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Abstract

Through considerable effort in research and clinical studies, the immune system has been identified as a participant
in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune
cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research
concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to
demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several
years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive
immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells
with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive
phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune
response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during
different phases following stroke. In view of the limited treatment options available following stroke other than
tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses,
in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions
and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic
stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T
cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and
improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.
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Introduction

Stroke is not only one of the main causes of death but
also the primary cause of long-term disability worldwide;
however, extensive therapeutic options are lacking,
which creates a dominating economic and medical bur-
den [1]. Ischaemic stroke results from the blockade of
the blood vessels supplying the brain, accounting for
87% of all strokes in the USA [1] and is currently the
main focus of stroke research.

Stroke can occur at any age but mostly occurs at an older
age (beyond 65 years old) [2]. Elderly patients have an ele-
vated risk of complications and worse outcomes after treat-
ment compared with younger patients, partially due to
alterations in the immunological response to stroke [3].
Women are more vulnerable to stroke after menopause
than before menopause due to the lack of female gonadal
hormone protection, which may regulate T cells [4].

Despite numerous factors affecting the onset and pro-
gression of brain injury after stroke, the consistent, basic
process is intimately connected with the immune re-
sponse, including T cell responses. In the brain of
healthy people, only a few T cells enter the central ner-
vous system (CNS) and are found in the parenchyma,
perivascular space and cerebrospinal fluid (CSF) due to
the intact blood-brain barrier (BBB). These cells perform
immune surveillance to maintain CNS homeostasis in
cooperation with CNS-resident immune cells [5]. After
stroke onset, the acute cessation of the blood supply in-
duces primary irreversible tissue injury and results in
neural cell death, the site of which constitutes the is-
chaemia core; neural cell death results in a subsequent
release of damage-associated molecular patterns
(DAMPs). The ensuing brain injury that damages the
peri-infarct area (the penumbra) is caused by a rapid
cascade of events such as excitotoxicity, oxidative stress
and mitochondrial disturbance [6]. In the process of
neural cell death, different cellular signalling pathways
that regulate autophagy and apoptotic cell death (Mstl,
ULK]1, Bax, Caspase-3 and Bcl-2), necroptotic cell death
(TRAF2 and RIPK1/RIPK3/MLKL) [7], the cellular
metabolic state (TSC1/TSC2, p-mTOR, and mTORC1),
the oxidative defence system (FoxOl, B-catenin/Wnt,
and Yapl) and inflammatory reactions (jak2/stat3 and
Adamts-1) are changed [8-10]. However, the cellular
signalling pathways related to jak2/stat3 and Adamts-1
involved in regulating inflammatory reactions are found
to be predominantly localized in macrophages/microglia
[9] in the post-ischaemic brain, which may account for
the fact that these pathways first trigger inflammation in
brain-resident immune cells, including microglia and
macrophages [11], after ischaemic stroke onset. With
the release of inflammatory factors, cytokines, chemo-
kines and DAMPs, a large number of peripheral immune
cells infiltrating the injured site participate in innate and
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adaptive immune responses. Additionally, neutrophils,
monocytes and CD8" cells are regarded as the first per-
ipheral immune cells to invade the injured brain within
hours after stroke onset [11]. Subsequently, CD4" cells
are reported to infiltrate the brain approximately 24 h
after ischaemia [11]. Regulatory T (Treg) cells remain in
the injured brain for more than 30 days after ischaemia
to control the aggravation of inflammation by regulating
the levels of inflammatory factors [12]. Nonetheless, the
roles of T cells in tissue damage and repair have not
been completely elucidated.

Over the past 20 years, a number of studies have con-
sidered the immune system to have vital effects on the
process and development of brain injury following is-
chaemia, especially the recruitment and function of mac-
rophages and neutrophils rather than T cells in the
injured brain. However, recently, due to the variety of T
cell types, an increasing number of researchers have
found T cells to be vitally involved in the onset and pro-
gression of ischaemic stroke because these cells not only
promote the occurrence of inflammation by infiltrating
the injured brain in the early stages after ischaemic
stroke [13] but also exert effects on repair and functional
improvement in the late stage after ischaemic stroke
[14]. T helper (Th) 1 and Th2 cells were the first subsets
of Th cells identified [15]. Then, Th17 cells, which dif-
ferentiate in the presence of both TGF-$ and IL-6, were
recognized to generate proinflammatory cytokines [16].
The expression of Foxp3 is a characteristic of Treg cells
that exert immunomodulatory functions [17]. Follicular
T helper (Tth) cells in the follicles were found to facili-
tate B cell responses [18]. Some subsets of T cells, such
as Th9, Th22 and Th25 cells, are recognized by the pro-
duction of different cytokines (expressing IL-9, IL-22
and IL-25, respectively) [19-21]. CD4loCD40+ T cells,
recognized as Th40 cells, were found to greatly expand
under autoimmune conditions and play a vital role in
type 1 diabetes [22]. The diverse subsets of T cells are
simply presented in Fig. 1.

Here, we described the different subsets of T cells and
identified several vital T cell subsets related to acute and
chronic processes during ischaemic stroke, especially
Thl, Th2, Thl7, y§ T, Treg and even Th40 cells. We
also reported several very promising therapeutic targets
related to the modulation of T cell responses to improve
the strengths of immune responses in the injured brain.
Further research towards understanding the mechanisms
modulating the emergence of cerebral inflammation me-
diated by T cell subsets may facilitate the development
of a novel or adjunctive way to treat stroke.

Subsets and plasticity of Th cells
CD4" cells (Th cells) exert distinct effects during the im-
mune response. Remarkably, Th cells have the capability
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of differentiating into subsets with functionally diverse
phenotypes, such as Thl, Th2, Th9, Th17, Th22, Th25,
Th40, Tth and Treg cells, in response to different cyto-
kine milieus and antigen stimulation [23, 24]. It is widely
known that the differentiation of Thl cells is induced by
successive responses to interferon (IFN)-g and interleu-
kin (IL)-12, which are initiated by coordinated signalling
through the communication between STAT1-associated
cytokine receptors and T cell receptor (TCR) [25]. Thl
cells have been shown to enhance and promote the elim-
ination of certain intracellular pathogens [15]. Through
the interaction between TCR signalling and IL-4 recep-
tor signalling mediated by STAT6, which may react syn-
ergistically to upregulate low expression of GATA-3, a
subset-determining transcription factor of Th2 cells,
Th2 differentiation is induced [26], and Th2 cells func-
tion to enhance the clearance of parasites [15]. Th1l7
cells generate proinflammatory effector cytokines, in-
cluding IL-17A, IL-17F, IL-22 and IL-26; of these cyto-
kines, IL-17A and IL-17F modulate tissue inflammation
by inducing the secretion of proinflammatory cytokines
and chemokines, such as IL-1p and IL-6 [27, 28]. Com-
pared with their proinflammatory role, the regulatory
role of Th17 cells, which involves suppressing Th17-
induced inflammation, may be linked with IL-10 and IL-

21 by Foxp3" Treg cells and type 1 regulatory T (Trl)
cells [29]. It has been reported that exposing effector
cells to TGF-p and IL-6 sustainably drives the produc-
tion of IL-17 and IL-10, which is important in modulat-
ing the level of the potentially detrimental Th17 cell-
mediated immune response in an experimental auto-
immune encephalomyelitis (EAE) model [30]. Th9 cells
are a newly discovered CD4" Th cell subset that mainly
secrete the lineage-specific cytokine IL-9 [19, 31]. Based
on the discovery study, Th9 cells have indispensable
roles in the initiation and development of immune re-
sponses [32]. Generally, Th9 cells are proinflammatory
and participate in various immune-related diseases,
highlighting their pathological roles in inflammation and
the immune system [33]. However, Th9 cells are also re-
ported to have a protective effect on parasitic infections,
indicating that these cells have various functions [33].
Th22 cells are localized in the skin by their high expres-
sion of CCR4, CCR6 and CCR10 [20, 34], and IL-22 has
been shown to activate innate immune responses against
pathogenic bacteria, especially in respiratory and gut epi-
thelial cells [35], which indicates their essential roles in
skin homeostasis and skin disease pathogenesis. Import-
antly, it has been reported that activation of AHR, a
subset-determining transcription factor of Th22 cells,
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after acute ischaemic stroke plays a vital role in brain is-
chaemic injury by modulating astrogliosis and neurogen-
esis [36]. In addition, Th22 cells are closely related to
multiple types of diseases, such as infections, auto-
immune diseases, hepatitis, pancreatitis, rheumatoid
arthritis (RA) and tumours, because of the wide distribu-
tion of IL-22R [37]. The Th25 cell-secreted cytokine IL-
25 was reported to be related to Th2 responses [21].
Furthermore, IL-4, IL-5 and IL-13 gene expression in-
duced by IL-25 results in a Th2-like response character-
ized by increased serum levels of IgE, IgG1 and IgA;
blood eosinophilia; and a series of pathological changes,
including infiltration of eosinophils, increased produc-
tion of mucus and hyperplasia/hypertrophy of epithelial
cells in the lungs and digestive tract and participates in
the clinical evolution of leprosy in cooperation with the
Th2 cytokine profile [35, 38, 39].

When CD40 is uniquely expressed on T cells, distinct
from the receptor expressed on antigen-presenting cells
(APCs), it serves as a functional receptor on T cells,
representing a new T cell subset [40]. Studies have found
that Th40 cells (CD4loCD40+ T cells) produce IFN-y
(signal of Thl cells) and IL-17A (signal of Th17 cells)
[41], are proinflammatory and balance Treg cells to
maintain a homeostatic state and that Th40 cells from
healthy bodies are able to produce regulatory Th2 cyto-
kines to control autoimmunity, while pathogenic Th40
cells expand quickly throughout the progression of dia-
betes [42, 43]. Th40 cells not only have vital effects in
autoimmunity [44] but also importantly play a pivotal
role in the injured brain after cardiac arrest and cardio-
pulmonary resuscitation (CA/CPR) in mouse models
[45]. Tth cells, which are characterized by their expres-
sion of CXCR5 [18, 46], a B cell homing chemokine
CXCL13 receptor, are a novel subset of T cells that play
essential roles in facilitating B cell responses, including B
cell affinity maturation, class switch recombination and
plasma and memory B cell maintenance for humoral
memory [47-49]. Studies have also verified that both
Tth cells and CD8" T cells share key features of a mem-
ory cell precursor gene expression programme contain-
ing Bcl6 and IL-17Ra, indicating that Tth cells have the
capacity to form memory early [50]. However, they have
not been researched in stroke.

Treg cells are divided into two populations, Foxp3" Treg
cells and Foxp3™ Treg cells, the latter of which includes
Th3 and Trl cells [51]. Foxp3™ Treg cells exert vital func-
tions involved in downregulating the pathological T cell
response through secretion of the anti-inflammatory cyto-
kines IL-10 and TGE-P [17, 52], while Tr1 cells play their
regulatory role by affecting different target cells, including
effector CD4" and CD8" T cells, myeloid APCs and B cells
[53]. There are also interactions between the two types of
Treg cells, and it has been demonstrated that Foxp3™ Treg
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cells are required for the initial stage of inflammatory tar-
get organ tolerance induction, while Tr1 cells have an im-
portant effect on the maintenance of long-lasting
tolerance [54, 55]. Recently, numerous studies have re-
vealed the mechanisms underlying Treg cell participation
in tissue regeneration, which occurs not only through
tissue-specific anti-inflammatory effects but also through
direct regenerative mechanisms [56, 57]. Th3 cells primar-
ily secrete TGF-p, which is distinct from TGE-p secreted
by Th2 cells, to provide help for IgA and suppress func-
tions of Thl and other immune cells in the gut [58]. Th3
cells are mainly induced by oral antigens, and enhanced
differentiation from ThO precursors can be achieved by
culture with TGF-f, IL-4, IL-10 and anti-IL-12 antibodies
[59]. Furthermore, Th3 cells secreting TGF-} are capable
of suppressing systemic autoimmune and inflammatory
responses to treat related diseases [60]. Tr1 cells generate
immunosuppressive cytokines, including IL-10 and TGE-
B, to inhibit the effects of effector immune cells and are
reported to be induced upon antigen exposure [53]. Add-
itional studies have tested the protective role of Trl cells
in various mouse models, including models of multiple
sclerosis, intestinal inflammation, EAE and even NOD
mice with diabetes [61]. Nasal tolerance in models of ath-
erosclerosis, cardiac ischaemia, lupus and stroke has also
been identified [62]. Mucosal antigens have also been
found to effectively treat animal models of stroke, but the
underlying mechanisms remain to be elaborated [63]. In
conclusion, recent reports indicate that endogenous Treg
cells exert a neuroprotective function by secreting TGF-3
and IL-10 and have a protective effect against ischaemic
brain injury by increasing the number of Treg cells in the
circulation [64]. Therefore, the function of Treg cells after
ischaemia needs to be explored in depth.

Although there are many diverse subsets of CD4" T
cells, the plasticity of Th cells has been extensively re-
ported and is contrary to previous views stating that the
functions of distinct T cell subsets are irreversible. Ini-
tially, Th1, Th17, Th22 and Th40 cells were classified as
a group that predominantly protects against extracellular
pathogens by secreting cytokines with the same function,
while Th2, Th9 and Th25 cells were thought to mainly
exert functions in autoimmune disease and allergic in-
flammation [39, 65, 66]. Notably, it appears that induced
Treg (iTreg) cells (induced in the periphery) and Th17
cells may be relatively unstable and have flexibility in
their differentiation and function because of the unstable
expression of Foxp3 by iTreg cells and that of IL-17 by
Th17 cells [67, 68]. Th17 cells have been shown to
transdifferentiate into Treg cells by altering their charac-
teristic transcriptional profile and acquiring potent regu-
latory properties through the effects of TGF-p signalling
and AHR, indicating that Th17 cells may secrete anti-
inflammatory cytokines to attenuate inflammation [69].
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Likewise, Th17 cells have been reported to shift into  stroke induction model studied. By comparing Ragl ™'~
nonclassical Thl cells and Th2 cells in the presence of — mice reconstituted with B cells to Ragl ™'~ mice reconsti-
IL-12 or IL-4, respectively [70, 71]. Treg cells have been  tuted with CD3" T cells, studies have indicated that T
demonstrated to be capable of becoming Thl cells in cells likely have a vital effect on early stroke evolution and
the presence of IL-12 in vitro and attaining Treg-Th17  exert a detrimental effect as early as 24 h after stroke
plasticity in the presence of IL-6 and TGF-f [72, 73].  through an antigen-independent mechanism [77-79]. Our
There are other transitions, such as Th2 cells transform-  study showed that the protective roles of T cell deficiency
ing into Th9 cells and ThO cells in response to TGF-B or  in brain injury after ischaemic stroke were relevant to
IL-12/IFNs, respectively, and Th9 cells converting into  transient middle cerebral artery occlusion (tMCAOQ) in a
the Thl phenotype and subsequently producing IFN-y  rodent model, indicating that reperfusion after ischaemic
in vivo [74-76]. That means that some cell subsets can  stroke might be closely related to T cell responses [80].
transform each other to maintain homeostasis. These  Additionally, a study found that depletion of CD4* T cells
findings provide novel insight into the immune response  or CD8" T cells reduced infarct volume in late stages after
of T cells after ischaemic stroke and a more comprehen- tMCAO [81]. Different studies and results indicate that

sive understanding of the functions of T cell subsets. distinct T cell subsets invade the brain dynamically and

play various roles in the different stages after experimental
T cells and ischaemic stroke (Fig. 2) ischaemic stroke (Table 1). Studies have shown that T cell
Spatial and temporal features of T cell responses after infiltration occurs from hours to 30 days after stroke. Re-
ischaemia searchers have not arrived at a consistent or definite con-

Several studies using recombination activation gene clusion on the time of peak T cell infiltration into the
(Rag)-deficient mice and severe combined immunodefi- injured brain after stroke.

ciency (SCID) mice, which both lack T cells and B cells, Gelderblom et al. found that T lymphocyte numbers
have shown significantly reduced infarct volumes and were increased in the infarcted hemisphere on day 3
lower neurological deficits in these mice compared with  after experimental ischaemia reperfusion (I/R) and re-
the corresponding wild-type mice, regardless of the ported that significant infiltration of CD47/CD8”
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Table 1 Temporal T cell responses in different models
Author Animal model T cell types Peak time Year
Yilmaz [82] 60 min MCAO CD4™ T cell 24h 2006
Hurn [83] 90 min MCAO Spleen T cell 22h 2007
Gelderblom [84] 60 min MCAO CD4* T cell 3 days 2009
60 min MCAO CD4°CD8" lymphocytes 1/3 days 2009
Kleinschnitz [85] 60 min MCAO CD4" T cell 24h 2010
Brait [86] 30 min MCAO CD3* Tcell 1 days 2010
Saino [87] pMCAO CD4™ T cell 3h 2010
Deng [57] 6/8 min CA/CPR T cell 3h 2014
Liesz [88] pMCAO CD3" T cell 7/14 days 2013
Stubbe [7] 30 min MCAO Treg 14/30 days 2013
Vindegaard [89] pMCAO CD3* Tcell 14/28 days 2017
Xie [90] 90 min MCAO CD4* and CD8™ T cell 1 month 2018

lymphocytes occurred on days 1 and 3, while the infiltra-
tion of CD4" cells increased on day 3 after experimental
I/R [91]. Additional studies demonstrated that T lym-
phocytes (CD3" cells) significantly increased in number
within the cerebral infarct and in peri-infarct areas, with
significantly fewer T lymphocytes in the spleen at 24 h
after experimental I/R, while the number of T lympho-
cytes in the circulation was unchanged at the same time
[77, 92, 93]. Our studies also found that stroke could in-
duce lymphopenia and reduce splenocyte T cell numbers
due to the roles of T cells at 48 or 72 h after stroke [94, 95].
Saino et al. found that CD4" cells infiltrated the infarct cor-
tex within 3h after stroke [96]. Another study demon-
strated that Th40 lymphocyte numbers were elevated 3 h
after cardiac arrest, a cause of ischaemic stroke, and CA/
CPR, decreased greatly in 24-h, and increased again on day
2 and day 3 [45].

Liesz and co-workers used spectratype/immunoscope
analysis to demonstrate that the number of CD3" T cells
peaked at 7 days after permanent middle cerebral artery
occlusion (pMCAQO) and that clonal T cell expansion

occurred in T cells isolated from the ipsilateral brain at
7 days after pMCAO and in T cells isolated from the
spleen at 14 days after pMCAO [82]. Moreover, Xie
et al. showed that CD4"* and CD8" T cells exhibited pro-
longed activation after experimental ischaemic stroke,
indicating that these cells had a greater role in neuronal
repair than Treg cells [85]. Vindegaard and Munoz-
Briones found an obvious increase in CD3" T cell num-
bers within the ipsilateral brain, not only within the in-
farct core but also within the corpus callosum on days
14 and 28 after pMCAO [97]. Stubbe et al. demonstrated
that Treg cells accumulated and proliferated in the ipsi-
lateral brain on days 14 and 30 post-stroke and were ac-
companied by increases in the number and activation of
microglia after tMCAO [12]. In two previous studies, the
authors demonstrated an obvious increase in T cell infil-
tration in the injured brain on day 7 through day 30 or
60 of the post-stroke inflammatory response in rodents
after cerebrocortical photothrombosis or pMCAO, re-
spectively [98, 99]. These results show that T cells may
exert a detrimental function in the early stage while

Table 2 Characteristic of T cells infiltrating into the injured brain in acute and chronic phases after

Author Animal model Acute phase (within 7 days) Chronic phase (after 14 days) Year
Stubbe et al. [7] 30 min MCAO CD4™ T cells and Tregs elevating in the More CD4* and Tregs elevating in the 2013
peri-infarct and infarct area with MHCII+ ischemic hemisphere consistent with
DCs and MHCIl+ macrophages after increasing MHCII+ microglia, DCs and
ischemic stroke macrophages in the injured brain after
ischemic stroke
Vindegaard et al. [89] pMCAO Only a few CD3* T cells infiltrating into A high number of macrophage/microglia 2017
the brain, predominantly located to the infiltrating the infarct area and increasing
meningeal areas or in close proximity to T cell numbers within the infarct core and
a vessel, in the vicinity of the infarct with the corpus callosum
a few macrophage/microglia infiltrating
the infarct area
Xie et al. [90] 90 min MCAO Activated/memory phenotype of T cells Greater proportion of activated/memory 2018

(either CD4" or CD8") infiltrating the
ischemic hemisphere

T cells than the acute phase with CD25, a
T cell activation antigen, increasing in both
brain-invading CD4* and CD4™ T cells
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polarization. M1 microglia also induce and recruit Th1 cells by secreting IL-12 and TNF-a and expressing chemokines, such as CXCL9 and CXCL10.
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the injured brain in the early stage after brain injury. y5 T cells secrete proinflammatory IL-17 to aggravate brain injury. Moreover, y§ T cells and
Th17 cells activate proinflammatory microglia by modulating the FasL/PTPN2/TNF-a signalling pathway, which aggravates ischaemic brain injury.
Treg cells interact with microglia and modulate microglial polarization from the M1 phenotype into the M2 phenotype via IL-10, and they also
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playing a protective role in the late stage of the inflam-
matory response after ischaemic stroke. However, the
mechanisms and functions of T cells in the CNS remain
to be clarified (Table 2). Although we know that Th cells
exert different functions at different stages after stroke,
Th cells are divided into several subsets, and we have to
clarify which of these subsets play a dominant role dur-
ing the onset and development of stroke.

Different T cell subsets infiltrating the injured brain

(Fig. 3)

Th1 and Th2 cells related to brain injury

We identified that Thl and Th2 cells have vital effects
on the early phase of the post-stroke inflammatory re-
sponse by evaluating the infarct sizes and neurological

scores 2days after stroke in a Thl- and Th2 cell-
deficient mouse model [84]. Th1l cells and Th2 cells have
different impacts on ischaemic brain injury. Thl cells se-
crete proinflammatory cytokines, such as IFN-y and che-
mokines, and produce numerous reactive oxygen species
(ROS) and nitric oxide to destroy the BBB. Th2 cells se-
crete anti-inflammatory cytokines, such as IL-4, IL-10
and IL-13, to promote nerve growth factor (NGF) pro-
duction, debris removal, tissue remodelling and repair,
and angiogenesis after brain ischaemia [83, 86]. Interest-
ingly, Th1/Th17 cells and Th2 cells separately perform
crosstalk with M1 and M2 microglia [100]. Initially,
microglia are derived from macrophages that undergo
migration and differentiation in the process of original
haematopoiesis in the foetal yolk sac, and then they are
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localized in the brain with the ability to proliferate in the
process of neonatal growth, while granulocyte-monocyte
progenitors are the precursors of macrophages in the pe-
riods of development and adulthood [87, 101]. Both
microglia-derived macrophages (MiDM) and monocyte-
derived macrophages (MoDM) in the injured brain show
the capabilities of polarizing into a proinflammatory or
anti-inflammatory (M1 or M2, respectively) phenotype
and performing phagocytosis function, as well as exhibit-
ing a high degree of morphological plasticity [101].
However, MiDM perform more vital roles due to their
abilities to facilitate neuronal viability and modulate
neuronal excitability as well as secrete NGF [88]. At the
same time, activation of MiDM relies on ATP/ADP sig-
nalling, which may account for the number of MiDM
being influenced by energy deficiency and alterations in
local blood perfusion [89, 90]. Thl cells can promote
M1 polarization through the induction of proinflamma-
tory cytokines, including TNF-a and IFN-y [102]. M1
microglia also induce and recruit Thl cells by secreting
IL-12 and TNF-a and expressing chemokines, such as
CXCL9 and CXCL10 [103]. Th2 cells promote M2
polarization by secreting anti-inflammatory cytokines
(IL-4, IL-10 and IL-13) [102, 104, 105] and increase the
levels of insulin-like growth factors, neurotrophic factors
secreted by microglia, to augment the neuroprotective
role of microglia [83, 106, 107]. M2 cells can induce and
recruit Th2 cells by secreting IL-4, CCL17, CCL22 and
CCL24 [102, 103]. Th17 cells have also been shown to
cause brain injury through crosstalk with M1 microglia
via secreted IL-17 [100]. A recent study found that Th2/
Th17 cells could enhance blood perfusion in ischaemic
injury by regulating angiogenesis and inducing endothe-
lial sprouting [108]. However, there are studies implying
that M1/M2 cells have complicated roles in view of the
complexity and diversity of M2 subtypes [74] and the
phenotypic transformation between M2 and M1; these
studies have identified that both M1 cells and M2 cells
have proinflammatory and anti-inflammatory functions
[101] rather than oversimplified single functions and
that the functions of these cells are more complex
in vivo than in vitro and are harder to study in humans
than in mice. Whether and how these functions occur
after ischaemic stroke remain to be elucidated.

Th40 cells related to brain injury

Deng et al. identified a new T cell subset, the Th40 cell
subset, that is proinflammatory, secretes both IFN-y and
IL-17A and infiltrates the injured brain in the early stage
(within 3 h) after CA/CPR or global cerebral ischaemia
to contribute to neuronal injury [45]. Additionally, Th40
cell numbers increase again at 72 h, indicating a role in
the sustained immune response [45]. Many studies have
identified roles for these cells in autoimmune diseases,

Page 8 of 17

such as type 1 diabetes. Nonetheless, little is known
about the roles of Th40 cells in the MCAO mouse
model of ischaemia. More studies on Th40 cells in the
injured brain after ischaemic stroke are needed.

I'6 T and Th17 cells related to brain injury

Shichita et al. proposed that y0 T cells, not Thl7
cells, secrete proinflammatory IL-17 to aggravate I/R
brain injury in the delayed phase (day 3) [109], al-
though a previous study identified that IL-17-
producing cell numbers peaked 3-5days after injury
in the ipsilateral cerebral hemispheres of patients fol-
lowing ischaemic stroke [110]. CD3*CD4 CD8 T
cells, also recognized as double-negative T cells
(DNTs) and including y§ T cells, have been shown to
coordinate immune and inflammatory homeostasis to
exert functions in peripheral immune-related diseases
[111, 112]. Subsequently, Meng et al. discovered that
the number of DNTs was significantly elevated in a
time-dependent manner, in both the injured brain
and the peripheral blood, in both stroke patients and
an MCAO mouse model. The experimental model
showed that DNTs prominently infiltrated the injured
brain from day 1 to day 3 after MCAO. The infiltrat-
ing DNTs activated proinflammatory microglia by or-
chestrating the FasL/PTPN2/TNF-a signalling pathway
and then augmented cerebral immune and inflammatory
responses to aggravate ischaemic brain injury [113]. None-
theless, there are studies supporting the conclusion that
Th17 cells play a detrimental role in the chronic phase of
ischaemic stroke. These cells were found to exist in the in-
jured brain at 1week after traumatic brain injury (TBI)
and drove the cytotoxicity of CD8" T cells at the later
stage, which potentiated the detrimental effects of CD8" T
cells seen in TBI [114, 115]. Likewise, increasing levels of
IL-17 associated with worse neurological outcomes were
found in the peripheral blood through 3 days after stroke
onset in stroke patients [116, 117]. It remains to be clari-
fied which types of immune cells are responsible for pro-
ducing IL-17.

Studies have also found that yd T cells link the innate
immune response with the adaptive immune response.
Because studies have shown that the acute adverse ef-
fects of T cells following acute ischaemic stroke are not
associated with adaptive immune mechanisms, such as
antigen recognition or costimulatory pathways [78], Y&
T cells and natural killer T (NKT) cells may play detri-
mental roles in brain injury through the innate immune
response.

Treg cells related to brain injury

Liesz et al. demonstrated that Treg cells were acti-
vated 5days after MCAO and restrained to the peri-
infarct zone, playing a protective role after brain
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injury [14]. Furthermore, Treg cells prevented second-
ary infarct growth by suppressing excessive produc-
tion of proinflammatory cytokines and by
orchestrating infiltration of lymphocytes and microglia,
mainly via IL-10 signalling [14], in the ischaemic brain.
Treg cells interact with microglia [100] and modulate
microglial polarization from the M1 phenotype to the M2
phenotype via IL-10 [118]. Interestingly, a study showed
that Treg cells gathered in the ipsilateral cerebral hemi-
sphere during the chronic phase of ischaemic brain injury
and regulated astrogliosis by producing the cytokine
amphiregulin (Areg) [57]. Studies have also shown that
Treg cells may adapt to different tissue environments by
expressing distinct genes related to the tissue site and aug-
ment neurological recovery by suppressing neurotoxic
astrogliosis by producing Areg in the context of the
massive amplification and infiltration occurring in the
chronic phase of stroke [119]. The 5-HT, expression rep-
resents a specific way, one of hundreds, to amplify brain
Treg cell functions [119]. Conversely, the function of Treg
cells is controversial due to Treg cell depletion leading to
a better outcome within 24 h and no progression until 1
week by ameliorating microvascular thrombus formation
[120]. Additionally, Kleinschnitz et al. verified that Treg
cells exerted a detrimental effect on mice with acute is-
chaemic stroke by inducing dysfunction in the cerebral
microvasculature in the early phase [120]. In addition, the
phenomenon of stroke-induced immunosuppression char-
acterized by lymphopenia presents with a reduction in
natural killer (NK) cell, B cell and T cell numbers in the
peripheral blood and spleen and is thus vulnerable to bac-
terial infection, especially urinary tract infection and pneu-
monia in the subacute and chronic stages of ischaemic
stroke [86]. This immunosuppression poses the question
of whether adoptive transfer of Treg cells will create a
more unbalanced immune state leading to an increase in
the incidence of infection. Luckily, Li et al. revealed that
Treg cells not only contribute to brain tissue protection
and modulate CNS damage from a peripheral location but
also regulate the homeostatic equilibrium of peripheral
immune responses, such as simultaneously correcting im-
munosuppression and attenuating peripheral inflamma-
tion [121]. Previous literature has shown that Th cells
possess plasticity, indicating that Th17 cells can transform
into another T cell subset (such as Treg cells) within the
injured brain during the process of neuroinflammation
[69].

Nonetheless, neutrophils are still recognized as one of
the first cells to infiltrate the injured brain, causing BBB
disruption, cerebral oedema and brain injury, which indir-
ectly prompt the infiltration of T cells [122]. In conclu-
sion, more research is required to elucidate the biological
roles of Treg cells to better understand how to modulate
the immune system and facilitate healing after stroke.
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Functions of CD4* and CD8" T cells related to stroke

Feng et al. found that chronic colitis exacerbated brain
injury after stroke by inducing gut-derived CD4" T cells
to create an imbalance in M1 and M2 microglia/macro-
phages and increase the numbers of non-gut-derived
CD4" T cells infiltrating the brain [123]. CD4" T cells
have been identified to aggravate brain inflammation
and induce neuronal death [100, 123]. Removal of the
CD4" T cell population attenuates apoptosis and en-
hances neurogenesis, while the elimination of CD25" T
cells, which include Treg cells, impairs functional recov-
ery partly through the inhibition of neurogenesis after
permanent experimental stroke [96]. Nonetheless, re-
searchers have demonstrated that reducing astrogliosis
and/or preserving neurogenesis play a vital role in pro-
tecting the injured brain during the repair stage after
stroke [36, 119]. It is not clear which subsets of T cells
are primarily responsible. Other researchers have identi-
fied that CD8" T cells not only infiltrate the site of col-
lateral vessel growth but also recruit CD4" mononuclear
cells to this site via the cytokine IL-16 after femoral ar-
tery ligation [124]. Interestingly, studies have found that
stroke-induced immunodepression may be protective by
reducing naive T cell and CD8" CD45RA" effector
memory T cell (TEMRA) numbers to attenuate detri-
mental long-term antigen-specific immune responses in
the CNS [125].

Therapy related to T cells and stroke (Table 3)
Cytokines, small molecules, neutralizing antibodies and
cell epitopes as targets

We identified that IL-4 knockout (KO) mice have worse
neurological outcomes than wild-type mice due to the
increases in the Th1/Th2 ratio and Thl polarization as-
sociated with greater injury [126]. Another study pro-
posed that the source of IL-4 is neurons rather than T
cells in tissue in the context of ischaemic brain injury,
and the authors proposed that administering recombin-
ant mouse IL-4 (rIL-4) subcutaneously could have a de-
layed role in protecting ischaemic brain tissue and
improving outcomes, probably by polarizing the micro-
glia into the healing M2 phenotype [148]. The specific
mechanism remains to be clarified. Li and co-workers
showed that astrocytic IL-15 could increase the severity
of post-ischaemic brain injury by activating NK-, CD8"
T- and CD4" T cell-mediated immunity [127]. Lee et al.
identified that ablation of IL-15 using an anti-IL-15 neu-
tralizing antibody decreased brain damage after ischae-
mic stroke by decreasing NK, CD8" T and CD4" T cell
infiltration into the brain [128]. However, IL-15 was also
reported to defend astrocytes against oxygen-glucose
deprivation (OGD)-induced damage and death, and as-
trocytes could protect neurons from ischaemic injury
and sustain BBB integrity [129], which are contradictory
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Table 3 Stroke therapy related to T cells

Target therapy Experimental Function Molecular mechanism Reference

model

Cytokines, small molecules, neutralizing antibodies, cell epitopes

IL-4/rlL-4 injected Mouse model Increasing Th2 cells and promoting Exerting the function of IL-4 Zhao et al. [124]
subcutaneously polarization of microglia to the

healing M2 phenotype
IL-15/IL-15 neutralizing Mouse model Decreasing NK, CD8" T and CD4* Exerting the function of IL-15 Lee et al. [126]
antibody injected T cells infiltrating the brain
subcutaneously
IL-21/IL-21 receptor Mouse model Blocking T cell-derived IL-21 to Exerting the function of IL-21 Clarkson et al. [127]

reduce CD4" and CD8" cells infiltrating
the brain and attenuate neuronal
autography

Fc protein injected
intraperitoneally

IL-33/IL-33 injected
intraperitoneally

Male mouse model  Suppressing Th1 cell response as Xiao et al. [128]

well as improving Treg cell response

Downregulating the expression
of the transcription factor T-bet
and upregulating the expression
of GATA-3 and Foxp3

PD-1/humanized Mouse model/ Increasing the appearance of CD8" Unclear Bodhankar
anti-PD-L1 antibody clinical trial regulatory T cells in the lesioned etal. [129],
brain and decreasing CNS infiltrating Zhang et al.
immune cells
DHA/DHA injected Mouse model Attenuating the infiltration of T cells Reducing the production of Cai et al. [130]
intraperitoneally into injured brain tissue and promoting CCL3, CCL17, CXCL10 and CXCL12
polarization of microglia to the healing to decrease the quantity of T cells
M2 phenotype
GSF/GSF injected Rat model Attenuating the recruitment of Reducing blood-brain barrier Dietel et al. [131]
intraperitoneally T cell in post-stroke injured brain disruption
CXCL14/2- Rat model Inducing Treg differentiation Promoting accumulation of iDC Lee et al. [132]
methoxyestradiol to secrete IL-2 to induce Treg
injected differentiation
intraperitoneally
ACC1/(caloric Mouse model Balancing peripheral regulatory Inhibiting the ACC1 enzyme Wang et al. [133]
restriction) T cells/T helper 17 (Th17) cells
CD28/CD28SA Mouse model Expanding and amplifying Treg Boosting the production of IL-10  Na et al. [134]
injected cells that produce IL-10

intraperitoneally

TLR/The antibodies
of TLR2, TLR4 and
TLR8

RTLs/RTL551,
RTL100 ] injected
subcutaneously

Glycyrrhizin
(Gly)/injected
intraperitoneally

Exogenous
vitamin
D3/injected
intraperitoneal
injection

Cells

Intravenous
cellular/injected
intravenously
(MAPCs)

Treg

Treg/antibiotic-
induced intestinal
flora alteration

Vitro study

Male DR2-Tg mice

Mouse/rat model

Mouse model

Animal model/
clinical trial

Mouse model

Reducing the activation of T cells

Inhibiting the activation or infiltration

of CD3* T cells and other
proinflammatory cells

Inhibiting the activation of CD8" T

and CD4* T cells

Reducing Th17/y8 T cell response
and increasing Treg cell response

Reducing proinflammatory cells
including CD3* T, CD4" T and
CD8* T cells and promoting Tregs

Increasing regulatory T cells and
reducing IL-17* y& T cells

Unclear

Modulating T cell functional
properties and blocking immune
cells infiltrating the brain

Inhibiting HMGB1 release, which
promoted T cell proliferation

Reducing the expression of
proinflammatory mediators IL-6,
IL-1B, IL-23a, TGF-3 and NADPH
oxidase-2 and expression of the
transcription factor, ROR-y

Relating to multiple mechanisms
of action

Altering dendritic cell activity to
induce Treg cell differentiation
more effectively

Tang et al. [135]

Zhu et al. [136]

Xiong et al. [137]

Evans et al. [138]

Mays et al. [139]

Benakis et al. [140]
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Target therapy Experimental Function Molecular mechanism Reference
model
Treg/adoptively Mouse model Increasing the number and/or Unclear Xia et al. [141]
transferred Treg function of Treg
Brain antigen/ MBP Male rat model Suppressing Th1 response and Inducing mucosal tolerance Gee et al. [142]
intranasal increasing the probability of Tr1,
instillation E SHR-SP rat model Th3 or other Tregs responses Chen et al. [143]
selection
MOG Female rat model Frenkel et al. [144]
Drugs
Levodopa/ Rat model Reducing CD8" cells infiltrating Reducing the expression of Kuric et al. [145]
benserazide/ the injured brain ICAM-1 on endothelial cells in
injected the brain to inhibit adhesion

intraperitoneally

Natalizumab/ Clinical trial Blocking T cell infiltration into
injected the brain

intravenously

Fingolimod/orally Clinical trial Reducing peripheral lymphocytes

of cytotoxic T cells infiltrating
the brain parenchyma

Blockade of the a4-31 integrin
on leukocytes

Veltkamp et al. [146],
Fu et al. [147]

An oral S1P receptor modulator
that sequesters lymphocytes
to lymph nodes

Veltkamp et al. [131],
Fu et al. [147]

to IL-15 deficiency exerting a protective role in brain in-
jury after ischaemic stroke. Clarkson et al. illustrated
that treatments blocking T cell-derived IL-21 might im-
prove neurological outcomes by reducing lymphocytic
brain infiltration and attenuating neuronal autophagy
[149]. Xiao et al. found that pretreatment with IL-33, a
new member of the IL-1 cytokine family, improved
neurological outcomes by suppressing the Thl cell re-
sponse and improving the Treg cell response in mice, in-
dicating that IL-33 might play a long-term protective
role by modulating peripheral immune responses after
ischaemia [130, 150].

Bodhankar et al. identified that PD-1 and CTLA-4 had
inhibitory effects on the activation of T cells in a rodent
stroke model [151] and that blockade of the PD-L1
checkpoint significantly limited the CNS inflammatory
response and improved neurological outcomes by par-
tially reversing splenic atrophy and increasing the accu-
mulation of CD8" Treg cells in the lesioned brain
hemisphere [131]. This suggests the application potential
of a novel therapy using accessible humanized anti-PD-
L1 antibodies to treat human stroke subjects and con-
firms that PD-1 is inversely correlated with the absolute
amount of CD4" T central memory (TCM) cells in is-
chaemic patients [135]. However, these conclusions re-
main to be validated in clinical trials.

Systemic administration of docosahexaenoic acid
(DHA), a major form of omega-3 polyunsaturated fatty
acids (n-3 PUFAs) in the CNS, may reduce post-stroke
brain injury by attenuating T cell infiltration, thereby de-
creasing the immune response in injured brain tissue
and promoting the polarization of macrophages into the
healing M2 phenotype [133].

Granulocyte colony-stimulating factor (G-CSF) was re-
ported to have immunomodulatory effects and suppress
the migration and maturation of dendritic cells (DCs) to
exert neuroprotective effects [136]. The administration
of a single dose of G-CSF can attenuate the recruitment
of T cells to the injured brain following stroke, which
has positive effects [140].

Toll-like receptors (TLRs), especially TLR2 and TLR4,
have been broadly reported to play detrimental roles fol-
lowing ischaemic stroke, and TLR2-deficient and TLR4-
deficient mice have been shown to have neurological
function protection after ischaemic stroke mediated by
attenuation of the activation of T cells. TLR8 may pro-
duce the same effect [141]. Inhibition of acetyl coenzyme
A carboxylase 1 (ACC1), which has been achieved by ei-
ther conditional knockout or pre-treatment with caloric
restriction, is a novel approach to balance Treg cells and
Th17 cells and has a protective effect on brain injury
after ischaemic stroke [142].

Recombinant T cell receptor ligands (RTLs) have been
studied to find a novel target to improve neurological
outcomes after ischaemic stroke [152]. Zhu et al. dem-
onstrated that in addition to RTL551, RTL1000 could
improve long-term neurological outcomes following is-
chaemic stroke by inhibiting the activation or infiltration
of CD3" T cells and other proinflammatory cells [152].

Treg cells as a therapeutic target

Treg cells may improve stroke outcomes by suppressing
IL-17* y8 T cell proliferation by altering the intestinal
flora rather than being present in the brain [153]. Dir-
ectly augmenting Treg cell numbers through adoptive
transfer has been shown to be an efficacious way to
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protect the injured brain and promote long-term recov-
ery after stroke [144]. However, there are many issues
with this approach, such as the requirement for ex vivo-
expanded Treg cells and the aggravation of stroke-
induced immunosuppression [144]. Numerous studies
have demonstrated that inducing a Treg cell response to
a brain antigen, such as myelin basic protein (MBP)
[154], E-selectin [143] or myelin oligodendrocyte glyco-
protein (MOG) [132, 155], through intranarial instilla-
tion can improve neurological outcomes via the
“bystander suppression” approach. “Bystander suppres-
sion” is defined as an immune response in which Treg
cells are stimulated in an antigen-specific manner but
secrete cytokines modulating immune responses in an
antigen-nonspecific manner, implying that a therapeutic
immunomodulatory response can be induced regardless
of whether the pathogenic antigen is known [154]. The
immunomodulatory response is thought to occur
through enhancement of a Th3 (TGEF-p)-type response
or other Treg response and suppression of the Thl re-
sponse or other immune responses [134, 154, 155] and
may promote adult neurogenesis after ischaemia [137].
However, tolerization to antigens such as MBP prior to
ischaemia may cause detrimental autoimmunity via the
development of a Thl response to the antigen by 3
months after ischaemia [63]. Other studies have illus-
trated that passive CXCL14 supplementation improves
neurological deficits after ischaemic stroke by promoting
immature dendritic cell (iDC) secretion of IL-2, which
induces Treg cell differentiation and other positive path-
ways [138]. A super-agonistic anti-CD28 monoclonal
antibody (CD28SA) can expand and amplify Treg cells
that produce IL-10 to attenuate brain damage after is-
chaemic stroke [145]. However, both of the clinical trials
(NCT00012454 and NCT00069069) evaluating E-
selectin nasal instillation have failed.

Using drugs for therapy

Some immunomodulatory drugs have shown promise as
novel therapies that decrease morbidity and mortality
following ischaemic stroke. Glycyrrhizin (Gly) is thought
to protect against brain damage induced by ischaemic
stroke by inhibiting the activation of CD8" and CD4" T
cells mediated by IFN and partly regulated by HMGB1
activity [147]. Administration of exogenous vitamin D3
prior to stroke may improve neurological deficits and
produce an acute anti-inflammatory response by redu-
cing the Th17/yd T cell response and increasing the
Treg cell response [146]. Levodopa/benserazide treat-
ment after stroke onset was shown to play a protective
role by reducing CD8" cell infiltration into the injured
brain [139]. Blocking a4 integrin on leukocytes with
natalizumab can provide delayed protection in a mouse
model [81], but there is not enough evidence that it is
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effective in clinical trials [156]. Therefore, the protective
role of natalizumab in determining functional outcomes
in ischaemic stroke requires further clinical research.
Fingolimod, an oral S1P receptor modulator used to re-
duce peripheral lymphocyte numbers [157], was shown
to enhance short-term and long-term neurological re-
covery in clinical trials with or without alteplase [158—
160]. These two drugs are very promising for the future
treatment of ischaemic stroke [161, 162].

Using intravenous cells for therapy

Intravenous cellular therapies have intrigued many re-
searchers and clinicians over the past decades because of
their potential advantage of affecting immune responses
through multiple mechanisms and actions [163]. Both
animal stroke models and a multi-arm phase 2 clinical
trial have shown that intravenous injection of multipo-
tent adult progenitor cells (MAPCs) enhances long-term
neurological recovery by modulating immune responses.
The underlying mechanism may involve reducing the
levels of proinflammatory cells such as CD3", CD4" and
CD8" T cells while promoting Treg cell accumulations
[163].

Despite discrepancies and heterogeneity amongst stud-
ies, new therapeutic targets that can balance the immune
response of T cells to protect against the acute and
chronic phases after ischaemic stroke are being
discovered.

Conclusion
Despite the various types and functions of T cells, most
studies have focused on common T cell subsets, includ-
ing Thl, Th2, Th17, y0 T and Treg cells. These cells in-
tricately communicate with each other and with injured
brain tissue via proinflammatory cytokines and anti-
inflammatory cytokines and perform immunomodula-
tory roles. While the inconsistent description of the roles
of T cells may be partly due to the differences in stroke
models and measurement methods, as well as discrepant
post-stroke outcomes, the influx of different subsets of
T cells at different stages after ischaemic stroke requires
more study. Nevertheless, the evidence reviewed here
demonstrates that the interactions of T cells with the
CNS and the connections of these cells with other im-
mune cells are complicated and need further elaboration
[164]. In conclusion, although a number of studies have
elucidated that T cell numbers peak in the infarct zone
and peri-infarct zone within 30days after ischaemic
stroke, T cells play an indispensable long-term role after
ischaemic stroke through mechanisms such as tissue re-
modelling and revascularization [165] and therefore are
a new target for clinical stroke treatment.

Future research must not only examine how the im-
mune response mediated by T cells is initiated and
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maintained but also differentiate the various roles of T
cell subsets in the onset and process of post-stroke tis-
sue injury and repair. These studies could inform ap-
proaches for designing immunoregulatory therapies that
regulate T cells in the acute stage following stroke to im-
prove the functional outcome and long-term sequelae of
patients suffering from ischaemic stroke. Although
current studies have identified a large number of targets,
such as cytokines, small molecules, neutralizing anti-
bodies, cell epitopes and injectable cellular products, to
regulate the immune response and inflammation related
to T cells in the acute or chronic phase following stroke,
the most important issue is whether a further under-
standing of T cell inflammation will provide more com-
prehensive therapeutic targets and lead to successful
clinical translation of immune modulators for stroke.
The results of previous studies that manipulated T cell
responses have not been completely clarified. The pro-
tective effect of suppressing T cells in the acute phase
may be based on attenuating neuroinflammation, and
long-term protection may refer to the role of Treg cells
in tissue repair. However, no comprehensive clinical trial
has demonstrated the clinical efficacy or safety of these
treatments. Nonetheless, great effort is being put into
exploring the underlying mechanisms of these therapies.
We still have many challenges to overcome in the pur-
suit of understanding the pathogeneses and therapies of
ischaemic stroke.

We need to perform more studies to understand the
roles and mechanisms of T cells in the onset and evolu-
tion of ischaemic stroke and to further explore the
modulation of both local and peripheral T cell re-
sponses, with the goal of attenuating acute neuroinflam-
mation and improving long-term neurological function
following ischaemic stroke.
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