of ribosome

biogenesis, which can be initiated by oncogenes or the loss of

tumour suppressor genes has a critical role in cancer initiation

and progression (Pelletier et al., 2018).

Besides, the identical result was identifed in the GSEA. The

most highly correlated pathway was activation of the splicesome

in the tumor; this process represents a key step in gene expression

and enables an individual to encode multiple proteins; this

process is emerging as a major driver of abnormal phenotypic

heterogeneity. It is expected that splicing acts as a potential major

source of untapped molecular targets in precision oncology and

cancer disparities (Robinson et al., 2019). The spliceosome is a

dynamic cellular machine composed of small nuclear

ribonucleoproteins (snRNPs) and their associated protein

cofactors, and reads information related to the splicing of

each pre-mRNA transcript, and is probably the most

complicated RNA-protein complex inside eukaryotic cells

(Gregory Matera and Wangday, 2014; Paschalis et al., 2018).

A number of recent studies have highlighted the fact that

mutations and copy-number changes affecting the

spliceosomal proteins of key cancer-associated genes are

enriched in cancer (Lee and Abdel-Wahab, 2016). Alterations

in the splicing of mRNA is emerging as a potentially important

driver of cancers; the dysregulation of splicing can give rise to

protein isoforms that contribute to tumor establishment,

progression, and resistance to therapy (Dvinge et al., 2016;

Goodall and Wickramasinghe, 2021).

Cancer development is highly associated to the physiological

state of the TME (Roma-Rodrigues et al., 2019). To clarify how

PIGCmight affect TME, we used TISCH single cell database. We

observed different immune cell distribution based on HCC sites.

In LIHC_GSE140228 dataset and LIHC_GSE98638 dataset,

HCC without treatment exhibited relatively high PIGC

expression levels in tprolif cells, CD8Tex cells and CD4Tconv

compared to expression level in LIHC_GSE125449 dataset.

Higher PIGC expression was observed in fibroblasts cells in

LIHC_GSE125449 dataset, in which HCC patients were on

immunotherapy. Therefore, tprolif cells play an outstanding

role in TME of HCC, and immunotherapy reshapes tumor

microenvironment in patients with HCC.

Another important aspect of this study is that PIGC

expression was correlated with diverse immune infiltration

levels in HCC. Some successful and excellent prognostic

models of liver cancer had published, which revealed that the

expression of gene such as ARID1A, RBPs is closely related to

tumor immune cell infiltration in HCC (Wang et al., 2021b; Feng

et al., 2022). Our results demonstrate that there are strong and

positive correlations between PIGC expression and the

infiltration levels of T cells, B cells, and monocytes, and a

moderate to strong positive relationship between PIGC

expression and the infiltration levels of TAM and DCs. This

suggests that PIGC plays an important role in regulating tumor

immunity, and therefore could influence the prognosis of HCC.

Notably, we observed a correlation between the levels of

PIGC mRNA and the expression of the M1 macrophage marker,

IRF5. Furthermore, significant correlations were detected

between PIGC expression and the levels of several markers of

T helper cells (Th2, Tfh, Treg and Th17) in HCC. These

correlations could be indicative of a potential mechanism by

which PIGC regulates the functions of T cells in HCC. The

presence of Th2 cells is most typically associated with aggressive

tumors. In patients with pancreatic cancer, Th2-type

inflammation has been associated with shorter survival, in

which tumor-infiltrating Th2 cells correlated with the in situ

fibroblast, thymic, and stromal production of lymphopoietin.

Th2 cell polarization is thought to further drive Th2-type

inflammation and lead to dismal outcomes for patients with

pancreatic cancer (DeMonte et al., 2011). In addition, the present

study showed that Th17 cells, a newly defined subset of T helper

cells with potent pro-inflammatory properties, are concentrated

within HCC tumors and associated with high mortality and

reduced survival in HCC patients. Furthermore, the levels of

Th17 were positively correlated with the density of microvessels

in tumors. The correlations between PIGC expression and

Th17 indicates that PIGC take parts in the inflammatory

reaction in HCC and promotes the growth and progression of

tumors (Zhang et al., 2009). Our results also indicated that PIGC

has the potential to activate Treg cells. An increase in PIGC

expression was positively correlated with the expression of Treg

cells; these cells are a subtype of CD4+ T cells that suppress anti-

self-immune responses (Schmetterer et al., 2012) which can

inhibit the development of anti-tumor immunity, thereby

hindering the immune surveillance of cancer and preventing

effective anti-tumor immune responses in tumor-bearing hosts.

By producing cytokines, immunosuppressive Treg cells might

promote tumor initiation and development in a chronic

inflammatory state; furthermore, high levels of Treg cells are

related to a poor OS in HCC (Sun et al., 2017). It is possible that

PIGC may play an important role in HCC with Tregs by

influencing the microenvironment (Togashi et al., 2019).

Collectively, our findings suggest that PIGC plays an

important role in the recruitment and regulation of immune

infiltrating cells in HCC, which also play a key role in the poor

prognosis of patients with HCC.

Accurate measurement of drug sensitivity and resistance is

the cornerstone of cancer biology, pharmacology, and many
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fundamental studies on cell signaling and cell division. Drug

sensitivity and resistance are conventionally quantified by IC50

(Hafner et al., 2016). Our study found that the PIGC expression

level could affect Vorinostat drug sensitivity. Similarly, HCC

patients with high PIGC levels had higher TIDE scores,

indicating that tumor patients might low respond to

immunotherapy. Our study shows that high levels of PIGC

expression maybe affect the drug sensitivity of HCC patients

and affect their benefit from immunotherapy.

Our study has some limitations that need to be considered.

Firstly, our investigations into the role of PIGC in tumors were

based on data that was already reported in the public databases.

However, we did not verify these outcomes by testing our own

clinical samples. Secondly, we did not conduct in vitro or animal

experiments to confirm the role of PIGC in the growth and

progression of HCC and its relationship with the infiltration of

immune cells into the tumor microenvironment. Hence, further

studies are now needed to verify the role played by PIGC

in HCC.

Conclusion

In summary, our results suggest that PIGC is a potential

independent prognostic biomarker for HCC that can be used

to evaluate the levels of immune cell infiltration in tumor

tissues. Relatively low levels of PIGC in HCC and other cancer

tissues may indicate a greater risk of tumor relapse after

treatment and careful medical supervision will be necessary

for such patients.
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