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Abstract: Bottom–up mass-spectrometry-based proteomics is a well-developed technology based
on complex peptide mixtures from proteolytic cleavage of proteins and is widely applied in protein
identification, characterization, and quantitation. A tims-ToF mass spectrometer is an excellent
platform for bottom–up proteomics studies due to its rapid acquisition with high sensitivity. It remains
challenging for bottom–up proteomics approaches to achieve 100% proteome coverage. Liquid
chromatography (LC) is commonly used prior to mass spectrometry (MS) analysis to fractionate
peptide mixtures, and the LC gradient can affect the peptide fractionation and proteome coverage.
We investigated the effects of gradient type and time duration to find optimal gradient conditions.
Five gradient types (linear, logarithm-like, exponent-like, stepwise, and step-linear), three different
gradient lengths (22 min, 44 min, and 66 min), two sample loading amounts (100 ng and 200 ng),
and two loading conditions (the use of trap column and no trap column) were studied. The effect of
these chromatography variables on protein groups, peptides, and spectral counts using HeLa cell
digests was explored. The results indicate that (1) a step-linear gradient performs best among the five
gradient types studied; (2) the optimal gradient duration depends on protein sample loading amount;
(3) the use of a trap column helps to enhance protein identification, especially low-abundance proteins;
(4) MSFragger and PEAKS Studio have high similarity in protein group identification; (5) MSFragger
identified more protein groups among the different gradient conditions compared to PEAKS Studio;
and (6) combining results from both database search engines can expand identified protein groups by
9–11%.

Keywords: mass spectrometry; bottom–up proteomics; liquid chromatography gradient; HeLa cells

1. Introduction

The term proteomics derives from the concept of proteome, which is a combination
of protein and genome. Proteomics is a discipline to systematically study the sequence,
structure, quantities, location, post translational modification (PTM), interaction, and func-
tions of all proteins generated by a cell, tissue or biofluid under a specific condition [1,2].
Proteomics plays a significant role in drug discovery, biomarker research, and cancer screen-
ing [3]. Proteomic technologies are comprised of three critical parts: protein and peptide
fractionation, mass spectrometry analysis, and bioinformatic database search and inter-
pretation [4]. Protein and peptide fractionation techniques mainly include electrophoresis
(i.e., isoelectric focusing [IEF], 2D-PAGE) and chromatography (reverse-phase liquid chro-
matography [RPLC], size exclusion chromatography [SEC], and strong cation exchange
chromatography [SCX]) [5,6]. A variety of hybrid mass analyzers are commonly used
for protein and peptide analysis [7]. Proteome database searches are performed based on
either de novo sequencing or precursor peptide mass, and fragment mass information with
protein databases or spectral libraries using search engines such as MSFragger, PEAKS
Studio, and Spectronaut.

Int. J. Mol. Sci. 2022, 23, 11714. https://doi.org/10.3390/ijms231911714 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231911714
https://doi.org/10.3390/ijms231911714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6420-7375
https://doi.org/10.3390/ijms231911714
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231911714?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 11714 2 of 15

Ion mobility spectrometry (IMS) is a technique separating gas-phase ions based on
their collision cross section (CCS). IMS is capable of coupling to mass spectrometry (MS)
due to its small size, high efficiency, low voltage requirement, and compatibility with other
separation methods [8]. Coupling IMS to MS grants an additional separation dimension
to improve separation efficiency and promote deeper proteome coverage.8 Commercial
IMS-MS systems include FAIMS (Owlstone and Thermo), TWIMS-MS (Waters), DT-IMS-MS
(Agilent, Tofwerk, and Excellims), PF-IMS-MS (IonWorks), DMS (Sionex and AB Sciex),
and TIMS-MS (Bruker Daltonics) [9].

Among these IMS systems, the tims-ToF pro (Bruker) stands out in deepening the
proteome coverage due to its dual trapped IMS (tims), parallel accumulation serial frag-
mentation (PASEF) scan mode, and synchronized quadruple [8,10]. The tims PASEF scan
mode enables accumulation of peptide ions in first section, perform CCS-based separation,
and serial elution of separated ions in the second section, which achieves zero ion loss
and maintains high sensitivity. The synchronized quadruple enhances sequencing speed.
Therefore, the tims-ToF system features fast scanning speeds without sacrificing sensitiv-
ity, and functions as a promising technique for deeper proteome coverage and label free
quantitation [10,11].

Nano-LC fractionation is usually coupled to IMS-MS, functioning as the first-stage
online separation of peptides prior to further ion mobility- and mass-based separations. A
trap column is commonly used as a precolumn prior to nano-LC for large sample volume
analysis, as well as fast loading and desalting [12,13]. The use of a gradient is a key factor
affecting LC separation performance as well as improving proteome coverage. Retention
time prediction models can help predict retention times and facilitate the building of appro-
priate liquid chromatographic gradients for screening therapeutic peptides and targeted
proteomics studies [14–16]. However, this model requires the known structure of analytes
(e.g., amino acid composition, peptide sequence, and physicochemical properties) [17],
which makes it challenging to apply in untargeted proteomics studies as untargeted pro-
teomics studies the global proteins and does not target a specific protein or peptides.
Untargeted proteomics is also called discovery proteomics, and deep proteome profiling is
one of challenges it faces [5]. Common nano-LC gradients used in discovery proteomics
are single-stage linear or multi-stage linear [18–21]. It is worthwhile to explore various
gradient conditions to optimize the proteome coverage for tims-ToF-based proteomics stud-
ies. Here, we investigate the effect of five common gradient types (linear, logarithm-like,
exponent-like, stepwise, and step-linear), three gradient time courses (22 min, 44 min, and
66 min), two sample loading amounts (100 ng and 200 ng), and two separation conditions
(use of a trap column and no trap column) to determine their influence on protein group
and unique peptide identification in HeLa cell digests.

PEAKS Studio [22] operates based on both a de novo sequencing algorithm and
database search algorithm. De novo sequencing enables discovery of potential novel
peptides. Its decoy-fusion strategy ensures an accurate and sensitive database search.
MSFragger is a fast, sensitive, and comprehensive database search engine. As its database
search is based on peptide ion index and fragment ion index, it significantly reduces the total
analysis time for the peptide search and uses a similarity calculation between experimental
and theoretical spectra candidates [23–25]. The PEAKS Studio and MSFragger search
engines were compared at the level of protein group and unique peptide identification
under consensus search parameters.

2. Results and Discussion
2.1. Gradient Types and Search Engines

When we look at the MSFragger-based results (blue bars) among gradient types
(Figure 1a,b; discussed and shown in Section 3.5), the step-linear gradient performed best
with highest number (3697) of identified protein groups and 38,587 unique spectral counts;
linear gradient ranked second with 3595 identified protein groups and 35,061 unique
spectral counts; stepwise, logarithm-like and exponent-like gradient had <3500 protein
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groups and <30,250 unique spectral counts identified, of which the exponent-like gradient
and logarithm-like gradient generated the least number of identified protein groups (3339)
and unique spectral counts (28,684), respectively. Therefore, step-linear gradient works
best for optimal protein group identification under our conditions.
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Figure 1. Comparison of the 44 min gradient types and search engines. MSFragger and PEAKS Studio
were used to search data from a 100 ng HeLa digest on-column loading. (a) Number of identified
protein groups; (b) number of unique spectral counts. The mean and standard deviation of triplicate
injections are shown for each of 5 gradient types by search engines.

PEAKS Studio gave similar results to the MSFragger search engine for the number
of identified protein groups and unique spectral counts across all gradient conditions
considering the approximate numbers of identified protein groups and unique spectral
counts between the two search engines and their overlapping standard deviation bars,
indicating the similarity in search power between the two search engines.

To verify the statistical difference in protein identification among five gradient types,
principal component analysis (PCA) was performed (Figure 2). The principal components
PC1 and PC2 explain 96.7% and 3.2% of the total variance, respectively. The results of the
analysis show that a step-linear gradient (purple) is clearly separated from exponent-like
(red), logarithm-like (green) and stepwise (orange) gradients along PC1. A distinguishable
separation is observed between the stepwise gradient (purple) and linear gradient (blue)
along PC2, indicating that the step-linear gradient type is statistically different from the
other gradient types in for the number of identified proteins.

To investigate how the identified proteins differentiate between gradient types, a
PCA plot based upon the unique spectral counts of 4127 proteins identified across all five
gradients using MSFragger was made in Figure 3. The results also show that the step-
linear gradient (purple) is clearly separated from the other four gradient types, indicating
that the step-linear gradient type is statistically different from the other gradient types in
protein identification.

Further, the proteins only identified by either a linear or step-linear gradient and how
it may affect the PCA analysis were explored. A PCA biplot based upon 247 proteins (only
identified either by the step-linear or linear gradient) is shown in Figure 4. The loading
plot (Figure 4b) shows the angle between triplicate step-linear loads and linear loads are
larger than 90◦, suggesting that the two gradients are negatively correlated.
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Figure 2. PCA plot of five different gradient types. Prediction ellipses represent the 95% confidence
interval. PCA analysis was performed using the ClustVis tool [26]. The PCA was blinded to four sets
of data, namely protein groups identified using MSFragger (MSFragger_PG), protein groups (PG)
identified using PEAKS Studio (PEAKS_PG), unique spectral counts (USC) from MSFragger output
(MSFragger_USC), unique spectral counts from PEAKS Studio (PEAKS_USC) (Table S1).
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Figure 3. PCA plot of the five different gradient types based on all 4127 proteins identified across all
five gradients. Prediction ellipses represent the 95% confidence interval. PCA analysis was performed
using ClustVis tool [26]. The PCA was blinded to the unique spectral counts of all 4127 proteins
identified across all five gradients using MSFragger (Table S2).
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Figure 4. PCA biplot of the five different gradient types based on 274 proteins which were only either
identified by the linear or step-linear gradient. (a) Zoom-out view, in which blue dots represent 274
proteins, the central part is the load plot; (b) zoom-in view of loading plot. The PCA was blinded to
the 274 proteins which were either identified by the linear or step-linear gradient using MSFragger
(Table S3).

As shown in Figure 5, peak width and peak capacity were studied for the five gradient
types. The results indicate the step-linear gradient has a full width at half maximum
(FWHM) of 7.02 s and a peak capacity of 529.9, which are highest and lowest, respectively,
among the five gradient types. Usually, peak capacity is related to protein identification, but
the results obtained here did not show a strong relationship. In fact, we observed that the
step-linear gradient has highest FWHM and protein identification, but lowest peak capacity.
This may be due to its larger peak width resulting in improved sampling opportunity,
and corresponding increased protein identification [16]. As shown in Figures S1–S6, the
peptides elution profiles are different from one another. We observe that peptides in all
profiles elute between 12% B and 80% B. The linear gradient chromatogram (Figure S1) has a
significant number of peptides eluting between 30 and 44 min, while the step-linear gradient
(Figure S2) shows peptides were more evenly eluted between 15 and 50 min. Compared
with linear gradient (ramp from 3 to 37% over 0–44 min), the step-linear gradient has three
sections of gradient. In the first section (ramp 3–17% over 0–14 min), the gradient is steeper
than linear gradient, which leads to faster elution of peptides. In the second section, the
gradient (ramp from 17 to 25% over 14–34 min) is shallower than linear gradient, giving a
better separation of peptides at the expense of wider chromatographic peaks and lower
intensity. This result explains why the step-linear gradient has wider median peak widths,
but the highest number of protein groups identified. The final section of the gradient
(ramp from 25 to 37% over 34–44 min) is shared with all gradient types and elution of the
remaining peptides is similar.

The distribution of the precursor peptides mass error is shown in Figure 6. The
histogram indicates the mass error of all peptides are within 20 ppm. Among those, the
peptides with mass error more than −4 ppm, but no less than 10 ppm, account for 93.7% of
all detected peptides.
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Figure 5. Comparison of (a) median FWHM and (b) peptide peak capacity among five gradient types.
The median FWHM was calculated based on all peptides (with a minimum intensity of 2500) using
MaxQuant (version 2.0.3.1). Peptide peak capacity was calculated by dividing the run time by the
median FWHM. Ion chromatograms are shown in Figures S1–S12.
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Figure 6. Mass errors of precursor peptides. Histograms illustrate the distribution of the number of
peptides as reflected by precursor mass error (ppm) combined from all five gradient types.

From the MSFragger-based overlapping protein groups (Figure 7a), the 5 gradient
types have 3392 common protein groups, accounting for 80.7% of total identified across all
gradient types (4205), demonstrating ~80% similarity between the 5 gradients in protein
identification on the one hand, and ~20% potential contributions the selection of optimal
gradient types may make in protein identification.

Compared to 80.7% common proteins from MSFragger, PEAKS Studio identifies 75.3%
overlapping protein groups across different gradient types, 39 protein groups less than
PEAKS Studio, which may be attributed to the difference in the results filtering algorithm
between the two search engines [27].

Gradient types were sorted by the number of identified unique protein groups in the
following descending order. For MSFragger, the order is step-linear (18) > stepwise (13) >
linear (9) > exponent-like (8) = logarithm-like (8); for PEAKS Studio, the order is step-linear
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(57) > linear (54) > stepwise (39) > logarithm-like (37) > exponent-like (36). The step-linear
gradient has the most unique protein groups identified in both search engines, suggesting
that the step-linear gradient holds the most promises for deepening proteome coverage.
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Figure 7. Comparison by gradient types and search engines using a 100 ng HeLa digest on-column
loading. (a) Venn diagram showing identified protein groups using MSFragger, (b) Venn diagram
showing identified protein groups using PEAKS Studio.

2.2. Gradient Durations, Loading Amount and Search Engines
2.2.1. Gradient Durations and Loading Amount

Optimal gradient durations were further studied based upon the step-linear gradient,
which was indicated as the optimum gradient type for protein identification. As shown in
Figure 8a,b, using 100 ng of HeLa digest, the 44 min gradient (62 min total run time, dataset
searched with MSFragger) gave the best optimal performance. When the amount of HeLa
digest was increased to 200 ng (Figure 8d), the 66 min gradient (90 min run time) yielded
the best protein identification.
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Figure 8. Proteome coverage compared to gradient. A comparison of gradient time course and
HeLa digest loading amount is presented: (a) Identified protein groups using 100 ng of HeLa digest;
(b) unique spectral counts using 100 ng of HeLa digest; (c) identified protein groups using 200 ng
of HeLa digest; (d) unique spectral counts using 200 ng of HeLa digest. The mean and standard
deviation of triplicate injections are shown for each of 3 gradient durations by search engines. (Note:
1. The search engine used was MSFragger; 2. In total, 200 ng datasets were collected using a different
nanoLC column from that for 100 ng datasets, which explains why the 22 min gradient of 200 ng
HeLa digest loading (Figure 8c,d) had lower number of protein groups and unique spectral counts
identified than that of 100 ng of HeLa digest loading (Figure 8a,b)).

In Figure 8a,b for loading 100 ng of HeLa digest on column, the 22 min gradient
identified 3149 protein groups and 29,195 unique spectral counts, respectively, which
were 13% and 27% less than the 44 min gradient (3633 protein groups and 39,837 unique
spectral counts). That said, 44 min and 66 min gradients had similar amounts of identified
protein groups (~3600) and unique spectral counts (~40,000) with overlapping standard
deviation bars. Thus, for 100 ng HeLa digest analysis, 44 min gradient is the optimal
time course to maximize protein group identification covering the most unique spectral
counts considering its performance and time efficiency. The possible reason why 44 min
gradient identified similar amounts of proteins compared with 66 min gradient for 100 ng
peptides loading is that 44 min gradient is enough to have the 100 ng peptide mixtures
well separated, and extending the gradient length to 66 min would perform more work
such as widening the peak width and lowering the intensity [16] (bringing some peaks
below detectable threshold) rather than enacting better separation (have some new peaks
show up).

In Figure 8c, based upon 200 ng of HeLa digest, the 66 min gradient identified 4006
protein groups, 35% more compared to the 22 min gradient (2966 protein groups), and
a 5% increase over the 44 min gradient (3822 protein groups). In Figure 8d, regarding
unique spectral counts, unique spectral counts for the 66 min gradient were 56,725, and
168% higher than the 22 min gradient (21,165 unique spectral counts), and 23% more than
the 44 min gradient (46,100 unique spectral counts). Therefore, for the 200 ng HeLa digest
analysis, the 66 min gradient is optimal for protein identification. In summary, optimal
gradient time depends on protein loading amount. The 44 min gradient yields optimal
performance for 100 ng protein analysis, while the 66 min gradient works best for 200 ng
protein analysis.
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The Venn diagrams in Figure 9 summarize the MSFragger-based results of the different
gradient times and sample loading. The 100 ng and 200 ng Hela digest loading, respec-
tively, identified 88.3% and 76% overlapping protein groups across the different gradient
durations. Despite the high degree of similarity, each gradient duration identified their
distinct protein groups, which were not identified by other time durations. For example,
in Figure 9a for 100 ng HeLa digest analysis, 10 unique protein groups in 22 min gradient
were not identified in either 44 min or 66 min gradients. This is mainly attributed to the
data-dependent acquisition (DDA) mode used for data acquisition, which only focuses
on the most abundant peptide ions, resulting in a number of missing values and lower
reproducibility [28].

Across all gradient durations, number of identified unique protein groups show the
following trend for MSFragger:

Loading 100 ng of HeLa digest (Figure 8a), 44 min (37) > 66 min (36) > 22 min (10);
Loading 200 ng of HeLa digest (Figure 8c), 66 min (130) > 44 min (37) > 22 min (6).
In the 100 ng HeLa digest analysis, the 44 min gradient has the largest number of

unique protein groups identified. When increasing the amount of HeLa digest to 200 ng,
the 66 min gradient performs best, providing further evidence that optimal gradient for
deepening proteome coverage is related to the amount of sample loaded to the LC/MSMS.
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2.2.2. Search Engines

In Figure 10a, 100 ng of HeLa digest was analyzed under a 44 min step-linear gradient
(62 min run time). MSFragger and PEAKS Studio were used to examine the results and
have 83% (3513) overlapping protein groups, indicating the high similarity of the two
search engines. The unique protein groups identified by MSFragger and PEAKS Studio
were 9% and 8%, respectively. MSFragger identified slightly higher numbers of unique
protein groups compared to PEAKS Studio, and the combination of both database search
engines could expand the identified protein groups by up to 9%. (The 200 ng protein
analysis in Figure 10b shows consistent results with Figure 10a).
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Figure 10. Proteome overlap of two search engines. Venn diagram showing overlapping identified
protein groups between MSFragger and PEAKS Studio for the data acquired under a 44 min step-
linear gradient (a) using 100 ng of HeLa digest; and (b) using 200 ng of HeLa digest.

2.3. The Use of Trap Column Versus No-Trap Column

The effect of using a trap column on protein identification was studied as well. The re-
sults in Figure 11 show that coupling a trap column prior to the analytical column improves
protein identification. As shown in Figure 11a,b for 22 min gradient, the incorporation of
the trap column increased the number of identified protein groups by 24.2% from 2388 to
2966; the number of unique spectral counts increased 1.4% from 20,878 to 21,165.
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Figure 11. Trap column and proteome coverage. Comparisons of proteome coverage were made
with and without a trap column loaded with 200 ng of HeLa digest (a) identified protein groups;
(b) unique spectral counts. The mean and standard deviation of triplicate injections are shown for the
inclusion and exclusion of a trap column.

Figure 12a,b elucidate the distribution of identified proteins by the number of unique
spectral counts. When a trap column was used on the analytical column, the number of
identified proteins covering 1–2 unique spectral counts increased by 336, accounting for 58%
of total identified protein increasement; identified proteins covering 2–10 unique spectra
were up by 266, making up 46% of total increased identified protein; the number of proteins
with >10 unique spectral counts decreased by 24, which equaled 4% of the total increased
number of identified proteins. In summary, the inclusion of a trap column on analytical
column yields more proteins, with ≤10 unique spectral counts identified, but sees a drop in
identified proteins with >10 unique spectral counts. This explains why only a 1.4% increase
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in unique spectral counts contributed to 24.2% increase in the number of identified proteins.
This is most likely due to the trap column’s focusing effect on peptides, 24 which narrow
peak width, raising the signal of low-abundance proteins above the detectable threshold
while reducing the total number of scans across the peaks of high-abundance proteins due
to fixed time per scan but narrowed peak width.
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injections are shown for the number of identified protein groups covering varying number of unique
spectral counts.

3. Materials and Methods
3.1. HeLa Digest

Pierce™ HeLa Protein Digest Standard (Catalog number: 88328) were reconstituted
to 100 ng/µL in 18.2 MΩ·cm water with 5% acetonitrile (ACN) and 0.1% formic acid for
nano-LC-tims-ToF Pro analysis.

3.2. Nano-LC

A Bruker nanoElute system (self-packed and pulled needle analytical column,
20 cm × 75 µm id, Waters BEH C18, 1.7 µm) was coupled between a trap column (Thermo
trap cartridge, 5 mm × 0.3 mm id, C18, 5 µm) and a dual trapped ion mobility spectrometer
coupled to a quadruple-time of flight mass spectrometer system (Bruker tims-ToF Pro,
Bremen, Germany). Binary mobile phases (A: 18.2 MΩ·cm water with 0.1% formic acid;
B: ACN with 0.1% formic acid) were employed at the flow rate of 300 nL/min. Column
and sample temperature were set at 50 ◦C and 4 ◦C, respectively. The injection volume was
1 µL.

3.3. Nano Electrospray Ionization (NSI)

A Bruker CaptiveSpray source is interfaced between the nanoLC and tims-ToF. It was
operated in the positive ion mode. The capillary voltage was 1.8 kV and the end plate offset
was 500 V. The nebulizer gas pressure was 0.4 bar. The dry gas flow rate was 3 L/min, and
the dry temperature was 180 ◦C.

3.4. Tims-Q-ToF

The tims was performed under the parallel accumulation serial fragmentation (PASEF)
mode. The inverse ion mobility (1/K0) ranged from 0.6 to 1.6 V·s/cm2. The Q-ToF mass-to-
charge ratio (m/z) range was set from 100 to 1700. PASEF and tims were set to “on”. One
scanning cycle includes one 100 ms MS and ten 100 ms PASEF frames. Each 100 ms PASEF
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frame acquires ten MS/MS spectra. A rolling collision energy from 76 to 123% of 42.0 eV
was employed. An active exclusion method was applied with a release after 0.4 min. If
the intensity ratio of a given precursor (within mass width error of 0.015 Da) to a previous
precursor is more than 4, the precursor will be acquired for a second MS/MS spectrum.
For m/z below 700 Da, the isolation width was set to 2 Da. For mass ranges from 800 to
1500 Da, the isolation width increased to 3 Da. Both the tims elution voltage and Q-ToF
were calibrated using Agilent ESI-L Tuning Mix (Catalog number: G1969-85000).

3.5. Liquid Chromatography Gradients

Five gradient profiles (linear, exponent-like, logarithm-like, stepwise, and step-linear)
were investigated for protein groups and unique spectral counts. These experiments were
conducted with trap column using 100 ng of HeLa digest on column. For all gradient
profiles, the initial composition was 3% B (A: 18.2 MΩ·cm water with 0.1% formic acid; B:
ACN with 0.1% formic acid), followed by 44 min ramps to 37% B in either linear, exponent-
like, logarithm-like, stepwise, or step-linear (Figure 13). The gradient was then increased to
80% B over 4 min and held at 80% B for 5 min. Finally, a 7 min oscillating column wash was
performed (1 min to 20% B/80% B/20% B, hold at 80% B for 1 min before ramping back to
3% B over 3 min). The oscillating section at the end of each gradient profile was designed
and tested as an effective and quick approach to clean the analytical column. Compared to
the end section of traditional gradient profile without an oscillating wash (e.g., stabilizing at
80% B isocratic for 9 min and then directly ramping to 3%), the oscillating wash in Figure 13
can be considered to have two additional minutes of gradient washes. As gradient elution
can shorten the overall analysis time [29] (namely, carryover components elute out faster),
the oscillation wash cleans column more effectively. Technical triplicates were acquired
under each gradient profile.
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Figure 13. Gradient structures. A set of 44 min gradient types (62 min run time) were comprised of
linear (blue), exponent-like (orange), logarithm-like (red), stepwise (purple), step-linear (green). For
the first 44 min, linear had a gradient of 3–37% B over 44 min; exponent-like had a gradient of 3–8%
B over 25 min, three 5 min serial gradients to 12% B, 17% B, and 25% B, prior to 37% B for 4 min;
logarithm-like had eight 5 min serial gradients from 3% B, to 12% B, 20% B, 25%, 29% B, 31% B, 32.5%
B, 33.9% B, and 35% B, prior to 37% B for 4 min; stepwise hold at initial 3% B for 5 min, gradient
(5 min) to and hold (5 min) at 10%, 20%, 30%, and 37%, successively; step-linear had a gradient of
3–17% B over 14 min, 17–25% over 20 min, 25–37% over 10 min.

Three-step-linear gradient durations (22 min, 44 min, and 66 min) were investigated
for protein groups and unique spectral counts under two sets of on-column sample loading
amounts (100 ng and 200 ng HeLa digest). These experiments were conducted with the
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inclusion of a trap column. As shown in Figure 14, for the 22 min gradient (orange), the
initial composition was 3% B, followed by serial ramps to 17% B (7 min), 25% B (10 min),
37% B (5 min), prior to ramping (2 min) to and holding (2.5 min) at 80% B, followed by
a 3.5 min oscillating column wash (0.5 min to 20% B/hold at 20% B for 0.5 min/0.5 min
to 80% B/hold at 80% B for 0.5 min before ramping back to 3% B over 1.5 min). The
44 min and 66 min gradients were designed to double and triple the time of each section in
22 min gradient. To evaluate the impact of using trap column on protein identification, one
additional 30 min gradient was added without trap column using 200 ng of HeLa digest.
Technical triplicates were acquired under each condition.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 15 
 

 

the first 44 min, linear had a gradient of 3–37% B over 44 min; exponent-like had a gradient of 3–8% 
B over 25 min, three 5 min serial gradients to 12% B, 17% B, and 25% B, prior to 37% B for 4 min; 
logarithm-like had eight 5 min serial gradients from 3% B, to 12% B, 20% B, 25%, 29% B, 31% B, 
32.5% B, 33.9% B, and 35% B, prior to 37% B for 4 min; stepwise hold at initial 3% B for 5 min, 
gradient (5min) to and hold (5 min) at 10%, 20%, 30%, and 37%, successively; step-linear had a gra-
dient of 3–17% B over 14 min, 17–25% over 20 min, 25-37 over 10 min. 

 
Figure 14. Step-linear gradient duration. The structures of the three step-linear gradients are shown 
for 22 min (orange 32 min run time), 44 min (green 62 min run time), and 66 min (blue 90 min run 
time). 

3.6. Data Analysis 
Raw data were searched against the Uniprot human database (20,577 entries, up-

dated 3 August 2021) using both PEAKS Studio (PEAKS XPro) [22] and MSFragger (ver-
sion 17.0) [23] search engines with consensus search parameters. An automated decoy da-
tabase search was utilized to calculate discovery rate. Mass tolerances on precursor and 
fragment were ≤20 ppm and ≤0.1 Da, respectively; protein cleavage was set at “sem-
ispecific” with a maximum of 2 missed cleavages per peptide. Data type was DDA, and 
the enzyme was trypsin, cleaving after residue K and R but not before P. For post transla-
tional modification (PTM), carbamidomethylation (C) was the fixed PTM and oxidation 
(M) and acetylation (protein N-terminal) were set as variable PTM. 

Exported datasets were further processed by removing duplicates based on the “pro-
tein group” (a group of proteins identified by the same set of peptides, and it cannot be 
determined these peptides are attributed to which of these proteins [30].) column and fil-
tering proteins by a 1% protein FDR cutoff for the number of unique spectral counts under 
each condition. The number of identified protein groups were filtered by ≥1 unique spec-
tral count per protein. Bar charts and Venn diagrams were plotted to compare the identi-
fied protein groups and unique spectral counts as well as the protein groups overlapping 
under different conditions. For the bar graphs, the number of protein groups identified 
were filtered based on the unique spectral counts of each technical replicate; while, for the 
Venn diagrams, the filtration was based upon the combined unique spectral counts across 
triplicate measurements. 

4. Conclusions 
This study refined the gradient conditions including gradient type, gradient dura-

tion, loading amount, and inclusion/exclusion of trap column to obtain optimal proteome 
coverage. Additionally, two database search engines (PEAKS Studio and MSFragger) 
were used and compared. The results indicate that step-linear gradient performed best 
among all tested gradients. Gradient durations depended on the loading amount, namely 

22 min 44 min 66 min

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

%
 B

time (min)

32 min 62 min 90 min

Figure 14. Step-linear gradient duration. The structures of the three step-linear gradients are shown
for 22 min (orange 32 min run time), 44 min (green 62 min run time), and 66 min (blue 90 min
run time).

3.6. Data Analysis

Raw data were searched against the Uniprot human database (20,577 entries, up-
dated 3 August 2021) using both PEAKS Studio (PEAKS XPro) [22] and MSFragger (ver-
sion 17.0) [23] search engines with consensus search parameters. An automated decoy
database search was utilized to calculate discovery rate. Mass tolerances on precursor and
fragment were ≤20 ppm and ≤0.1 Da, respectively; protein cleavage was set at “semispe-
cific” with a maximum of 2 missed cleavages per peptide. Data type was DDA, and the
enzyme was trypsin, cleaving after residue K and R but not before P. For post translational
modification (PTM), carbamidomethylation (C) was the fixed PTM and oxidation (M) and
acetylation (protein N-terminal) were set as variable PTM.

Exported datasets were further processed by removing duplicates based on the “pro-
tein group” (a group of proteins identified by the same set of peptides, and it cannot be
determined these peptides are attributed to which of these proteins [30].) column and
filtering proteins by a 1% protein FDR cutoff for the number of unique spectral counts
under each condition. The number of identified protein groups were filtered by ≥1 unique
spectral count per protein. Bar charts and Venn diagrams were plotted to compare the iden-
tified protein groups and unique spectral counts as well as the protein groups overlapping
under different conditions. For the bar graphs, the number of protein groups identified
were filtered based on the unique spectral counts of each technical replicate; while, for the
Venn diagrams, the filtration was based upon the combined unique spectral counts across
triplicate measurements.
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4. Conclusions

This study refined the gradient conditions including gradient type, gradient duration,
loading amount, and inclusion/exclusion of trap column to obtain optimal proteome cov-
erage. Additionally, two database search engines (PEAKS Studio and MSFragger) were
used and compared. The results indicate that step-linear gradient performed best among
all tested gradients. Gradient durations depended on the loading amount, namely a 44 min
gradient (62 min run time) worked best for 100 ng HeLa digest analysis (>3600 protein
groups identified), while a 66 min gradient (90 min run time) was optimal for a 200 ng
peptide analysis (>4000 protein groups identified). The use of a trap column improved
protein identification, especially for low-abundance proteins. High similarities were ob-
served between PEAKS Studio and MSFragger in protein identification and MSFrager
featured higher numbers of overlapping protein groups compared to PEAKS Studio. The
combination of both search engines was able to increase the total number of identified
proteins by 9–11%. For this study, we focused gradient conditions while keeping the rest of
the system constant (MS settings, chromatographic material, solvents, etc.). By keeping all
the other conditions constant, the results show that the proteome coverage can be improved
with changes to the gradient.
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