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Lung injury may persist during the recovery period of COVID-19 as shown through
imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms
leading to long COVID have not been adequately explained. Our aim is to investigate the
basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic
states may influence long-term pulmonary symptoms of COVID-19. The patient’s lungs
remain vulnerable during the recovery stage due to persistent shedding of the virus, the
inflammatory environment, the prothrombotic state, and injury and subsequent repair of
the blood-air barrier. The transformation of inflammation to proliferation and fibrosis,
hypoxia-involved vascular remodel ing, vascular endothel ia l cel l damage,
phosphatidylserine-involved hypercoagulability, and continuous changes in serological
markers all contribute to post-discharge lung injury. Considering the important role of
microthrombus and arteriovenous thrombus in the process of pulmonary functional
lesions to organic lesions, we further study the possibility that prothrombotic states,
including pulmonary vascular endothelial cell activation and hypercoagulability, may affect
long-term pulmonary symptoms in long COVID. Early use of combined anticoagulant and
antiplatelet therapy is a promising approach to reduce the incidence of pulmonary
sequelae. Essentially, early treatment can block the occurrence of thrombotic events.
Because impeded pulmonary circulation causes large pressure imbalances over the
alveolar membrane leading to the infiltration of plasma into the alveolar cavity, inhibition of
thrombotic events can prevent pulmonary hypertension, formation of lung hyaline
membranes, and lung consolidation.

Keywords: COVID-19, long COVID, thrombosis, phosphatidylserine, therapy, anticoagulation
INTRODUCTION

While the majority of patients with coronavirus disease 2019 (COVID-19) will develop only mild,
self-limited illness, up to 20% will progress to a more serious form, including severe pneumonia,
acute respiratory distress syndrome (ARDS), and pulmonary fibrosis (1–8). The potential risk of
pulmonary impairment and parenchymal fibrosis in long COVID is of particular concern (9–13),
and studies of multiple treatment options for COVID-19 do not consider their effects on subsequent
risk and progression of long-term COVID-19 symptoms (14). Multiple mechanisms of lung injury
in COVID-19 patients have been tentatively described, but the long-term pathogenicity of SARS-
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CoV-2 in discharged patients remains unclear. It has been
reported that the consequences of severe COVID-19 are
similar to those of severe acute respiratory syndrome (SARS)
and Middle East respiratory syndrome (MERS) in terms of
clinical sequelae, respiratory function, mental illness, and
health-related quality of life (15–17). After infection, virus-
induced immunopathological events are believed to be
responsible for the pulmonary manifestations of SARS and
MERS. Specifically, the virus replicates rapidly, infects type II
alveolar epithelial cells and vascular endothelial cells, and
increases the production of proinflammatory cytokines and
chemokines. These, in turn, recruit fibroblasts and induce their
differentiation into myofibroblasts, resulting in impaired O2 and
CO2 exchange (18). In addition, viral antagonism and delayed
interferon responses further aggravate inflammation (19, 20).

When SARS-CoV-2 replicates in large numbers, immune
cells and inflammatory mediators respond strongly, forming
cytokine storms and damaging alveolar structures. The virus
invades vascular endotheliocytes from the blood-air barrier. As
the disease progresses, endothelial dysfunction leads to more
rigid and therefore vulnerable pulmonary vessels. Vascular
endothelium expresses more protease activated receptor 1,
tissue factor (TF), P-selectin and phosphatidylserine (PS) on
the membrane surfaces, releasing microparticles, vonWillebrand
Factor (vWF), and factor VIII (21). These alterations, together
with soluble thrombomodulin (sTM) and increased surface
chemokines, causes platelet overactivation and thrombosis
(22). With the enhanced permeability of the alveolar
membrane, the pulmonary edema causes further hypoxemia
and deterioration (23, 24). Pulmonary (micro)thrombus is key
to severe hypoxemia, multiple organ dysfunction, and prolonged
COVID-19 syndrome (25–33). Microthrombi can block
microvessels in the alveolar capillaries, making it difficult for
red blood cells to pass through. Slow blood flow and local
congestion lead to elevated pulmonary capillary pressure and
then to pulmonary hypertension (4). The pressure difference
between the two sides of the blood-air barrier increases, while
severe inflammation causes diffuse alveolar damage, resulting in
the inability of the alveolar membrane to maintain normal
permeability (34). Various components in the blood, including
macromolecules (mainly albumin and globulin), enter the
alveolar cavity. This fluid in the alveolar cavity then induces
aggravated dyspnea (35–37). The alveolar liquid evaporates
under airflow action, leaving behind plasma proteins and
necrotic alveolar epithelial debris to form a transparent
membrane, leading to lung consolidation (3–6, 38, 39).
Although hypoxemia results from a combination of many
mechanisms, the amplifying effects of hypoxia promote the
exacerbation of cytokine storms, endothelial injury and
thrombosis (23, 24). In long COVID, patients often show
substandard six-minute walk test (6mWT), abnormal chest
imaging findings (such as bilateral interstitial infiltration,
ground-glass opacity (GGO), and fibrosis), and lung diffusing
capacity for carbon monoxide (DLCO) < 80%, all indicating
persistent lung damage (11–13, 40). In a follow-up study of 113
COVID-19 patients with ARDS, 55% reported dyspnea eight
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months after diagnosis. Adjusted for age, more than 50% of
patients who undertook a 6mWT reached less than 80% of the
theoretical distance. Abnormal chest radiographs were reported
in 49% of cases, with bilateral interstitial infiltration
predominating (87.5%). Chest computerized tomography (CT)
scans showing GGO (55%) and fibrosis (19%) were common.
Additionally, DLCO was less than 80% in 77.8% of patients (41).

The frequently reported pulmonary arterial, venous, and
capillary thrombotic events at autopsy suggest that the
transformation of stable vascular endothelial cells to the
prothrombotic state is not negligible (8, 25, 27–29, 35, 38–47).
We therefore hypothesize that the effects of thrombosis may
persist long after the patient has met the criteria for discharge
(27). In the recovery stage, it is worth considering whether the
prothrombotic status is neglected in patients without thrombotic
complications and whether procoagulant factors (such as PS
exposure) return to normal in patients with thrombosis. We will
investigate pulmonary susceptibility in long COVID and the
possibility that prothrombotic states may influence long-term
pulmonary symptoms.
CONTINUOUS SHEDDING OF THE VIRUS

Tarhini et al. reported cases of severely immunocompromised
COVID-19 patients shedding infectious virus up to four months
following symptom onset. In one instance, they reported a single
persistent infection with high load culture-positive virus and
positive reverse transcription polymerase chain reaction (RT-
PCR) on day 103 (27 days after readmission). This study also
included a discharged patient who developed post-COVID
pneumonia with active virus replication in the lower
respiratory tract and finally developed a double infection after
second admission (48). The immune system can be suppressed
or even depleted by fighting off the increasing viral load (23, 49).
Therefore, even if patients have no compromised immune
system before SARS-CoV-2 infection, they may show similar
symptoms during the disease. In these cases, the virus may retain
the ability to transmit over time, as evidenced by positive viral
cultures. A variety of scenarios (such as asymptomatic carrier,
symptom resolution, or secondary infection) allow for prolonged
infectious virus emission (12, 50). In a cross-sectional study, 10
of 60 discharged COVID-19 patients tested positive for SARS-
CoV-2 by RT-PCR 4-24 days after discharge. Since all discharged
patients were instructed to stay at home and local cases were rare,
the researchers assumed that the positive result was persistent
virus shedding rather than reinfection (51). Viral persistence is
associated with more extensive tissue invasion and worse
recovery outcomes. Another study found that the average
shedding time of the virus was 19 days in asymptomatic
patients, ranging from 6-45 days. While circulating antibodies
to other coronaviruses (such as SARS-CoV or MERS-CoV) have
been shown to last for at least a year, antibodies to SARS-CoV-2
wane relatively quickly. In both the asymptomatic and
symptomatic groups, IgG levels fell by more than 70% in more
than 90% of cases during the early recovery period (8 weeks after
April 2022 | Volume 13 | Article 862522
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discharge) (52). In a cohort study, the positive serum rate and
median titer of neutralizing antibodies were significantly lower in
the convalescent follow-up than during acute infection (12). A
report assessed 30,082 patients with mild-to-moderate COVID-
19 indicated that antibody titers remained stable at three months
but declined slightly at the 5-month time point (49). There is
evidence that the antigenicity of SARS-CoV-2 spike protein
changes. Spike of amino acid substitutions and deletions
impact neutralizing antibodies and the variants are resistant to
antibody-mediated immunity elicited by vaccines (53).
Therefore, the risk of reinfection should be monitored,
especially in patients with prolonged viral shedding (54).
SARS-CoV-2 is likely to persist in certain tissues to drive
chronic symptoms. In a follow-up trial, approximately 4-6
months after diagnosis, positive SARS-CoV-2 ribonucleic acid
(RNA) was detected in olfactory mucosa samples from four
patients with negative nasopharyngeal swabs for SARS-CoV-2
RNA (55).
Frontiers in Immunology | www.frontiersin.org 3
PULMONARY VULNERABILITY

Early Stage
SARS-CoV-2 enters local alveolar type II cells along the airway,
replicates, and damages the targeted cells. Inflammatory
mediators are produced when sentinel cells (pulmonary
macrophages in the lung interstitium) surrounding the injured
tissue recognize the damaged target cells. These mediators trigger
neutrophils and monocytes in the blood circulation to migrate to
the injured site under the action of chemokines. Various immune
cells are mobilized and activated wherever the virus goes,
inducing the release of inflammatory factors such as monocyte
chemoattractant protein-1 (MCP-1), granulocyte-macrophage
colony-stimulating factor (GM-CSF), interleukin-1b (IL-1b),
tumor necrosis factor-a (TNF-a), interleukin 6 (IL-6),
interferon-g (IFN-g), etc (56). Leukocytes, while necessary to
phagocytose inflammatory substances, can also release lysosomal
enzymes, reactive oxygen species, and free radicals into the
FIGURE 1 | Common pathological changes in the lungs of patients with COVID-19. (A) SARS-COV-2 enters local alveolar type II cells along the airway, replicates,
and damages the targeted cells. Various immune cells are mobilized and activated wherever the virus goes, inducing the release of inflammatory factors such as
MCP-1, GM-CSF, IL-1b, TNF-a, IL-6, IFN-g, etc. The inflammatory response produced in killing the virus also leads to the injury of alveolar type I and type II cells.
When high viral load accompanies the inflammatory response, the air-blood barrier is destroyed on the alveolar side. The virus has the opportunity to invade vascular
endothelial cells by crossing the local air-blood barrier, and strong cytokine responses can also spread to vascular endothelial cells. As the permeability of the blood-
air barrier increases, blood components enter the alveolar cavity, forming pulmonary edema. (B) Significantly enhanced thrombin and elevated levels of endothelial
cell biomarkers (vWF: Ag, vWFpp, FVIII, and sTM) were observed in the convalescence period. Impaired pulmonary vascular endothelium can cause uncontrolled
activation of coagulation cascades, further leading to vascular thrombosis or fatal pulmonary fibrosis. (C) The initial response to the destruction of the alveolar
epithelial-endothelial barrier is edematous infiltration in the alveoli and interstitial portion, followed by proliferation as the alveolar barrier is rebuilt by removing exudate.
Extracellular matrix deposition occurs. Fibroblasts migrate and transform into muscle cells. (D) The damaged blood-air barrier, impaired pulmonary blood perfusion,
reduced effective volume of alveolar cavities and the appearance of fibrosis all lead to the obstruction of the exchange of oxygen and carbon dioxide.
April 2022 | Volume 13 | Article 862522
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extracellular stroma, damaging normal alveolar type I and II
cells. Another function of leukocytes is to recognize membrane
expression of PS, an ‘eat me’ signal for macrophages lest more
extensive pro-coagulant surfaces appear (57, 58). Ideally, SARS-
CoV-2 is gradually cleared by three defensive walls consisting of
airway secretions, ciliary oscillations, and innate and acquired
immune cells. Even if local ciliated goblet cells, mucous goblet
cells, and alveolar epithelial cells are damaged, mild conditions
will not evolve into persistent symptoms, and virus numbers may
quickly start to decrease. The damaged target cells in the airway
can be repaired by the proliferation and differentiation of basal
cells. Still, alveolar cells are difficult to regenerate, which is often
the precursor to long-term symptoms (59). The virus has the
opportunity to invade vascular endothelial cells by crossing the
local air-blood barrier (60, 61) (Figure 1A). However, the extent
of the damage to the local vascular endothelial cells is difficult to
predict in early stage. Nevertheless, these impaired vascular
endothelial cells often serve as the initial site of thrombosis. At
this time, activated vascular endothelial cells are often
overlooked, but they are the vulnerable basis of long COVID
after discharge (31, 33, 39, 43). Although vascular endothelial
damage is difficult to distinguish clinically, it can be used as a
differentiating point in pathology. This is important, because the
chain reaction caused by damaged endothelial cells will affect the
vascular and blood system (45).

Middle Stage
Particular attention should be paid to patients with intermediate
disease who have not developed to a severe stage. The increasing
viral loads infect alveolar capillary endothelial cells at the blood-
air barrier through damaged alveolar epithelial cells and alveolar
interstitium (21). The enhanced defense system will inevitably
cause tissue damage while killing the virus. However, the overall
impact of the defense system is more positive than negative. The
injured vascular endothelial cells initiate the coagulation cascade
system, activating coagulation factor X and promoting thrombin
production. Then, this catalyzes the conversion of fibrinogen to
fibrin and form pulmonary microthrombi (21, 31, 33, 39, 43–47,
61–65). As weak parts of the alveolar membrane are destroyed,
blood components such as water molecules, plasma proteins, and
platelets enter the alveolar cavity, forming pulmonary edema (6)
(Figure 1A). Many histopathological findings showed that the
most frequently reported morphological feature of COVID-19
disease is diffuse alveolar damage, characterized by a variable
degree of edema in the exudate phase (42, 66, 67). As long as
reduction of alveolar volume is compensated and thrombosis can
be prevented or dissolved, the trend towards severe
complications can be blocked. However, even if the criteria for
discharge are met after effective treatment, the influence of
impaired alveolar ventilation and pulmonary microcirculation
in the course of COVID continues, and the pulmonary tissues are
vulnerable to further damage (11–13, 40, 41). In another study,
no significant differences in forced expiratory volume in 1s
(FEV1), forced vital capacity (FVC), or their rates were
observed nearly one month after discharge, regardless of the
severity of COVID-19. DLCO values decreased significantly with
increasing severity of clinical symptoms (total 47.2%, mild
Frontiers in Immunology | www.frontiersin.org 4
30.4%, moderate 42.4%, severe pneumonia 84.2%) (68). Huang
et al. observed that 30 days after discharge, DLCO values of
patients were notably different (< 80%), 42.5% in non-critical
patients versus 75.6% in severe patients (69).

Advanced Stage
When the disease progresses to the severe/critical stage, the
primary clinical task is to prevent and treat multiple organ
failures and prolong life regardless of the risk of subsequent
sequelae. With the exponential increase in SARS-CoV-2
particles, a large number of immune cells activate and release
cytokines while gathering around and infiltrating into the lung
tissue, thus initiating relevant transduction pathways and a
cascade of inflammatory reactions. This creates a vicious cycle
that eventually leads to a cytokine storm (70–77). Severe cases
can also be accompanied by lymphocytic depletion, leading to
suppression or even failure of the immune system (2, 78). Direct
and rapid cytotoxic effects of plasma from critically ill patients on
umbilical cord blood tubule cells were found in vitro (79).
Researchers extracted plasma from healthy donors, non-
intensive care unit (non-ICU) patients with COVID-19,
intensive care unit (ICU) patients with COVID-19, and
convalescent patients with COVID-19. Results showed that
plasma from both COVID-19 patients and convalesced
patients significantly reduced human pulmonary microvascular
endothelial cells activity compared to healthy plasma, but plasma
from ICU patients induced the greatest cytotoxicity. Blood vessel
involvement through endotheliitis is also one of the
distinguishing features of COVID-19. Microthrombi within
alveolar capillaries, precapillary arteries, and postcapillary
venules were frequently reported (66). Studies have shown that
alveolar capillary microthrombi were 9 times more common in
patients with COVID-19 than in patients with influenza, and the
amount of new pulmonary vessel growth were 2.7 times higher
than in patients with influenza (80). Damaged vascular
endothelium contributes to a pre-thrombotic state, further
activating the clotting pathway, accelerating (micro)
thrombogenesis, and reducing alveolar blood flow. Impaired
pulmonary vascular endothelium can cause uncontrolled
activation of coagulation cascades, further leading to vascular
thrombosis or fatal pulmonary symptoms of fibrosis (21)
(Figure 1B). Many studies have suggested that severe and
critical COVID-19 is associated with an increased incidence of
diffuse thrombosis or pulmonary blood vessel thrombosis (2,
81–83). In severe cases, hypoxic capillary constriction and
pulmonary microthrombus, thrombosis, and/or embolism
cause slow blood flow, local blocked microvasculature, elevated
pulmonary capillary pressure, and overall pulmonary
hypertension (84). Changes in the vasculature, coupled with
extensive inflammation of lung tissue, enhance the permeability
of the air-blood barrier, resulting in vascular leakage with plasma
and blood cells entering the alveolar cavity. Pulmonary hyaline
membrane formation, acute respiratory distress, and pulmonary
fibrosis exacerbate dyspnea (1–8) Impaired pulmonary vascular
endothelium can cause uncontrolled activation of coagulation
cascades, further leading to vascular thrombosis or fatal
pulmonary symptoms of fibrosis (21) (Figure 1C). Therefore,
April 2022 | Volume 13 | Article 862522
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besides damaged alveolar structure, reduced effective volume of
the alveolar cavity, and difficulty in gas dispersion (85),
(Figure 1D) insufficient alveolar blood flow caused by
thrombus also needs timely improvement. However, severe or
critical illness can present challenges. The incidence of bleeding
events and sequelae is relatively high and monitoring is essential
to maintain the patient’s health status (86–92). The importance
of thrombus and embolic events in severe and critically ill
patients is widely recognized (93–95). But the occurrence of
hypoxemia even with good lung compliance in the early stage
also indicates that early abnormal pulmonary blood perfusion
may also exist (26, 96, 97). Autopsy results showed
microthrombi in the lung but no destruction of surrounding
alveolar structures (98), further suggesting that pulmonary blood
perfusion is of great importance in the formation of
microthrombi. Since this circumvention of traditional ARDS
formation has been found, attention should also be paid to lung
damage caused by microthrombi in patients recovering from
COVID-19.
LUNG INJURY IN LONG COVID

The most commonly reported lingering symptoms of COVID-19
at discharge are fatigue, muscle weakness, sleep disturbances,
abnormal lung dispersion, anxiety, and depression (12).
Although fatigue and weakness are the most common effects in
long COVID, some survivors also report persistent severe
symptoms and organ dysfunction (88). A meta-analysis of 16
cohort studies showed that discharged patients could develop
residual symptoms in multiple organs, including cardiopulmonary
(chest pain, dyspnea, cough, sore throat, and palpitations), nerve
(dysmnesia, cognitive disorder, headache, dysgeusia, and dysosmia),
gastrointestinal tract (diarrhea, vomiting, abdominal pain, and
anorexia), eyes (conjunctivitis), skin (urticaria), musculoskeletal
system (myalgia, and arthralgia), etc. (86) In addition to the
psychological impact, there is overwhelming evidence that the
lung is the most severely affected organ in COVID-19 patients,
both in the progressive and convalescent stages (99, 100). In a 6-
month follow-up study involving 1733 discharged patients, those
requiring high flow nasal catheter (HFNC), non-invasive ventilation
(NIV), or intermittent mandatory ventilation (IMV) had an odds
ratio (OR) of 4.60 (after multivariable adjustment) for diffusion
disorders compared with those requiring no supplemental oxygen.
36% of patients in the severest group had dyspnea with a modified
Medical Research Council (mMRC) score > 1 (severe dyspnea) at
six months. 50% of patients who completed high-resolution
computed tomography chest scans across different severity scales
had at least one CT anomaly, with GGO being the most common,
followed by irregular lines (12). Revisiting the survivors after 12
months showed a slight increase in the rate of dyspnea. There was
no improvement in pulmonary diffusion impairment. And the
incidence of pulmonary diffusion impairment was 23% in the no
oxygen group, 31% in the oxygen-required group, and 54% in the
group with HFNC, NIV, or IMV. The proportion of CT
abnormalities decreased significantly over time. But 76% of
Frontiers in Immunology | www.frontiersin.org 5
patients in the severe group still had GGO, and the proportion of
patients with thickened interlobular septa increased significantly
(11). Wu et al. tested lung function in 83 survivors of severe
COVID-19 pneumonia. Although the 6mWT and dyspnea score
showed significant improvement at 12 months, 33% had DLCO <
80%, and 24% had GGO radiological abnormalities (13). While
most studies have focused on the long-term effects of COVID-19 on
hospitalized patients, little is known about the statistics of long
COVID in patients with mild or asymptomatic disease. SARS-CoV-
2 infection can have subtle effects on the body, even if the patient
does not require hospitalization. A study of 8,983 non-hospitalized
patients two weeks after a positive test showed that these individuals
had a slightly increased risk of initial diagnosis of dyspnea (1.2% vs.
0.7%) and venous thromboembolism (0.2% vs. 0.1%) compared
with matched SARS-CoV-2-negative individuals. However, similar
results were not found for increased risk of serious complications
(such as ischemic stroke, encephalitis, psychosis, or multisystem
inflammatory syndrome in children), as previously seen in severe
COVID-19 hospitalizations. Positive patients were more likely to
initiate bronchodilator therapy, particularly short-acting beta2
agonists (17% vs. 13%), which may be associated with dyspnea (40).

In one meta-analysis of 894 subjects from seven studies, lung
function tests showed that low diffusion ability was the most
common abnormality, followed by reduced lung volume, while
airflow obstruction was relatively uncommon (86). Damage and
repair of the blood-air barrier play an essential role in long
COVID. Alveolar epithelium is a single layer of epithelial cells in
which a subpopulation of alveolar type II cells undergoes self-
repair after injury and act as precursors of type I cells. Alveolar
type II epithelia are the dominant target cells for SARS-CoV-2.
Therefore, impaired type II cells can significantly impede
epithelial repair mechanisms, resulting in incomplete repair,
scarring, and fibrosis (59). The initial response to the
destruction of the alveolar epithelial-endothelial barrier
is edematous infiltration in the alveoli and interstitial portion.
This is followed by proliferation as the alveolar barrier is rebuilt
by removing exudate. However, in some patients, it progresses to
excessive fibrosis rather than dissipating inflammation. During
the recovery of influenza and SARS, evidence of parenchymal
fibrous bands and tractive bronchiectasis has been observed
(101, 102). Studies have also found that elevated growth factor
receptor B1 mediates extracellular interstitial protein deposition,
chemotactic fibroblast migration, and the transformation of
fibroblasts into myocytes (4). It has also been suggested that
respiratory virus infection may induce significant fibroblast
activation during convalescence (12). It is unclear whether
COVID-19-associated ARDS causes irreversible pulmonary
fibrosis. Studies have observed dramatic increases in the
number of lung fibroblasts and collagen deposits in cases of
fatal COVID-19 disease (1–8). However, whether long COVID
fibrosis will stabilize and subside in subsequent years remains
uncertain (5).

When injured host cells release damage-related molecular
patterns, the pro-inflammatory molecules and activated immune
cells lead to endothelial cell damage, hypoxia, and dysfunction in
pulmonary vessels (21). Hypoxia is a driver of vascular
April 2022 | Volume 13 | Article 862522
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remodeling, inducing the activation of endothelial ,
mesenchymal, and immune cells and promotes thrombotic
fibrosis and epithelial-mesenchymal transformation in
COVID-19 patients. Similar vascular remodeling can occur in
pulmonary hypertension and chronic obstructive pulmonary
disease, but the degree of remodeling is greater in patients with
COVID-19. In COVID-19, the endothelial cells transform into
smooth muscle cells. Proliferation, migration, and hypertrophy
of vascular smooth muscle cells were observed at the cellular level
(7). In addition, overexpression and high levels of pro-angiogenic
factors (such as vascular endothelial growth factor (VEGF),
hypoxia-inducible factor 1a (HIF-1a), IL-6, tumor necrosis
factor receptor superfamilies 1a and 12, and angiotensin-
converting enzyme 2(ACE2)) have been found in both living
and dead COVID-19 patients (103). In one study, compared with
healthy volunteers, patients with COVID-19 had more
pulmonary vessels with a 5-30mm2 cross-sectional area and
fewer small vessels (0-< 5mm2). However, there was no
difference in overall lung blood volume, suggesting blood
redistribution between blood vessels of different sizes (43).
Histological evaluation of early COVID-19 showed an
abnormal increase in the number of pulmonary blood vessels,
accompanied by hyperemia, dilation, and distortion. CD4+ T
lymphocytes infiltrated the edema wall and thickened post-
capillary venules (44). Compared with the normal vascular
endothelium, these new blood vessels, together with the
damaged vascular endothelium, are still activated in the
convalescence period. They are therefore unable to fully fulfill
their role in maintaining the normal blood-air barrier in an anti-
coagulant state. As a result, patients can still suffer from
respiratory insufficiency and other pulmonary symptoms
following COVID-19.
NEW POINT: PS AND THROMBOSIS

Pulmonary vascular endothelial cells prevent thrombosis by
binding to TF pathway inhibitors (TFPIs) and blocking the
action of the FVIIa-TF complex (104). The presence of various
endothelial injury biomarkers, including extracellular vesicles,
confirms the persistence of vascular damage in convalescent
COVID-19. Significantly elevated thrombin and endothelial
cell biomarkers (vWF antigen (vWF: Ag), vWF propeptide
(vWFpp), FVIII, and sTM) were observed in the convalescence
period. At this point, most patients have normalized acute phase
markers, including C-reactive protein, neutrophil counts, white
blood cell counts, IL-6, and sCD25 levels (105). Persistent
endothelial lesions were also observed during recovery in non-
hospitalized patients (31). Impaired pulmonary vascular
endothelium can cause uncontrolled activation of coagulation
cascades, further leading to vascular thrombosis or fatal
pulmonary symptoms of fibrosis (21). Evasio et al. monitored
serological markers in 75 patients who had been discharged from
the hospital for two months after COVID-19. They found high
concentrations of D-dimer, and this persistent change raised the
long-term risk of thromboembolic disease in convalescence
patients (106).
Frontiers in Immunology | www.frontiersin.org 6
Ongoing monitoring of COVID-19 patients after discharge
from the hospital is necessary to understand the breadth and
severity of long-term effects. However, COVID-19 has not
existed long enough to complete large-scale cohort studies to
examine its long-term impacts on infected patients in detail.
Although a critical factor in the development of disease,
thrombus-related indicators have rarely been comprehensively
studied (106). Thrombosis is a pathological outcome of the local
microenvironment. The research on thrombosis should not be
limited to its subsequent influence on tissues or organs but
should also include the mechanisms involved in thrombosis
formation, such as the close connection with vascular
endothelium, damage to blood cells, formation of the
procoagulant state, and the existence of microthrombi (83,
107–110). Fibrin clumps formed in hypercoagulable conditions
are difficult to detect, in contrast to thrombus formation (111).
But during the transition period between disease progression and
recovery period, it is difficult to judge the extent of the risk of
locally developing arteriovenous thrombosis. It is also difficult to
confirm whether there has been improvement of the local
endothelial injury and return to an anti-coagulant state (21).
However, these processes are undeniably common in COVID-
19. Therefore, in long COVID, the influence of thrombosis
should be assessed from the onset of the prothrombotic state.
The degree of early injury and the progression from functional to
organic lesions are associated with dyspnea that affects long-term
quality of life.

Elevated endothelial stress products are present in the
circulating blood of COVID-19 patients. Although endothelial
alterations are not specific, thrombogenesis caused by
endothelial alterations in COVID-19 results in fibrin
deposition in small blood vessels in the lungs and other
organs. An early step in the thrombogenesis process is the
expression of the pro-coagulant phospholipid PS. In normal
conditions, PS is confined to the inner layer of cell membranes by
the actions of floppase and flippase. When intracellular Ca2+

increases, the ATP-dependent translocation enzyme is blocked,
and scramblase is activated, resulting in a random distribution of
PS to both sides of the membrane (112). Once exposed on the
outer membrane, PS mediates TF decryption and activation,
initiating the coagulation cascade (113). PS also provides an
active catalytic surface for the formation of the TF-FVIIa, factor
X-enzyme (FIXa-FVIIIa-Ca2+-PL), and prothrombinase (FXa-
FVa-Ca2+-PL) complexes, leading to the conversion offibrinogen
to fibrin. Pulmonary microthrombi can further develop into
pulmonary arteriovenous thrombosis and decrease alveolar
blood flow (Figure 2B). In addition to providing a negatively
charged surface to initiate and maintain clotting functions, PS
also acts as a signal to be engulfed by macrophages, avoiding the
activation of inflammation and autoimmunity (58). There are
two modes of recognition between macrophages and PS-
expressing cells. One is direct recognition by the phagocytic
receptors: brain-specific angiogenesis inhibitor 1 (BAI1), T cell
immunoglobulin mucin 4 (TIM-4), and Stabilin 2. The other is
indirect recognition. The bridging molecules milk fat globule
epidermal growth factor 8 (MFG-E8, also known as lactadherin)
and growth arrest-specific 6 (GAS6) bind to PS (114, 115), which
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is recognized by membrane proteins MER and aVb3. These two
recognition patterns are not mutually exclusive and may co-
occur (57) (Figure 2A). Biomarkers of platelet activation are
associated with thrombosis and mortality risk in COVID-19
(116, 117). Several studies have pointed to microvesicles (EVs)
and platelet-derived microvesicles (pEVs) as potential
biomarkers in COVID-19. Elevated levels of circulating pEVs
have been observed in patients with SARS-CoV-2 infection and
significantly elevated levels of pEVs in patients with severe
disease (118–122). One study using flow cytometry of patient
samples found that the frequency of PS+ cells in the blood of all
COVID-19 patients within a week of diagnosis was considerably
higher than that of peripheral blood mononuclear cells (PBMC)
from healthy or recovered donors. The number of PS+ PBMC is
strongly correlated with the severity of disease and can better
predict the need for respiratory support (123). Corresponding
autoantibodies to the PS/prothrombin complex have also been
found in COVID-19 patients (124). EVs, approximately 100 to
1000 nm in diameter, are produced by budding and shedding of
the plasma membrane of various blood cells. Since EVs are
unable to maintain membrane asymmetry, they are characterized
by PS externalization and can affect the regulation of coagulation
and inflammation (125–127). In both sepsis and COVID-19,
upregulation of PS exposure can occur on cell surfaces (including
endothelial cells, platelets, red blood cells, neutrophils, and
Frontiers in Immunology | www.frontiersin.org 7
lymphocytes) and extracellular particles (128–130). Karina
et al. reported significantly increased depolarization of
mitochondrial inner transmembrane potential and cytosolic
Ca2+ and PS externalization in ICU patients compared with
healthy controls and non-ICU patients with COVID-19 (131).
Since the localization of PS on subcellular organelles was first
reported in 2008, we have been focusing on PS-induced
hypercoagulability and thrombotic events. The presence of PS+

blood cells, endothelial cells, and particles has been found in
experimental studies of acute promyelocytic leukemia, nephrotic
syndrome, sepsis, inflammatory bowel disease, acute stroke, and
triple-negative breast cancer, suggesting that PS-induced
procoagulant activity may be common in various diseases
(132–136).
INHIBITING THE PROTHROMBOTIC
STATE

In terms of thrombosis, thrombogenesis should be blocked from
the beginning, and the procoagulant state should be alleviated to
reduce the incidence of sequelae. D-dimer is commonly used as a
marker for thrombosis, and a higher D-dimer level is
independently associated with a higher risk of death. In some
studies, changes in D-dimer level are used to distinguish the
A B

FIGURE 2 | The function of PS. (A) PS acts as a signal to be engulfed by macrophages with two recognition modes. One is directly recognized by phagocytic
receptors BAI1, TIM-4, and Stabilin 2. The other is indirect recognition. The bridging molecules MFG-E8 (also known as lactadherin) and GAS6 bind to PS, which is
recognized by membrane proteins MER and aVb3. These two recognition patterns are not mutually exclusive and may co-occur. (B) PS provides a negatively
charged surface to initiate and maintain coagulation. In normal conditions, PS is sequestered in the inner layer of cell membranes by the action of floppase and
flippase. When intracellular Ca2+ increases, the ATP-dependent translocation enzyme is blocked, and the scramblase is activated, resulting in a random distribution
of PS to both sides of the membrane. PS, initially located in the cell’s inner membrane, is exposed to the outer side. On the outer membrane, PS provides active
clotting catalytic surfaces for forming TF-FVIIa complex, factor X-enzyme complex (FIXa-FVIIIa-Ca2+-PL), and prothrombinase complex (FXa-FVa-Ca2+-PL).
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severity of COVID-19 in the middle and late stages (137–140).
Because existing anti-thrombotic interventions appear to have
limited effects in the severe and critical stage, it is crucial to take
measures at moderate or even mild stage to improve patient
outcomes and reduce the occurrence of sequelae. In late stage
COVID-19 patients, the maximum solubility assessed by rotary
thromboelastometer analysis was significantly less in patients
with thrombus compared with patients without thrombotic
events (141–143). Meanwhile, the increased levels of tissue
plasminogen activator and plasminogen activator inhibitor-1 in
patients’ blood circulation further suggest impaired fibrinolysis
(144). It is important to relieve thrombus formation tendency or
remove (micro) thrombi early. Therefore, the focus should be on
early antithrombotic therapy, including anticoagulation, anti-
platelet activation, and thrombolytic therapy as appropriate.

As a means to prevent thrombosis and re l ieve
hypercoagulability, anticoagulant therapy has been studied
primarily in the acute stage of COVID-19. Currently, all
guidelines agree that low-molecular-weight heparin
thromboprophylaxis should be used in all hospitalized patients
with COVID-19, recognizing that hypercoagulability can
contribute to more severe disease progression (145–149). The
commonly used anticoagulant drugs are low molecular weight
heparin (LMWH) (such as enoxaparin) and direct oral
anticoagulants (such as Rivarxaban and dabigatran). Heparin
can also play a part in controlling leukocyte migration and
complement activation (150). Treatment with high-dose
prophylactic anticoagulation was associated with a significantly
reduced risk of pulmonary embolism (hazard ratio, 0.72, 95%CI,
0.53-0.98) in a study of patients admitted to ICU 14 days after
COVID-19 diagnosis (151). A New York study, using the Cox
proportional risk model to assess the effect of therapeutic-dose
anticoagulation on in-hospital mortality, found that patients
treated with anticoagulant had a 22.5% in-hospital mortality
and a median survival of 21 days, compared with 22.8% who did
not receive anticoagulant and a median survival of 14 days.
Systemic therapeutic dose anticoagulation may be associated
with improved outcomes in hospitalized patients with COVID-
19 (152). One study found that for non-critical patients with
COVID-19, therapeutic anticoagulation improved hospital
discharge survival without organ support (153). Theoretically,
inhibition of hypercoagulability can block the occurrence of
microthrombotic events, especially with early treatment. As the
site of initial infection, lungs are the most susceptible organ
where the effects of inflammation and thrombosis appear early.
With early anticoagulation, the pulmonary circulation remains
unblocked so that inflammatory substances formed in the lungs
that enter systemic circulation can be removed by the immune
system. Limiting the level of inflammation in the lungs can
reduce the damage to the alveoli and prevent the generation of
cytokine storms and PS storms. Effective control of inflammation
and improvement of hypoxia reduces damage to endothelial cells
and prevents a large number of endothelial cells from
transitioning to a defensive state.

Some studies have failed to show prolonged survival time or
improved survival rate as a result of anticoagulant therapy. In
Frontiers in Immunology | www.frontiersin.org 8
these studies, most samples are patients with severe or critical
disease. A large number of clots have formed, resulting in the
depletion of clotting factors resulting in a low fibrinolytic state.
Under these conditions, anticoagulants do not protect the patient
(138, 154). After the necessary thrombolysis or thrombectomy to
narrow and remove the clot, the alveolar perfusion blood flow is
improved, and function is gradually restored. However, the
inflammatory storm and PS storm, which were originally
confined to the lung, can also quickly enter the systemic
circulation, accelerate injury to the extrapulmonary organs,
and even lead to death. Another possible explanation is the
dosage of anticoagulant therapy. Some studies have used
therapeutic doses of LMWH for thromboprophylaxis in
critically ill patients with thrombotic risk factors (146). The
incidence of bleeding events with therapeutic dose
anticoagulants was 3.0%, and 1.7% with the prophylactic dose.
Among all bleeding events, the gastrointestinal tract was the
most common (50.7%), followed by mucosa (19.4%), bronchia
(14.9%), and intracalvarium (6%), but fatal bleeding events were
rare (155–157). This suggests that therapeutic dose
anticoagulants improve overall survival. Meanwhile, some
studies have shown that therapeutic doses do not increase the
risk of bleeding (158). However, some studies have avoided an
increased dose of thromboprophylaxis due to a slight increase in
bleeding events (159, 160). The difficulty of using anti-
thrombotic therapy during the period of severe and critical
illness highlights the importance of timely comprehensive
antithrombotic therapy before the late stage. From this
perspective, treatment to prevent mild or moderate disease
from progressing to a severe or critical condition will
significantly improve the overall prognosis. Temporary
appropriate comprehensive treatment can effectively block the
trend of severe disease development and reduce the occurrence
of sequelae in the long run (161). In a prospective study in
France, analysis using propensity score matching confirmed that
pre-hospital anticoagulant treatment was associated with a better
outcome, with a risk of 0.43(95% CI, 0.29-0.63) for admission to
intensive care (162). The difference in therapeutic anticoagulant
efficacy between moderate and critically ill patients may be
attributed to severe inflammatory responses, when thrombotic
complications in critically ill patients are too pronounced to
recover. In non-ICU patients, therapeutic anticoagulant therapy
may still help maintain an appropriate balance (163). As for the
risk of bleeding events, because the vascular endothelial cells are
relatively undamaged and the coagulation factors are not yet
depleted, the risk of antithrombotic bleeding is lower than the
risks associated with respiratory distress syndrome, multiple
organ failure, and/or sequelae. Christopher T Rentsch and
colleagues found that patients who received prophylactic
anticoagulation within 24 hours of admission had a 27%
reduction in 30-day mortality (hazard ratio, 0.73; 95%
confidence interval, 0.66 to 0.81) compared with those
who did not. Receiving prophylactic anticoagulant therapy
was not associated with an increased risk of bleeding
requiring transfusion (hazard ratio, 0.87,0.71 to 1.05) (164).
Unobstructed blood flow ensures adequate blood perfusion to
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the alveoli, reducing hypoxemia incidence. Unimpeded
pulmonary circulation slows or prevents the leakage of plasma
into the alveolar cavity, which is aggravated when there is a large
pressure difference between the two sides of the alveolar
membrane. Thus improved circulation prevents pulmonary
hypertension, lung hyaline membrane formation, and lung
consolidation, thereby reducing the risk of death and sequelae.
Current guidelines have no routine precautions for discharged
patients. Some recommend anticoagulant prophylaxis (LMWH
or direct oral anticoagulants) in high-risk patients with a low risk
of bleeding (165).

The application of antiplatelet drugs mainly includes aspirin
(cyclooxyganese inhibitor), clopidogrel (P2Y12 inhibitor), or
dipyridamole (adenosine deaminase and phosphodiesterase)
(166, 167). It has been reported that clopidogrel may interact
with antiviral drugs and should be used with caution.
Dipyridamole may be considered for antiplatelet therapy in the
presence of renal insufficiency to reduce bleeding due to drug
build-up. Aspirin is the most commonly used antiplatelet drug
with anti-inflammatory, antipyretic, analgesic and antiplatelet
functions. In infectious diseases, aspirin is associated with a
reduction in thrombotic inflammation, clinical complications,
and in-hospital mortality (168). In a retrospective cohort study of
COVID-19, aspirin had some benefits in reducing the risk of
mechanical ventilation, ICU admission, and in-hospital
mortality (169). Similar results were found in a small
observational cohort study of adults with COVID-19 when
aspirin was taken at least seven days before or within 24 hours
of hospitalization compared with no aspirin (170). In another
recent observational study, 730 patients who received antiplatelet
therapy had lower mortality and shorter mechanical ventilation
duration during hospitalization than 6986 patients who did not
receive antiplatelet treatment (171). However there are clinical
trials showing that aspirin is not associated with a reduced risk of
ARDS (172). Aspirin, as an irreversible platelet inhibitor, is
cheap and available, and trials are investigating its effect on the
risk of thrombosis.
PS: NOVEL THERAPEUTIC TARGETS

PS, an initial factor of the coagulation cascade, could potentially
be used as a new therapeutic target. Lactadherin combined with
PS is a more targeted “eat me” signal that could prevent or reduce
hypercoagulability (173). PS+ EVs and cells provide a platform
for the anchoring of coagulation factors. Annexin V and
lactadherin interrupt coagulation cascades by selectively
binding PS (174). Lactadherin is structurally homologous to
FVIII and FV and effectively blocks the availability of PS for
coagulation reactions (175). The levels of PS+ cells and pEVs in
COVID-19 patients were higher than those in healthy controls
and are positively correlated with the severity of the disease. Due
to the high likelihood of diffuse microthrombi and arteriovenous
thrombus in critically ill patients and the procoagulant role of PS,
we think that Annexin V or lactadherin could reduce the
Frontiers in Immunology | www.frontiersin.org 9
incidence of thrombosis in COVID-19 patients (118, 123). In
the presence of a large amount of PS, the inhibition of upstream
FXIa, FXIIa, and FXa generation can block IIa generation and
avoid the formation of thrombus. While the anticoagulant effect
of lactadherin has been confirmed in vitro, it’s anticoagulant
effect in vivo requires additional study (176). As an under-
recognized hemostatic regulator, lactadherin is a potential
therapeutic agent in preventing COVID-19 thrombosis (177).
DISCUSSION

Due to the high prevalence of respiratory failure and the need for
mechanical ventilation in COVID-19, a significant number of
patients will be at risk of long-term complications following
severe lung disease. Currently, the world has limited knowledge
of long-term lung disease in survivors, and long COVID is still a
public health concern. There may be variation in the phenotypes
of long COVID, and different post-infection states exist in
survivors of COVID-19 ARDS. Many people continue to
experience respiratory symptoms for months after an acute
infection, especially those with underlying asthma. Other
subgroups of patients appear to worsen within three to four
weeks of initial infection and brief recovery. Some patients start
with a very mild course of illness (do not require medical care or
hospitalization) but go on to develop infectious symptoms and
ARDS after a few weeks. Thrombus is a crucial factor in the
progression of COVID-19 to severe disease, and its importance
in long COVID has not been fully assessed. Early treatment of
microthrombi can reduce not only mortality but also reduce the
incidence of sequelae. PS expression is common when cells are
damaged or undergoing apoptosis. And epidemic diseases often
have a large number of cell damage and death, forming PS
storms and promoting thrombosis. While vaccines are essential
in preventing severe disease, effective treatment of COVID-19
remains essential given the rise of virus variants and the waning
effectiveness of vaccines.
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