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Abstract

Background: Neuroinflammation is characterized by microglial activation and the increased levels of cytokines and
chemokines in the central nervous system (CNS). Recent evidence has implicated both beneficial and toxic roles of
microglia when over-activated upon nerve injury or in neurodegenerative diseases, including Alzheimer’s disease
(AD). The low-density lipoprotein receptor-related protein 1 (LRP1) is a major receptor for apolipoprotein E (apoE)
and amyloid-B (AB), which play critical roles in AD pathogenesis. LRP1 regulates inflammatory responses in
peripheral tissues by modulating the release of inflammatory cytokines and phagocytosis. However, the roles of
LRP1 in brain innate immunity and neuroinflammation remain unclear.

Methods: In this study, we determined whether LRP1T modulates microglial activation by knocking down LrpT in
mouse primary microglia. LRP1-related functions in microglia were also assessed in the presence of LRP1
antagonist, the receptor-associated protein (RAP). The effects on the production of inflammatory cytokines were
measured by quantitative real-time PCR (gRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Potential
involvement of specific signaling pathways in LRP1-regulated functions including mitogen-activated protein kinases
(MAPKs) and nuclear factor-kB (NF-kB) were assessed using specific inhibitors.

Results: We found that knocking down of Lrp1 in mouse primary microglia led to the activation of both c-Jun N-
terminal kinase (JNK) and NF-kB pathways with corresponding enhanced sensitivity to lipopolysaccharide (LPS) in
the production of pro-inflammatory cytokines. Similar effects were observed when microglia were treated with
LRP1 antagonist RAP. In addition, treatment with pro-inflammatory stimuli suppressed Lrp! expression in microglia.
Interestingly, NF-kB inhibitor not only suppressed the production of cytokines induced by the knockdown of LrpT
but also restored the down-regulated expression of Lrp! by LPS.

Conclusions: Our study uncovers that LRP1 suppresses microglial activation by modulating JNK and NF-«B
signaling pathways. Given that dysregulation of LRP1 has been associated with AD pathogenesis, our work reveals a
critical regulatory mechanism of microglial activation by LRP1 that could be associated with other AD-related
pathways thus further nominating LRP1 as a potential disease-modifying target for the treatment of AD.

Keywords: LRP1, Microglia, Inflammation, JNK, NF-kB, RAP, AD

* Correspondence: chenxf@xmu.edu.cn; bu.guojun@mayo.edu

"Equal contributors

'Institute of Neuroscience, Fujian Provincial Key Laboratory of
Neurodegenerative Disease and Aging Research, Medical College, Xiamen
University, Xiamen 361102, China

Full list of author information is available at the end of the article

- © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(httpy//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-016-0772-7&domain=pdf
mailto:chenxf@xmu.edu.cn
mailto:bu.guojun@mayo.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yang et al. Journal of Neuroinflammation (2016) 13:304

Background

Microglia are the resident innate immune cells in the
central nervous system (CNS) ubiquitously distributed
in the brain [1]. When severe injury occurs, microglia
change their morphology and migrate to the lesion sites.
They proliferate and phagocytize dying cells and other
debris and/or release cytokines to maintain the homeo-
stasis of microenvironment impacting neuronal function
and survival [2]. However, mounting evidence has also
implicated the neurotoxic roles of microglia when they
are over/chronically activated in neurodegenerative dis-
eases or under conditions of severe injury [3]. Microglia
have been widely studied for their roles in Alzheimer’s
disease (AD) pathogenesis [4—7]. Microglia activated by
amyloid-p (AP) in vitro exhibit increased expression of
pro-inflammatory cytokines, including interleukin-1p
(IL-1pB), tumor necrosis factor-a (TNF-a), IL-6, and IL-8,
that cause neuronal damage [8]. Recent genetic studies
have identified several inflammation-related genes in
macrophage/microglia, including TREM?2, CD33, CRI,
and ABCA7, that linked to the risk of late-onset AD
(LOAD) [9-11]. As aberrant activation or impaired
function of the innate immune system contributes to the
pathological initiation and propagation of AD [12, 13],
dissecting the molecular mechanism underlying micro-
glial activation would be beneficial for AD drug develop-
ment and therapy.

The low-density lipoprotein receptor-related protein 1
(LRP1) is a type I transmembrane glycosylated protein
that consists of the 515-kDa extracellular a-chain
coupled to the cell surface through non-covalent inter-
action with the transmembrane 85-kDa (-chain [14, 15].
In the CNS, LRP1 is ubiquitously expressed and serves
as a critical transport receptor as well as a modulator of
several distinct signaling pathways in the vasculature
[16, 17], blood brain barrier [18], neurons [19],
astrocytes [20], and microglia [21]. LRP1 regulates the
metabolism of over 40 ligands, including AB and apoli-
poprotein E (apoE) as well as proteases and growth fac-
tors implicated in inflammation [14, 22, 23]. Conditional
deletion of the mouse Lrpl gene in forebrain neurons
leads to an increase in glial activation and elevated pro-
duction of pro-inflammatory cytokines [24]. Deficiency
of LRP1 in macrophage leads to down-regulation of
anti-inflammatory markers while enhancing the macro-
phage response to pro-inflammatory stimuli [25]. In the
peripheral nervous system, soluble LRP1 (sLRP1), which
consists of the entire LRP1 a-chain and part of the p-
chain ectodomain, can bind directly to Schwann cell sur-
faces and inhibit the cellular response to TNF-a [26]. It
has also been demonstrated that LRP1 intracellular
domain (LICD) suppresses lipopolysaccharide (LPS)-in-
duced inflammatory responses by binding to the
interferon-y promoter in macrophage [27]. In addition,
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activation of the LDL receptor family members has been
reported to modulate glial inflammation by modulating
mitogen-activated protein kinase [28]. However, the
molecular mechanism underlying LRP1-mediated in-
flammation in CNS remains unclear. In this study, we
investigated whether and how LRP1 mediates microglial
activation and further unraveled the signaling pathways
underlying LRP1 functions in microglia.

Methods

Antibodies and chemical reagents

The following antibodies were used in this study:
anti-MAP2 (Cell Signaling), anti-GFAP (Abcam), anti-Iba-
1 (Wako), anti-apoE (Meridian Life Science), anti-
Phospho-SAPK/JNK (Thr183/Tyr185), anti-JNK, anti-c-
Jun, anti-Phospho-c-Jun (Ser73), anti-NF-kB p65, anti-
Phospho-NF-kB  p65 (Ser536), anti-Phospho-p44/42
MAPK (Erk1/2) (Thr202/Tyr204), anti-p44/42 MAPK
(Erk1/2), anti-p38 MAPK, anti-Phospho-p38 MAPK, anti-
Phospho-IkBa (Ser32), anti-IkBa, and anti-p-actin (Cell
Signaling). Rabbit polyclonal anti-LRP1 was produced in
our laboratory [29]. LPS, mouse TNF-a, NF-«B inhibitor
(BAY 11-7082), and JNK inhibitor (SP600125) were pur-
chased from Sigma-Aldrich.

Oligomeric AB42 was obtained from the Proteomics
Core at the Mayo Clinic and prepared as previously de-
scribed [30]. Briefly, aliquots of 100 uM AP monomer
purified by size exclusion chromatography were incu-
bated overnight at room temperature in 50 mM NaCl
and 4 mM SDS. To remove SDS and reduce salt concen-
tration, the sample was dialyzed against 20 mM sodium
phosphate buffer at pH 7.0 (NaP) for 48-72 h and then
against 10 mM NaP. Sample quality was monitored and
confirmed at each step of the preparation by circular di-
chroism (CD) and thioflavin T fluorescence. Residual or
unconverted monomer was removed by filtering the dia-
lyzed oligomer with an Amicon Ultra 4 centrifugal con-
centration/filtration device with a MW cutoff of 50 kDa.

Expression and purification of recombinant RAP

Recombinant receptor-associated protein (RAP) was
purified as described previously [31] with minor modifi-
cations. Briefly, DH5a bacteria harboring the GST-RAP
protein were grown at 37 °C to an O.D. of 0.7 at
600 nm. Expression was induced by the addition of
isopropylthio-[-p-galactoside to a final concentration of
0.01%, and the cultures were grown for another 4 h at
30 °C. Bacteria were harvested by centrifugation at 4 °C
and resuspended in PBS containing 1% (v/v) Triton X-
100, 1 mM PMSE, complete proteinase inhibitor, 1 mM
EDTA. Bacteria were sonicated and centrifuged at
26,000g for 30 min at 4 °C. The supernatant was mixed
with glutathione beads at 4 °C, washed in PBS, and
thereafter with 50 mM Tris-HCI at pH 8.0. Bound GST-
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RAP protein was eluted with 50 mM Tris-HCl contain-
ing 20 mM reduced glutathione at pH 8.0. The eluate
was dialyzed against 50 mM Tris-HCI at pH 8.0, and the
fusion protein was cleaved with thrombin in 50 mM
Tris-HCI, 150 mM NaCl, and 2.5 mM CaCl2 at pH 8.0.
The free RAP was removed from the GST via heparin
sepharose column. Following washes with 20 mM Tris-
HCl at pH 74, RAP was eluted from the column with
20 mM Tris-HCl, 2 M NaCl at pH 7.4, and was then dia-
lyzed against 50 mM Tris-HCI at pH 7.4. To remove the po-
tential bacterial endotoxin, purified RAP was incubated with
endotoxin removal resin (Thermo Fisher) according to the
manufacturer’s instruction. Before treatment, RAP stock so-
lutions were filtered with 0.22 pm sterile syringe filters.

Mouse primary cell culture

Primary microglia were prepared as previously described
[32, 33] with minor modifications. Briefly, mixed glial cells
from C57BL/6] neonatal mice at postnatal day 1 to day 3
(P1-P3) were cultured in DMEM (Gibco) supplemented
with 10% heat-inactivated FBS (Moregate) and 1%
penicillin streptomycin solution (100 U/mL penicillin, and
100 pg/mL streptomycin, Invitrogen). The medium was
changed 3 days later with fresh DMEM medium contain-
ing 10% FBS, 1% penicillin streptomycin, and 25 ng/mL
granulocyte-macrophage colony-stimulating factor (GM-
CSE, R&D Systems). Primary microglia were harvested by
shaking after 10-12 days in culture and once a week
thereafter for up to three times. The purity of the isolated
microglia was >95% as determined by flow cytometry ana-
lysis with antibody against CD11b (BD Biosciences).

Lrp1 knockdown by small-interfering RNA

Mouse Lrpl-specific siRNAs and non-targeting control
were purchased from Dharmacon Research. The siRNA
sequences for mouse Lrpl were as followed: Lrpl
siRNA1l: 5'-GGAGUCACUUACAUCAAUAUU-3'; Lrpl
siRNA2: 5'-GCAGCGAGCCAACAAG UAU-3'. siRNAs
were transfected into primary microglia using Basic
Nucleofector™ Kit for Primary Mammalian Glial Cells
(VPI-1006, Lonza) according to the manufacturer’s spec-
ifications. Each electroporation reaction contained 6 x
10° cells and 300 nM siRNA. Cells were further cultured
for 48 h before using in experiments and analysis.

Primary microglia treatment

Primary microglia from C57BL/6] neonatal mice was cul-
tured in the medium without GM-CSF for 24 h. Cells were
then transferred to serum-free medium for 30 min and then
treated with RAP (25 or 50 nM) for 4 h (for quantitative
real-time PC (qRT-PCR)) or 30 min (for Western blotting).
Cells were treated with LPS (100 ng/ml) as a positive con-
trol. For the treatment with inflammatory stimuli, primary
microglia was cultured in the medium without GM-CSF for
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24 h. Cells were further transferred to serum-free medium
for 30 min and then cultured in the presence of either PBS
(control), LPS (100 ng/ml), mouse TNF-a (100 ng/ml), or
oligomeric AP (10 pM) for another 24 h (for qRT-PCR and
Western blotting).

Western blotting

Cells were harvested and homogenized in Nonidet P-40
lysis buffer (1% Nonidet P-40, 50 mM Tris-HCI, pH 8.0,
150 mM sodium chloride supplemented with protease
inhibitors cocktail). The samples were centrifuged at
12,000xg for 15 min at 4 °C. The supernatant was
collected, and total protein levels were measured by the
micro-BCA protein assay kit (Thermo Fisher Scientific).
Equal amounts of total proteins were separated by SDS-
PAGE and transferred to PVDF membrane (Millipore).
The membranes were blocked with 5% nonfat milk in
TBST (Tris-buffered saline, 20 mM Tris-HCI, 137 mM
NaCl, 0.1% Tween-20, pH 7.6) and probed with primary
antibodies, followed by treatment with HRP-linked sec-
ondary antibodies and ECL Western blotting detection
reagents. The intensity of immune-reactive bands was
quantified using Image] software.

Quantitative real-time PCR

Total RNA was isolated from cells using TRIzol reagent
(Invitrogen) and then dissolved in nuclease-free water
and stored at -80 °C. Reverse transcription was per-
formed using a ReverTra Ace qPCR RT Master Mix with
gDNA Remover (TOYOBO) according to the manufac-
turer’s protocol. Quantitative real-time PCR (qRT-PCR)
was performed using the FastStart Universal SYBR
Green Master (Roche) on the 7500 fast real-time PCR
platform (ABI). Each reaction was run in triplicate, and
the real-time value for each sample was averaged and
compared using the CT method, where the amount of tar-
get RNA (272%“T) was obtained by normalization to an
endogenous reference (-actin) and relative to a calibrator.
Gene expression was considered undetectable if the Ct
value was greater than 33 cycles. The primer sequences
for Lrpl, Il-1B, Tnf-a, Il-10, Apoe, and B-actin were as fol-
lows: Lrpl-forward: 5 -ACTATGGATGCCCCTAAAA
CTTG-3"; Lrpl-reverse: 5 -GCAATCTCTTTCACCGT-
CACA-3’; II-1B-forward: 5'-GCAACTGT TCCTGAACT
CAACT-3’; II-1B-reverse: 5 -ATCTTTTGGGGTCCGT-
CAACT-3'; Tnf-a-forward: 5-CCCTCACACTCAGAT-
CATCTTCT-3"; Tnf-a-reverse: 5'-GCTACGAC GTGGG
CTACAG-3’; II-10-forward: 5'-GCTCTTACTGACTGG-
CATGAG-3’; Il-10-reverse: 5'-CGCAGCTCTAGGAG-
CATGTG-3'; Apoe-forward: 5'-CTGACAGGATGC CT
AGCCG-3'; Apoe-reverse: 5 -CGCAGGTAATCCCA-
GAAGC-3’; p-actin-forward: 5'-AGTGTGACGTTGA-
CATCCGTA-3'; S-actin-reverse: 5'-GCCAGAGCAGTA
ATC TCCTTC.
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Cytokine ELISA

IL-1B and TNF-a in conditioned media were measured
using the antibodies and reference standards contained
in R&D Systems DuoSet enzyme-linked immunosorbent
assay (ELISA) kits according to the manufacturer’s
protocol.

Statistical analysis

Statistical analysis was performed using GraphPad
Prism 5.0 (GraphPad Software). Data were presented
as average + SEM. Data were analyzed by one-way
ANOVA followed by Tukeys post hoc analysis. All
experiments were repeated with a minimum of three
times. A p value of <0.05 was considered as statisti-
cally significant.
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Results

Knockdown of Lrp1 exacerbates LPS-stimulated
pro-inflammatory cytokine production

Previous studies have demonstrated a role for LRP1 in
the inflammatory responses in macrophage [25-27]. To
evaluate the impact of LRP1 on the production of
inflammatory cytokines in microglia, we established
experimental conditions under which Lrpl was knocked
down in mouse primary microglia using specific LRP1-
siRNAs. By using two independent siRNAs (Lrpl-
siRNA1 and LrpI-siRNA2) targeting distinct regions of
Lrpl, LRP1 expression level was successfully knocked
down to 25 and 50%, respectively, compared with
control non-targeting siRNA (NT) (Fig. 1la). We then
measured the expression levels of the pro-inflammatory
cytokines IL-1f and TNF-«, and anti-inflammatory
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cytokines IL-10 with or without microglial exposure to
100 ng/mL LPS for 4 h. Compared with the control
siRNA treatment, we found that the mRNA levels of
pro-inflammatory cytokines IL-1p and TNF-a were sig-
nificantly increased in LrpI-knockdown (Lrp1-KD)
microglia both in the presence or absence of LPS (Fig. 1b,
¢). No obvious differences were observed for the level of
anti-inflammatory cytokine IL-10 (Fig. 1d). Moreover,
the protein levels of IL-1 and TNF-« in the media were
increased in Lrp1-KD microglia compared with those of
the control group as measured by ELISA (Fig. le, f).
Treatment with the two independent LrpI siRNAs both
increased the levels of pro-inflammatory cytokines, sug-
gesting that such effects are specific rather than a poten-
tial off-target effect.

JNK and NF-kB pathways are activated in Lrp7-knockdown
primary microglia

To explore the potential mechanisms through which
LRP1 regulates LPS-induced cytokine production, we ex-
amined the activation kinetics of the three mitogen-
activated protein kinase (MAPK) pathways (p38-MAPK,
ERK, and JNK) and the NF-«B pathway, which are re-
ported to function downstream of LPS stimulation [34].
For these experiments, cells were treated with 100 ng/
mL LPS for 15, 30, and 60 min (Fig. 2a, b). Intriguingly,
the phosphorylation of JNK was significantly higher in
Lrp1-KD microglia compared with control cells before
LPS stimulation and further enhanced upon LPS treat-
ment (Fig. 2a, c¢). Additionally, the levels of phosphory-
lated NF-kB were also significantly higher in Lrp1-KD
microglia than in control cells without LPS treatment,
and the trend persisted for an extended period of time
upon LPS stimulation (Fig. 2a, d). However, the
phosphorylation kinetics of ERK and p38-MAPK were simi-
lar in control and LrpI-KD microglia (Fig. 2a, e, f). Together,
these results indicated that LRP1 modulates both JNK and
NE-«B signaling pathways in microglial cells.

LRP1 antagonist RAP regulates inflammation in microglia
by modulating JNK and NF-kB pathways

LRP1 interacts with a variety of ligands involved in cell
signaling [22]. Receptor-associated protein (RAP) is a
specialized endoplasmic reticulum (ER) chaperone for
LDL receptor family members, including LRP1 [35].
RAP functions in receptor folding and trafficking by
blocking premature ligand binding during receptor mat-
uration [36]. RAP binds to LRP1 with high affinity and
has been widely used as an antagonist for LRP1 [37, 38].
To further examine the role of LRP1 in the inflamma-
tory responses of microglia, we treated primary micro-
glia with LPS (100 ng/mL) or RAP (25 and 50 nM) for
4 h. LPS in these experiments served as a positive con-
trol for cytokine production and microglial activation.
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Our results showed that RAP increased the expression of
IL-1B and TNF-« in a dose-dependent manner (Fig. 3a, b).
In addition, modest but significant change in Lrpl mRNA
was observed in cells treated for 4 h with high concentra-
tion of RAP (50 nM), suggesting that higher concentration
of RAP suppress the expression of Lrpl in microglia
(Fig. 3¢c). We further examined the effects of RAP on the
inflammation-related signaling pathways in microglia.
Upon treatment of primary microglia with LPS or RAP
(25 and 50 nM) for 30 min, we observed increased phos-
phorylation of IkBa and NF-kB, suggesting that LRP1 in-
hibition leads to NF-«B activation (Fig. 3d—f). RAP also
induced phosphorylation of c-Jun indicating an activation
of JNK signaling pathway (Fig. 3d, g). In particular, we
found that LRP1 protein level was unchanged after short
time (30 min) treatment with LPS or RAP (Fig. 3h), indi-
cating that the enhanced inflammatory responses here are
due to direct effects on LRP1 functional inhibition rather
than changes in LRP1 expression. These results indicated
that LRP1 antagonist RAP can increase the production of
pro-inflammatory cytokines by activating JNK and NF-kB
signaling pathways.

JNK and NF-kB inhibitors eliminate the hypersensitivity of
LRP1-knocked down microglia to LPS

To further explore the molecular mechanism by which
LRP1 down-regulation affects the pro-inflammatory re-
sponses, specific inhibitors for JNK (SP600125) and NF-
kB (BAY11-7082) were used to block JNK and NF-kB
activation. SP600125 is a cell-permeable small molecule
that selectively inhibits all three JNK isoforms and
prevents the phosphorylation of downstream JNK target
c-Jun [39]. Our results showed that the mRNA level of
IL-1p was increased upon LRP1 knockdown; however,
the effect was abolished by pre-treatment with JNK in-
hibitor (Fig. 4a). The expression of TNF-a followed a
similar trend though its level remained significantly
higher in LrpI-KD microglia than in control cells in the
presence of JNK inhibitor (Fig. 4b). Furthermore, we
tested the effect of BAY11-7082 which inhibits NF-xB
pathway by reducing the level of phosphorylated IkBa
[40]. Our results showed that the presence of NF-«xB in-
hibitor eliminated the increased levels of IL-1B and
TNE-a resulted from Lrpl down-regulation (Fig. 4c, d).
Reduction of Lrpl mRNA level upon siRNA-mediated
knockdown was confirmed in these experiments (Fig. 4e,
f). Taken together, we concluded that LRP1 regulates the
pro-inflammatory responses by modulating the activa-
tion of JNK and NF-«B signaling pathways.

LRP1 expression in primary microglia is down-regulated
by pro-inflammatory stimuli

Previous studies have shown that inflammatory me-
diators decrease LRP1 levels in macrophage [41, 42].
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Since our data demonstrated an important role of
LRP1 in the regulation of inflammatory responses
within microglia, we therefore investigated the ef-
fects of pro-inflammatory stimuli (LPS, mouse TNEF-
a, and neurotoxic AB) on LRP1 expression. Micro-
glial cells were treated with 100 ng/mL LPS, 50 ng/
mL TNF-a, or 10 pM oligomeric AP42 for 24 h, re-
spectively, then the mRNA and protein levels of
LRP1 and various genes were examined. Consistent
with previous reports, the mRNA levels of IL-1p

were increased by these stimuli (Fig. 5a). Interest-
ingly, both the mRNA and protein levels of LRP1
were down-regulated by the pro-inflammatory
stimuli, including LPS, TNF-a, and oligomeric Ap
(Fig. 5b—d). Furthermore, the levels of apoE, which
binds LRP1 as a ligand, were significantly down-
regulated in the presence of these pro-inflammatory
mediators (Fig. 5¢, f). Our results indicate that vari-
ous inflammatory mediators tightly regulate the ex-
pression of LRP1 in microglia.
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c-Jun, and LRP1 in cell lysates were examined by Western blot analysis (d) and quantified (e-h) (n = 3). B-Actin served as a loading control. Data were plotted
as mean + SEM and normalized to the corresponding control group. *p < 0.05; **p < 0.01; *¥*p < 0.001; N.S. not significant (one-way ANOVA with post hoc
Tukey's t test)

NF-kB inhibitor restores LRP1 expression down-regulated

by LPS

Our results revealed that LRP1 modulates the LPS-
mediated inflammatory response in microglia via JNK
and NF-«B signaling pathways. In Fig. 4e, f, we noticed
that LRP1 mRNA levels were significantly increased
upon BAY11-7082 treatment for 4 h. We further exam-
ined whether these pathways were involved in the ex-
pression regulation of LRP1 by LPS. The mRNA level of
Lrpl was similarly down-regulated by LPS in the pres-
ence or absence of JNK inhibitor for 24 h (Fig. 6a).

However, the LPS-induced LRP1 down-regulated expres-
sion was restored by NF-kB inhibitor (Fig. 6b). Similarly,
the protein level of LRP1 was decreased by LPS treat-
ment, whereas this effect was reversed by NF-«B inhibi-
tor, but not JNK inhibitor (Fig. 6¢, d). In addition, we
found that BAY11-7082 not only acted as a NF-kB in-
hibitor (Fig. 6e) but also significantly suppressed the
LPS-induced c-Jun activation (Fig. 6f). Taken together,
we conclude that the NF-«B signaling pathway down-
stream of LPS modulates the expression of LRP1 in
microglia.
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Discussion

Neuroinflammation induced by microglial activation is an
important pathological feature and an early event in the
pathogenesis of AD. The predominant microglia phenotype
is termed M1 state associated with a chronic neuroinflam-
matory environment accompanied by the increased and
sustained release of pro-inflammatory mediators that mod-
ify AD progression [8, 43—45]. The important role of
neuroinflammation in AD is also supported by the identifi-
cation of AD risk genes including TREM?2 and CD33 that
predominantly expressed in microglia [10, 11, 46]. LRP1 is
a widely studied receptor due to its involvement in mul-
tiple pathways in AD pathogenesis including modulation
of AP clearance, lipid transport, and synaptic functions

[22, 29, 47]. As the major immune cell type in the CNS,
microglia have been reported to express higher levels of
LRP1 transcript in the brain tissues of wild-type mice [48].
Several studies revealed that LRP1 might regulate micro-
glial functions in CNS. The uptake of Ap-coated yeast par-
ticles in microglia was suppressed by the presence of LRP1
ligands, indicating that LRP1 might regulate Ap phagocyt-
osis in microglia [49]. LRP1 was also shown to mediate
phagocytosis of apoptotic cells by binding to cell surface
calreticulin [50]. In addition, recent work by Chuang et al.
demonstrated that in the brains of microglial LrpI condi-
tional knockout mice, microglia adopt a pro-inflammatory
phenotype characterized by amoeboid morphology, indicat-
ing that LRP1 may regulate microglial activation in vivo. Of
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Fig. 5 Pro-inflammatory cytokines and AB oligomers suppress the expression of LRP1 in microglia. a-c Primary microglia were cultured in the presence of
either LPS (100 ng/ml), mouse TNF-a (100 ng/ml), or oligomeric AR (10 uM) for 24 h. RNA was extracted and the relative mRNA levels of I-18 @), LipT (b),
and Apoe (c) were determined and quantified by gRT-PCR (n = 3). B-Actin was used as an internal control. d—f Cell lysates from the same treatments were
collected, and the protein levels of LRP1 and apoE were analyzed by Western blot (d) and quantified (e, f). Data represent mean + SEM and normalized to
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note, their work also suggests that ablation of LRP1 in
microglia, not in macrophage, had a significant impact on
the disease severity of multiple sclerosis [51]. However, the
regulation and function of LRP1 as well as related signaling
pathways in microglia remain to be elucidated. In the
present study, we found that down-regulating LRP1 expres-
sion in microglia results in an increase of pro-inflammation
cytokines. We also demonstrated that suppression of LRP1
expression or function in microglia leads to the activation
of both JNK and NF-kB signaling pathways, suggesting that
LRP1 in microglia directly regulates specific signaling path-
ways critical for inflammatory responses.

Previous studies have shown that LRP1 can directly
regulate cellular signaling pathways via multiple mecha-
nisms [52]. Here, we found that there was an aberrant
JNK activation in LRP1-deficient microglia. Interestingly,
the cytoplasmic domain of LRP1 (LRP1-ICD) binds
JNK-interacting proteins (JIP-1 and JIP-2), which have
been identified as modulators of the JNK signal

transduction pathway [53]. It has also been demon-
strated that overexpression of LRP1-ICD selectively pre-
vents the activated JNK from translocating into the
nucleus and, subsequently, nuclear transactivation of the
JNK-dependent transcription factors, c-Jun and/or Elk-1
[54]. It is possible that LRP1 sequesters JNK by forming
a complex with JIP, through which it regulates the JNK
activation in microglia.

Consistent with the study by Chuang et al. in macro-
phage [51], our current study also found that LRP1
down-regulation in primary microglia not only leads to
NE-«B activation in the absence of inflammatory stimuli
but also enhances the LPS-induced NF-«B activity.
Gaultier et al. has described a potential mechanism
through which LRP1 may suppress NF-«kB activation in
mouse macrophage. Loss of LRP1 leads to increased
surface expression of TNF-a receptor 1 (TNFR1) thus
sensitizing the cell to the inflammatory signaling initi-
ated by TNF-a. This results in an increased activation of



Yang et al. Journal of Neuroinflammation (2016) 13:304 Page 10 of 13

[ Control 3 Control
a 1.5 1 NS = LPS b is- m LPS
R — ' N.S.I EELL
< <O
E % 1.0 1 E g 1.0 1
€ c € c
- ° N.S. <9
o % 05 4 — o3T
ELIQ 5 5 Llc-’, 0.5 4
0 T T -—[ 0 T T
SP600125 - + - + BAY11-7082 - + - +
(o] d 3 Control
LPS = = + + - - + + m LPS
SP600125 = 4 = 4 = = = =
.S,
BAY11-7082 = = = = = 4 - 4+ 1.5 |N—| N.S.
e = —

-
o

o
»

LRP1 protein
(Fold change)

P T ——

LPS - - + + - - + +
—————— (321N SP600125 - + - + - - -
BAY11-7082 - - - - + - +
3 Control 3 Control
e = LPS f = LPS
o 4 N.S. ke
7 S
W~ —
Z5° $3
S5 = <
52 zg
m=2 =T
LE 3
z Q
o Q
= 0
PSS - - + + - - + + Ps - - + + - - + +
SP600125 - + = <+ - - - SP600125 = 4+ = 4+ = = = =
BAY11-7082 = = = = + - + BAY11-7082 = - - - - 4+ - 4+

Fig. 6 NF-kB inhibitor restores LRP1 expression suppressed by LPS. a-b Primary microglia were pretreated with 10 pM SP600125 or Bay 11-7082
for 30 min, followed by stimulation with LPS (100 ng/mL) or vehicle for 24 h. RNA was extracted, and the relative mRNA levels of LrpT in microglia
treated with SP600125 (a) and BAY11-7082 (b) were determined by qRT-PCR (n = 3). -Actin was used as an internal control. Data were plotted as
mean + SEM ***p < 0.001; N.S. not significant (two-tailed Student'’s t test). ¢—f The protein levels of LRP1, phospho-NF-kB, phospho-c-Jun, phospho-IkBa,
total NF-kB, total c-Jun, and B-actin in cell lysates were examined by Western blot analysis (c) and quantified (d-f) (n = 3). Data represent mean + SEM.
***p < 0.001; N.S. not significant (one-way ANOVA with post hoc Tukey's t test)

NF-«kB via phosphorylation and degradation of its inhibi-
tory binding protein IkB [55]. Further studies are needed
to understand the mechanism underlying LRP1-
mediated NF-kB activation in microglia.

LRP1 regulates the metabolism of over 40 extracellular
ligands; however, existing microglial Lrpl conditional
knockout mouse model does not address the role of
LRP1 as a receptor for diverse ligands [51]. Here we
have explored the role of LRP1 antagonist RAP in
microglial activation. We observed that RAP promotes
the expression of pro-inflammatory cytokines and trig-
gers JNK and NF-kB activation in microglia. Although
the specific LRP1 ligands that mediate the inflammatory
responses remain to be identified, our results suggest
that RAP may inhibit the binding of ligands to LRP1 and

therefore trigger microglial activation. Indeed, a previous
study has shown that the LRP1 agonist attenuated the
expression of pro-inflammatory mediators even in the
presence of LPS, while the antagonist and LRP1 antibody
that block its function had an opposite effect in macro-
phage [56]. Identifying specific LRP1 ligands that are in-
volved in the regulation of microglial activation might
provide a novel target for AD therapy.

LRP1 is highly expressed in the brain under normal
physiological conditions, while it has been reported that
the brains of AD patients had significantly lower LRP1
levels than those of age-matched controls. Moreover,
higher LRP1 levels significantly correlate with later ages
at onset of AD, while age and LRP1 expression in nor-
mal individuals appear to be inversely correlated [57].
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To our knowledge, there are few reports regarding LRP1
function or the expression regulation of LRP1 in micro-
glia during AD progression. Others and us have found
that various stimuli (including LPS, TNF-a, and oligo-
meric AP42) down-regulate the microglial expression of
LRP1 and apoE but increase the expression of pro-
inflammatory cytokines, indicating that the expression of
LRP1 and its ligands is essential for modulating glial ac-
tivation [58, 59]. Indeed, it has been shown that LRP1
ligand apoE modulates microglial inflammation through
LRP1 [53]. Together, LRP1 expression may be either
down-regulated in glial cells due to neuroinflammation
or suppressed in neurons due to post-synaptic damages
in AD. Further studies are needed to clarify the temporal
and spatial regulation of LRP1 expression during AD
progression.

Since both JNK and NF-kB pathways are responsible
for microglial activation in LRP1-deficient microglia or
in the presence of LRP1 antagonist, we further investi-
gated whether blocking these pathways could suppress
the production of pro-inflammatory cytokines induced
by LRP1 down-regulation in microglia. We found that
JNK inhibitor (SP600125) blocks the increase of IL-1p in
Lrp1-KD microglia; however, it failed to restore the level
of TNF-a. Interestingly, the higher levels of pro-
inflammatory cytokines seen in LrpI-KD microglia were
significantly suppressed by NF-«kB inhibitor (BAY11-
7082). Our results further showed that NF-kB inhibitor
rescues LPS down-regulated LRP1 expression. As JNK
pathway was also repressed by BAY11-7082, this inhibi-
tor might block both JNK and NF-kB pathways. Thus,
the precise mechanism requires further investigation
using molecular and genetic approaches in addition to
the pharmacological inhibitors used in this study.

As central signaling pathways of neuroinflammation, the
activation of JNK and NF-«B is involved in several patho-
physiological processes of AD. In the brain of AD patients,
activated JNK and NF-«B were found predominantly in
neurons and glial cells in areas surrounding AB plaque
[60-65]. Several studies have shown that JNK and NF-kB
inhibitors are effective in slowing down disease
progression. Some nonsteroidal anti-inflammatory drugs
(NSAIDs) have a direct effect on NF-kB activity, which
also leads to a decrease in AP production. Flurbiprofen
and indomethacin, which target NF-«xB, have been shown
to effectively reduce the amyloid plaque load in AD mouse
models [66, 67]. INK inhibition could promote the expres-
sion of apoE in microglia to reduce inflammation [68].
Moreover, inhibition of JNK activation by chronic treat-
ment of SP600125 markedly reduces multiple pathological
features and ameliorates cognitive deficits in APPswe/
PS1dE9 mice [69]. Based on our current findings, BAY11-
7082 may be a promising anti-inflammatory inhibitor
targeting LRP1 for the treatment of AD.
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Conclusions

In summary, we demonstrate that LRP1 suppresses
microglial activation by modulating JNK and NF-«B sig-
naling pathways. Down-regulation of LRP1 levels and
the increased pro-inflammatory signaling may result in a
vicious cycle, in which the two events synergistically
promote microglial activation. Restoration of LRP1 ex-
pression in microglia may serve as a novel therapeutic
approach to combat microglial dysfunction associated
with chronic inflammation in neurodegenerative diseases
including AD. Further studies should be carried out in
AD mouse models deficient of microglial LRP1 to better
understand the specific functions of LRP1 in microglia
in the presence of AD-related pathologies.
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