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Nutritional interventions to counteract the detrimental

consequences of early-life stress
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Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and
increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying
the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the
development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be
instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral
impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set
out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on
neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a
nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms
of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of
designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced
impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES,
including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis.
Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field

forward.
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INTRODUCTION

Early-life is a period of rapid central nervous system (CNS)
development and of unique sensitivity, during which environ-
mental factors, for example stress and nutrition, can profoundly
influence brain structure and function long-term [1-3]. There is
increasing evidence from preclinical and clinical studies that
exposure to stress during this sensitive developmental period
lastingly affects neurobehavioral outcomes and increases vulner-
ability to psychopathology later in life [4-7]. Early-life stress (ES)
includes a wide range of exposures, amongst others physical
stress (e.g. pain, physical abuse or malnutrition) and emotional
stress (e.g. parental neglect, parental separation or emotional
abuse). Despite major advances in the field concerning the
neurobiological substrates underlying the ES-induced increased
risks for adverse neurobehavioral outcomes and psychopathology,
the underlying mechanisms remain complex, multi-faceted, not
yet completely understood and often hard to target, rendering the
development of effective interventions challenging [8, 9].

Given (i) that during fetal and early postnatal life, the brain is a
fast growing organ, thus very high in energy and nutrient demand
[10-13]; (ii) the observed similarities in neurocognitive, mental and
behavioral outcomes between children exposed to perinatal
malnutrition and to ES [14-17]; and (iii) the converging mechan-
isms and interplay between the regulation of the stress and food
intake, it has been suggested that nutrition is instrumental in
mediating and a potential target for combatting the ES-induced
(long-term) impairments [8, 9, 18].

The aim of this paper is to comprehensively review the existing
literature on nutritional interventions aimed at targeting the
effects of ES on neurobehavioral outcomes in preclinical and
clinical settings, discuss the possible mechanisms involved (Fig. 1)
and highlight the critical gaps in our current knowledge to move
the field forward. Understanding how ES influences brain
development and if and how nutrition affects this process is
essential for the development of effective nutritional therapies to
improve long-term (mental) health in children exposed to ES.
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Fig. 1 Overview of the nutritional interventions tested to combat the impact of early-life stress. This figure details the various nutrient

groups which have been tested in the context of early-life stress and the potential mechanisms of action and pathways via which they might

work to counteract the impact of early-life stress on behavior.

Nutritional strategies hold much potential as they are relatively
safe, cheap and easy to implement.

MATERIALS AND METHODS

Search strategy

A comprehensive literature search was performed in the database
PubMed. The aim of the search was to identify papers on the effect
of nutrition/diet on the (long-term) neurobehavioral/cognitive
consequences of ES from human and rodent studies. The timeframe
within the database(s) was from inception to 29th of November
2024 and the search was conducted by GLB. The search included
keywords and free text terms for (synonyms of) ‘diet’ combined with
(synonyms of) ‘Early-Life Stress’. A full overview of the search
strategy can be found in the Supplementary Information (see
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Supplementary table 1). No limitations on date or language were
applied in the search.

Definitions and inclusion/exclusion criteria

Concerning ES: ES was defined as stress during early-life, from
conception up to up to 18 years of age (human studies) or weaning
(preclinical studies). ES exposure for human studies included stress
exposure in both the (pregnant/lactating) mother or in the child (see
Supplementary table 2A): (maternal) perceived stress, (maternal)
anxiety, (maternal) depression and other forms of stress (e.g.
bereavement, violence, a disaster, low socioeconomic status, hospital
admission etc.). For the preclinical studies, papers were included that
employed an early-life stressor of a physical or psychological nature
(e.g. prenatal restraint, variable stress, maternal separation or the
limited nesting and bedding material paradigm, see Supplementary
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3446 articles identified
through PubMed
database searching
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3 duplicates removed

3443 screened for title
and abstract

3334 articles excluded based on title and
abstract screening

109 articles selected for

96 articles included in .

full text screening 13 articles not eligible for inclusion in review:

No neurocognitive/behavioural outcome

Nutrition, metabolism or inflammation related stressor
Nutrition as an unclear variable in the statistical model in human
cohort study

Intervention is not typically nutrient derived

review

—

86 animal 10 clinical
experimental studies
studies (rodents) (human)

Fig. 2 Flowchart of the review process according to the PRISMA statement.

table 2B). Papers that used a nutrition-, metabolism- or inflammation-
related stressor were excluded.

Concerning nutritional intervention (i.e. specific nutrients /diets
and time window of intervention): Nutrition or diet was defined as
the administration, consumption, supplementation or omission of
a nutrient, pre-/pro-/synbiotic or diet at any point in time (before
or after stressor, and before or after the manifestation of ES-
related symptoms) by the infant/offspring or the pregnant/
lactating mother/dam. There were no limitations on route of
administration (e.g. per os (including oral gavage, tube feeding,
intramuscular or intravenous).

During screening, only articles with a functional neurocognitive
or behavioral outcome were included. For the preclinical studies
outcomes were subdivided in the following domains: depressive-
like behavior, anxiety-like behavior, cognition and social behavior.
See Supplementary table 3A for outcomes in human studies and
Supplementary table 3B for outcomes in preclinical studies. For
human studies, all types of studies were included.

Studies addressing the effects of ES as well as nutritional
interventions in both males and females were included, however
the literature to date mostly fails to test whether the efficacy of
the nutritional intervention is sex-specific.

Exclusion criteria were defined as follows:

® Known nutritional-, metabolism- or inflammation-related stressors

Premature birth as a stressor

® Nutrition only described as a variable in the statistical model of a
human cohort study (and not in main research question of study)

® Intervention with pharmacological extracts/molecules that are not
typically nutrient-derived

® Studies that did not include non-stressed controls

Only a structural or mechanistic outcome measure

® Reviews

Considerations for interpretation of neurobehavioral
outcomes in response to ES and nutritional intervention
Throughout this review we will refrain from assigning positive or
negative connotations concerning to neurobehavioral consequences

Molecular Psychiatry (2025) 30:3269 -3300

of ES and nutritional interventions as these can be adaptive or
maladaptive contingent on the specifics of environment and setting
where these are expressed [19, 20]. In addition, it is important to
acknowledge that the interpretations of the behavioral tests used in
preclinical research aimed to test specific traits and phenotypes of
complex and multifaceted conditions like depression, anxiety are
often debated and poses some challenges. For example, the FST and
TST, commonly used to test depression-like behavior, measure
immobility, often interpreted as “behavioral despair”. However, there
is substantial debate about whether immobility truly reflects a
depressive state or rather an adaptive coping strategy such as energy
conservation [21, 22]. In this review, we have relied on the
interpretations provided by the original authors of the referenced
studies while synthesizing the results, however, we acknowledge the
limitations of these paradigms and the need for caution in their
interpretation.

Data collection

Figure 2 shows the flowchart of the review process according to
the PRISMA-statement. Through database searching in PubMed
3446 records were identified. After removal of duplicates, 3443
records were screened for title and abstract. All studies were
written in English. One-hundred-and-nine of these articles were
eligible for full text screening, out of which 96 articles were
included in the current review (Table 1). Snowball searching did
not result in new inclusions.

RESULTS

Evidence of effect of nutritional interventions on ES-induced
behavioral deficits

Of the 96 included articles (For an overview of all articles, see
Table 1 and Supplementary Table. 4), ten studies included human
subjects, while the other 86 studies were performed in rodents.
Below, for the preclinical studies, we will first describe the effect of
ES on behavioral outcomes across the various domains and
thereafter describe the effect of nutrition on the ES-induced
alterations divided by nutrient group. In Supplementary table 4B,
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Fig. 3 Overview of the effects of nutritional interventions on ES-induced behavioral deficits, depicted per behavioral domain and

nutrient group.

we calculate the percentage of effective studies per nutrient
group to get a general idea of effectiveness of the specific nutrient
on ES-induced outcomes.

ES affects behavior in rodent studies

Within the 86 preclinical studies that were included in the review,
the effect of ES on a specific behavioral domain was investigated
150 times, as several studies investigated the effect of ES on
multiple behavioral domains. Overall, the ES paradigms affected
behavior in 82.00% of the cases, this was consistent across the
behavioral domains assessed (depressive-like behavior 82.35%,
anxiety-like behavior 78.57%, cognitive deficits 85.00% and social
deficits 80.00% and other ES-induced behaviors 90.00%). This
percentage reflects the expected effect of ES on rodent behavior
as described in previous reviews [23]. See Supplementary table 4A
for details. Some studies reported no effects of ES on any of the
measured cognitive domains [24-29].

The effect of nutritional interventions on ES-induced
behavioral deficits

For preclinical studies, the effect of nutrition will only be discussed
for studies where an effect of ES was found on any of the behavioral
domains studied as without an ES effect, the research question
could not be answered. Below, the effect of a nutritional
component/diet on ES-induced outcomes will be discussed per
nutrient (i.e. fatty acids (FA), polyphenols, pre-and pro-biotics,
micronutrients, combination preparates, diet/nutritional programs,
other nutritional interventions) first in the human studies, followed
by the preclinical studies. For an overview of the effects of

Molecular Psychiatry (2025) 30:3269 -3300

nutritional effects on ES-induced behavioral deficits, see Supple-
mentary table 4B, visualized in Fig. 3.

Fatty acids. Fatty acids are important macronutrients and have
multiple critical functions in the (developing) brain and body [30,
31]. There are three different classes of FA (saturated FAs (SFAs),
monounsaturated FAs (MUFAs) and polyunsaturated FAs (PUFAs))
[32]. PUFAs are considered essential nutrients as they cannot be
produced by the body itself and can only be ingested through the
diet. The most important PUFAs are the omega-6 (N-6) (linoleic
acid, LA) and omega-3 (N-3) PUFAs (e.g. a-linolenic acid (ALA),
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), doc-
osapentaenoic acid (DPA) and eicosatetraenoic acid (ETA)) [33].
Rather than individual concentrations, the proportion of N-3 to
N-6 PUFAs is key for the effects on health, where a lower
concentration of N-6 PUFAs and a higher concentration of N-3
PUFAs is considered healthy [34]. N-3 PUFAs are well known for
their critical role in development, structure and function of the
brain [35] and play a critical role in supporting the healthy
regulation of cellular inflammation [36]. Most of the nutritional
strategies described below were with PUFAs as well as one
intervention with sodium butyrate, a short chain (saturated) fatty
acid. Sodium butyrate can be produced in the gut and is well
known for shaping the microbiome [37] and as an important
metabolite for gut-brain-axis signaling [37, 38].

Human studies: Two studies investigated the effects of PUFA

supplementation/intake on child development after ES (low
socioeconomic status [39] and maternal prenatal negative life

SPRINGER NATURE
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events [40] respectively). More specifically, in a randomized
controlled trial in pregnant women (n=64) with a low socio-
economic status, prenatal supplementation of PUFAs (DHA
(450 mg), DPA (40 mg), ETA (40 mg) and EPA (90 mg) and Vitamin
E (10 mg) for six weeks had no effect on child behavioral and
cognitive development at three months of age as measured by
the Bayley Scales of Infant Development (BSID-lll) [39]. In an
observational study (n =255) the association between maternal
negative life events (NLE), infant temperament (Infant Behavior
Questionnaire Revised (IBQ-r)) and PUFA intake (habitual intake
ratio of N-3 and N-6 PUFAs as measured by a food frequency
questionnaire) in black, white and Hispanic women was
addressed. At 6 month of age there was a negative association
between NLEs and Orienting and Regulation in black women only,
which was attenuated by higher maternal N-3/N-6 PUFA intake
ratio [40].

Rodent studies: Twelve preclinical studies investigated the effect
of FA supplementation on the later-life consequences of ES, out of
which seven studies found an effect of ES and will be
described below.

Depressive-like behavior - In male rats, supplementation with N-3
PUFAs (postnatal day (P)41-61) [41] or sodium butyrate (P60-67)
[42] mitigated the postnatal stress (POS)-induced depressive-like
behavior in the forced swim test (FST) at two months of age [41]
and at P67 [42]. In male mice, supplementation with EPA (P22-49)
alleviated the effect of POS-induced depressive-like behavior in
the FST, the sucrose preference test (SPT) and the tail-suspension
test (TST) at P49 [43].

Anxiety-like behavior — In mice, supplementing the diet with a
high N-6/N-3 PUFA ratio (from breeding until P14) led to increased
prenatal stress (PRS)-induced anxiety-like behavior in the elevated
plus maze (EPM) at two months of age [44].

Cognitive impairments — In rats, supplementation with DHA (for
two weeks before breeding) ameliorated the PRS-induced
cognitive impairments in the Morris water maze (MWM) at P30
[45]. In male mice, increasing the availability of N-3 PUFAs (P2-42)
restored the POS-induced cognitive impairments in the novel
object location test (OLT) [14, 46] novel object recognition test
(ORT) [14] and MWM [14] at four months of age.

Other outcomes - In rats, supplementation with proprionic acid
(at P40, P43 and P74) ameliorated the POS-induced changes in the
pre-pulse inhibition test at P40, P43 and P74 [47].

In conclusion, clinical evidence on FA supplementation on
behavioral outcomes after ES is scarce. However, the two studies
included state that prenatal N-3 PUFA supplementation does not
seem to modulate ES-induced behavioral problems, however it
can be speculated that effects are different in mother-infant dyads
from different ethical backgrounds. In rodents, N-3 PUFA
supplementation ameliorated ES-induced depressive-like behavior
and cognitive impairments. An excess of N-6 PUFAs aggravated
the ES-induced anxiety-like behavior while deficiency in N-3
PUFAs did not further worsen the ES-induced depressive-like
behavior.

Polyphenols. Polyphenols are naturally occurring plant metabo-
lites available for consumption in many fruits, vegetables, coffee,
tea and wine. They have shown to have a wide range of potential
health benefits [48]. Chemically, polyphenols are phenolic
compounds classified based on their structure and substituents
[49]. The mechanisms underpinning their effects on brain
functioning are not fully understood, but the general consensus
attributes their benefit to antioxidant capabilities [50]. More than
8000 polyphenolic compounds have been identified in various
plant species. Polyphenols may be classified into different groups
as a function of the number of phenol rings that they contain and
on the basis of structural elements that bind these rings [51].
Polyphenols used in the included studies belong to the main

SPRINGER NATURE

polyphenol classes of the phenolic acids (ferulic acid), flavonoids
(proanthocyanidins, xanthohumol, quercetin, kolaviron, catechins),
tyrosols (hydroxytyrosol), coumarins (auraptene), tannins (phlor-
otannins) and the stilbenes (resveratrol).

Human studies: Only one observational study investigated the
effect of polyphenol supplementation on ES-induced behavior. In
a longitudinal cohort study (n =6404) the relationship between
adverse childhood events (ACEs), flavonoid intake and depressive
symptoms in adulthood was investigated. A higher habitual
flavonoid intake as measured by a food frequency questionnaire
buffered the association between perceived stress and depressive
symptoms after ACEs. Depressive symptoms were lower for those
that consumed more flavonoids [52].

Rodent studies: Thirteen preclinical studies investigated the
effect of polyphenol supplementation on the later-life conse-
quences of ES. All thirteen studies found an effect of ES on at least
one behavioral domain and will be described below.

Depressive-like behavior - In rats, supplementation with
proanthocyanidins to females (P21-P30) [53] or ferulic acid to
males (P60-P88) [54], ameliorated PRS-induced depressive-like
behavior as measured in the FST and SPT at one month and at
three months of age respectively [53, 54]. Supplementation with
resveratrol (P51-62) [55] and rosmarinic acid (P35-55) [56]
improved POS-induced depressive-like behavior measured in rats
in the FST and SPT at P62-65 and P39-42 respectively.

Moreover, in rats, supplementation with either phlorotannins,
xanthohumol or quercetin (Week (W) 8-16), reversed POS-induced
depressive like behavior in the FST at W12-13 [57].

Anxiety-like behavior - In rats, supplementation with ferulic (P60-
88) [54] or quercetin (Gestational day (G)14-19) [58] improved PRS-
induced anxiety-like behavior in males in the OFT at P89-95 [54]
and in males, but not in females in the light-dark box (LDB) and
novelty suppressed feeding (NSF) at P35-45 [58]. In rats,
supplementation with either phlorotannins, xanthohumol and
quercetin (W8-16) [57], kolaviron (P21-35) [59], resveratrol (P51-62)
[55] or quercetin (P21-42) [60] dampened the effects of POS-
induced anxiety-like behavior as measured in the open field test
(OFT) at W12-13 [57], at P35 [59], at P62-65 [55], and at P39-42 [60]
and in the LDB at P62-65 [55]. However, in male rats,
supplementation with catechins (P21-80) did not modulate the
POS-induced anxiety- like behavior in the OFT, EPM and hot plate
test (HPT) at P81-90 [61]. In mice, supplementation with auraptene
(P45-60) and umbelliprennin in males (for 7 days between P51-60)
[62] prevented POS-induced anxiety-like behavior in OFT and EPM
at two months of age [63] and in the EPM immediately after
treatment [62].

Cognitive impairments - In rats, supplementation with hydro-
xytyrosol to males (2 weeks before breeding [64]), resveratrol (G1-
P1) [65] or quercetin (G14-19) [58] ameliorated the PRS-induced
cognitive impairments in MWM and the T-maze (TM) at one
month [64, 65] and only in females in the ORT [58]. In rats,
supplementation with catechins to males (P21-80) [61] or
kolaviron (P21-35) [59] alleviated the POS-induced cognitive
impairments in the HPT and ORT at P81-90 [61] and the MWM
and Y-maze (YM) at a not specified age [59]. In male mice,
umbelliprenin supplementation for 7 days between P51-60
alleviated POS-induced cognitive impairments in the shuttleboxt-
est (SBT) immediately after treatment [62].

Social impairment — In male mice and rats, umbelliprenin (for
7 days between P51-60) [62] and quercetin (P21-42) [60]
supplementation lead to reductions in social impairments in
POS-exposed offspring immediately after treatment in social
approach (SA) [62] and at P39-42 in the social interaction (SI)
test [60].

Other outcomes — In male rats, supplementing with resveratrol
(P51-62) [55] led to less aggressive behavior in POS-offspring in
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the resident intruder test immediately at P62-65. In male mice,
supplementing umbelliprenin (for 7 days between P51-60) to POS-
offspring lead to less repetitive behavior immediately after
treatment [62].

In conclusion, there is not enough data to suggest a modulating
role of polyphenol supplementation after ES in humans. However,
in rodents, in 95.83% of the cases, supplementation with a large
variety of polyphenols during and after PRS and POS mostly
ameliorates ES-induced changes in behavior across the various
domains. In addition, there seems to be evidence for sex-specific
responses to polyphenols in the context of ES.

Pre-, pro- and synbiotics. The gut microbiome comprises of the
trillions of bacteria residing in the gut, metabolizing components of
the food ingested by the host and providing essential gastro-
intestinal ecosystem services. In the last decades both preclinical
and clinical research has also pointed towards microbial regulation
of brain function and behavior [66] and is incorporated as a key
node within the framework of the gut-brain axis. Key initial studies
showed that ES induces changes in gut microbiome composition
later in life [67]. Furthermore, the seminal study by de Palma and
colleagues showed that an intact microbiota is necessary to induce
some effects of ES [68]. Germ-free mice (i.e. animals without a gut
microbiome) exposed to maternal separation do not show changes
in anxiety-like and depression-like behavior [68]. Hence, the
microbiota can be a promising new target to treat the con-
sequences of ES. The most common dietary interventions directly
targeting the gut microbiome are pre- and probiotics. Prebiotics are
substrates selectively utilized by host microorganisms conferring a
health benefit. These can be digestible fibers that act as nutrients for
the beneficial bacteria in the gut and their degradation products are
short-chain fatty acids (e.g. butyrate) that are released into the
circulation, affecting overall health. Fructo-oligosaccharides and
galacto-oligosaccharides are the two main groups of prebiotics
studied for beneficial effects on health. Probiotics are live
microorganisms that, when administered in adequate amounts,
confer a health benefit on the host. Modulation of the gut
microbiome exerts health benefits via various routes including
microbial metabolites [69], immune system [70], neuroendocrine
system [71], the enteric nervous system, and the vagus nerve [72].
Probiotics exert their effects usually in the gastrointestinal tract,
where they may influence the intestinal microbiota and exert health
effects by nonspecific, species-specific, and strain-specific mechan-
isms [73]. The probiotics that are most frequently used for beneficial
health effects are strains from the Lactobacillus and Bifidobacterium
genera, which are also most frequently used in the included studies
as described below.

Human studies: One clinical study investigated the effect of pro-
and prebiotic supplementation on ES-induced behavior in the
offspring. A randomized, double-blind, controlled trial was carried
out in 190 healthy mothers divided in 2 groups (one taking a
supplement containing Limosilactobacillus reuteri PBS072 and
Bifidobacterium breve BB077 and a control group). Symptoms
related to maternal depression were evaluated at day 45 and 90.
At both timepoints, the score obtained from the Edinburgh
Postnatal Depression Scale questionnaire was lower in the
supplemented group. This led to less crying and fussing events
during the treatment in the offspring [74].

Rodent studies: Eighteen preclinical studies investigated the
effects of pre- and/or probiotic supplementation on ES-induced
behavioral deficits. Out of these eighteen studies, seventeen
found an effect of ES on at least one of the behavioral domains
and will be discussed below.

Depressive-like behavior — In rats, supplementation with L.
Paracasei (P2-16) [75], with B. Infantis to males (P50-P95) [76], or
B. infantis to both sexes [77] restored the POS-induced depressive
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like behavior in the TST at 1 month of age [75], and in the FST at
P21 (in females), 41(in males) and 61 (in females) [77] at 3 months
of age [76]. In mice, prenatal supplementation with B. breve
CCFM1025 (GO-delivery) [78] or postnatal supplementation with L.
Plantarum (P29-57) [79], L. Paracasei (P28-56) [80], prevented the
POS-induced depressive-like behaviors in FST and TST at P57-63
[79] and in the FST at P49 [78] and P54-56 [80].

Anxiety-like behavior - In rats, lifetime supplementation with B.
Trisporus [81] or with a mixture of L. Acidophilus, L. Fermentum and
B. Lactis (G1-G14 or P31-45) [82] ameliorated PRS-induced anxiety-
like behavior in the EPM at P45-46 [82] and at P60-70 [81]. In male
rats, supplementation with L. Paracasei (P2-16) [75], a mix of L.
Helveticus, B. Longum, L. Lactis and S. Thermophilus (W6-15) [83], a
mix of Polydextrose + Galactooligosaccharide and/or L. Rhamno-
sus (P21-49) [84] or a mix of L. Rhamnosus and L. Helveticus (P2-14)
[85], ameliorated the POS-induced anxiety-like behavior in the OFT
2 weeks after supplementation [75] or in the OFT [83, 84], EPM [85]
and LDB [85] right after the supplementation period. However, in
male rats supplementation with a mix of L. Helveticus, B. Longum,
L. Lactis and S. Thermophilus (W6-15) [83], L. Rhamnosus and L.
Helveticus (P2-14) [86] or a mix of L. Rhamnosus and L. Helveticus
(P2-14) [85], reduced the POS-induced anxiety like behavior in the
EPM [83, 86], LDB [83], novelty seeking (NS) [83] an OFT [85] right
after the supplementation period. In male mice, supplementation
with B. pseudocatenulatum (P2-21) and L. reuteri (P21-P63)
ameliorated the POS-induced anxiety-like behavior in the EPM at
P42 [87] at P63-P70 respectively and in the OFT at P63-P70 [88].
However, supplementation with L. Paracasei (P28-56) [80] or L.
Plantarum (P29-57) [79] did not affect the POS-induced anxiety-
like behavior in the EPM at P54-56 [80] and at P57-63 [79].

Cognitive impairments - In rats, lifetime supplementation with B.
Trisporus [81] or supplementation with a mixture of L. Acidophilus,
L. Fermentum and B. Lactis (G1-G14 or P31-45) [82] ameliorated
PRS-induced cognitive impairments in the ORT and Barnes maze
(BM) at P60-70 [81], and the MWM at P45-46 [82]. In male rats,
supplementation with L. Rhamnosus and L. Helveticus (P2-14)
[85, 86, 89], Polydextrose + Galactooligosaccharide (P21-W13/
W14) [90], or a mix of Polydextrose + Galactooligosaccharide and
L. Rhamnosus (P21-49) [84], ameliorated the POS-induced
cognitive impairments in fear conditioning (FC) at P17-24
[85, 86, 89] and the MWM at W7-11 [84] and at W7-13 but not
the ORT at W7-13 [90].

Social impairment - In male mice, supplementation with L.
Reuteri (P21-P63) reversed the POS-induced social impairment in
SA at P63-P70 [88].

Other outcomes — In male POS-rat offspring, prebiotic Polydex-
trose + Galactooligosaccharide (P21-W13) did not affect pain
behavior at 7 to 13 weeks of age [90]. In mice, supplementation
with L. Reuteri (P5-14) normalized POS-induced alterations in
calling behavior [91].

In conclusion, supplementation with both pre- and/or pro- and
synbiotics alleviates ES-induced depressive-like behavior and
cognitive impairments in 100% of the cases. Regarding the
domain of anxiety-like behavior, in rats subjected to PRS, pre- and/
or probiotic supplementation demonstrates anxiolytic effects.
However, results were conflicting in rats exposed to POS. This
variability in results can be attributed to differences in the timing
of pre- and/or probiotic supplementation relative to the stressor or
the timing of outcome measurements. In mice, it is noteworthy
that supplementation during the stress period modulated the
POS-induced alterations in behavior, whereas supplementation
after the stress period did not. Interestingly, pre- and/or probiotic
supplementation during POS ameliorates the ES-induced deficits
in cognition, however, supplementation after POS required
supplementation with both pre- and probiotics, as a synbiotic.

Micronutrients. Micronutrients are essential dietary elements,
required to orchestrate a range of physiological functions
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important for development and maintenance of a healthy brain
[92]. Micronutrients can be subdivided in different categories,
such as vitamins and minerals. Therefore, below we will describe
the effect of supplementation with amino acids, vitamins,
minerals, carotenoids and other micronutrients on ES-induced
behavioral deficits.

Amino Acids: Amino acids are important micronutrients and are
the building blocks for proteins and critical for almost all body
processes and especially for neurodevelopment [93]. In their free
form, some amino acids also work as signaling molecules and
some, such as tryptophan, are important precursors for the
synthesis of neuroactives [93, 94]. Most amino acids, including
cysteine and tyrosine, can be synthesized by the body under
normal circumstances. However, nine amino acids, are not
synthesized (e.g. methionine and tryptophan) or synthesized in
too low concentrations (n-acetylcysteine (NAC)) by mammals and
are therefore dietary essential nutrients [93]. Interestingly, the
studies that we will describe next have only supplemented NAC in
the contex of ES, but no other amino acids have been studied yet
in this context.

Rodent studies: Three preclinical studies investigated the effects
of amino acid supplementation on ES-induced behavioral deficits.
All studies found an effect of ES on at least one of the behavioral
domains and will be discussed below.

Depressive-like behavior — In male rats, supplementation with NAC
(P41 to P61), ameliorated the POS-induced depressive like behavior in
the FST at two months of age [41]. In male mice, NAC supplementa-
tion (5 weeks pre-mating until G16) did not have an effect on PRS-
induced depressive-like behavior at P33-50 in the FST [95].

Anxiety-like behavior - In mice, supplementation with NAC from
G12- P1 [96] or pre-mating until G16 [95] did not have an effect on
PRS-induced anxiety-like behavior in the EPM at W10-14 [96] or in
the OFT and EPM at P33-50 [95].

Social impairment — In mice, supplementation with NAC (G12-
P1) did not ameliorate the PRS-induced social impairments in SA
at two months of age [96].

Vitamins: Vitamins are essential micronutrients that are required
in small quantities for a variety of physiological functions in the
body, including for those in the brain [12, 92]. There are several
different vitamins that are important for the brain, each of them
playing unigue roles in for example antioxidative mechanisms and
the production of neurotransmitters [97, 98]. The studies below
describe supplementation with several different vitamins. For
example, folic acid is important for functioning of the nervous
system at all ages and is well known for its relation with neural
tube defects [99]. Vitamin A is essential for the developing CNS
where it affects neurogenesis and neuronal patterning, but keeps
playing an important role in the adult brain by regulating
neuroplasticity in cerebral structures [100]. Vitamin C and E are,
amongst having other functions, vital antioxidant molecules in the
brain studies [101, 102].

Human studies: One clinical study investigated the effect of
vitamin supplementation/intake on ES-induced outcomes. An
observational cohort study (n=137) found that maternal
prenatal stress, measured as NLEs during pregnancy, was
associated with higher scores in the infant temperament domain
of negative affectivity (Early Childhood Behavior Questionnaire-
Very Short form). A trend towards mitigation of this relationship
by a higher maternal habitual intake of vitamin A and C, but not
E, was found [103].

Rodent studies: Four preclinical studies investigated the effect
of vitamin supplementation on ES-induced behavioral deficits. All
studies found an effect of ES on at least one of the behavioral
domains and will be discussed below.

Depressive-like behavior — In male rodents, supplementation
with vitamin E (P31-45) [104] or folic acid (P41-61) [41] reversed
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the POS-induced depressive-like behavior measured in the FST at
P60—61 [41] and at P45-47 [104], but not in the splash test (ST) at
P45-47 [104].

Anxiety-like behavior - In male rats, supplementation with
leucine (P20-60), did not reduce POS-induced anxiety-like
behavior in the OFT at P60 [105]. In male mice, supplementations
with vitamin E (P31-45) protected against POS-induced anxiety-
like behavior in the EPM at P45-47 [104].

Cognitive impairments — In male POS-offspring, both vitamin PP
(P56-85) [106] and Leucine (P20-60) [105] led to improvement in
ES-induced cognitive impairments in the ORT and the BM at an
unknown age [106] and in the MWM at 2 months of age [105].
Other outcomes - In male POS-offspring, vitamin PP (P56-85)
reversed stress-induced changes in pre-pulse inhibition in
adulthood [106].

Minerals: Minerals are micronutrients and inorganic substances
that cannot be synthesized by organisms, but are ingested
through the diet, including for example magnesium, calcium, zinc
and selenium. They play key roles in oxygen transport, the
synthesis of neurotransmitters and signaling between neurons. In
addition, they can have antioxidant activities.

Human study: One clinical study was identified that investigated
the effect of mineral supplementation on ES-induced outcomes.
An observational cohort study (n=137) found that maternal
prenatal stress, measured as negative life events during preg-
nancy, was associated with higher scores in the infant tempera-
ment domain of negative affectivity (Early Childhood Behavior
Questionnaire-Very Short form). This association was mitigated by
a higher maternal habitual intake of zinc and selenium, but not
magnesium [103].

Rodent studies: One rodent study was included that investi-
gated the effect of mineral supplementation on ES-induced
behavioral outcomes.

In female rat offspring of dams that have experienced PRS, zinc
supplementation (G0-19) lead to reductions in stress-induced
depressive like behavior measured in the FST and stress-induced
anxiety-like behavior as measured in the OFT and EPM at P25-27
[107].

Carotenoids: Carotenoids are a group of micronutrients and are
organic pigments naturally found in plants, algae and bacteria.
Carotenoids have powerful antioxidant capacities and anti-
inflammatory functions. In addition, they seem to assist the
preservation of cognitive function, independent of ES [108].

Human study: One clinical study was identified that investi-
gated the effect of carotenoid supplementation on ES-induced
outcomes. An observational cohort study (n=137) found that
maternal prenatal stress, measured as negative life events
during pregnancy, was associated with higher scores in the
infant temperament domain of negative affectivity (Early Child-
hood Behavior Questionnaire-Very Short form). This association
was not affected by a higher maternal habitual intake of beta-
carotene [103].

Rodent study: Two rodent studies were identified that
investigated the effect of carotenoid supplementation on ES-
induced behavioral deficits. Both studies reported stress-induced
behavioral effects.

Anxiety-like behavior - In mice, supplementation with astax-
anthin (G12-P1) had no effect on the PRS-induced anxiety-like
behavior as measured in the OFT and the EPM at W10-14 [96], but
supplementation with lutein (late gestation-W9) led to a reduction
in stress-induced anxiety-like behavior in the EPM at 9 weeks of
age [109].

Other micronutrients: The studies below describe supplementa-

tion with several micronutrients that do not officially fall in the
categories of the amino acids, vitamins, minerals or carotenoids.
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For example, choline and carnitine are both quaternary ammo-
nium compounds and both important for brain development
[110, 111]. Where choline mostly is important for membrane
structure and the production of acetylcholine and thus neuro-
transmission [110], carnitine is critical in fatty acid oxidation and
therefore energy production [111]. Another study will describe
supplementation with taurine, a derivative of the amino acid
cysteine, which has been linked to development of the CNS and
the immune system [112-114].

Rodent studies: Six preclinical studies were identified that
investigated the effect of supplementation with these ‘other’
micronutrients on ES-induced behavioral deficits, out of which five
found an effect of the nutrients on ES-induced behavioral deficits
on at least one of the behavioral domains investigated and will be
described below.

Depressive-like behavior - In male mice, supplementation with
acetyl-L-carnitine (P21-56 or P49-56) reduced the PRS-induced
depressive like behavior in the FST at W8-13, the effect only lasted
for a week [115].

Anxiety-like behavior — In rats, supplementation with choline
(GO-P21) ameliorated the PRS-induced anxiety-like behavior in the
EPM in females at P79-106, but not in the OFT [116].

Cognitive impairment — In rats, supplementation with a high, but
not a low, dose of taurine, (P21-30), ameliorated the PRS-induced
cognitive deficits in the MWM at P31 [117]. In male rats,
supplementation with choline (P21-60) [118] or choline chloride
(P1-14 or P15-28) [119] reversed the POS-induced cognitive
impairments in the ORT and OLT at P90 [118] and in the
avoidance learning task (ALT) at P80 and P180 [119].

Social impairment - In rats, choline supplementation (G0-P21)
ameliorated the PRS-induced social impairments in the Sl test in
males only at P79-106 [116].

Overall, the micronutrient categories, vitamin (85.71%) and
mineral supplementation (100% - 1 study) seem to ameliorate the
ES-induced behavioral deficits. While in both humans and rodents,
carotenoids (33%) and most amino acids (25%) did not seem
convincing in mitigating ES-induced deficits. Supplementation
with nutrients from the ‘other micronutrients’ category (carnitine,
choline and taurine) did reverse the ES-induced behavioral deficits
(100%). However, due to the small number of studies, the different
nutrients used and heterogeneity in study designs, it is impossible
to draw any conclusions.

Combination Preparations. Several studies investigated the
effects of the mix of multiple nutrients rather than on individual
nutrient groups on the outcomes after ES. These combination
preparations differ from containing a combination of two different
nutrients to a combination of seven different nutrients.

Rodent studies: Eight preclinical studies investigated the effect
of supplementation with a combination of different nutrients on
ES-induced behavioral deficits, out of which six studies found an
effect of ES on at least one of the behavioral domains investigated
and those will be described below.

Depressive-like behavior - In male rats, supplementation with fish
oil (G0-P21) exacerbated the PRS-induced decrease in depressive-
like behavior in FST at three months of age [120]. In addition,
supplementation with a combination of folic acid, vitamin B12,
betaine and choline (G14-P21) improved the PRS-induced
depressive-like behavior in males in the FST between one and
two months of age [121]. Supplementation with a combination of
fish oil containing FAs and vitamins and minerals to males (W8-16)
had no effect on POS-induced depressive-like behavior in the FST at
W10-16 [122], while in females supplemented with choline, betaine,
folic acid and vitamin B12 (P60-P186) the POS-induced depressive-
like behavior was ameliorated in the FST at P165-186 [123].

Anxiety-like behavior — In male rats, supplementation with a
combination of fish oil containing FAs and vitamins and minerals
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(W8-16) improved the POS-induced anxiety-like behavior in the
EPM and the OFT at W10-16 [122].

Cognitive impairments — In rats, supplementation with folic acid,
vitamin B12, betaine and choline (G14-P21) reduced the PRS-
induced cognitive impairments in the MWM and in the ORT, only
in aged females, at month (M)19-20 [121]. In male rats submitted
to POS, supplementation with milk fat globule membrane (MFGM)
combined with polydextrose and galacto-oligosaccharides (wean-
ing-W13/14) resulted in improvement in the MWM, but not the
ORT at W7-13 [90]. A different study submitting male rats to POS, a
mix of EPA, DHA and vitamin A (P25-P76) reduced the cognitive
impairments in adolescence (P46-51) and adulthood (P70-P76) as
measured in FC and ORT [124]. In female rats, supplementation
with choline, betaine, folic acid and vitamin B12 (P60-186) had no
effect on the POS-induced cognitive impairments as measured in
the ORT at P165-186 [123]. In male mice, supplementation with
folic acid, vitamin B6 + B12, choline, methionine and zinc (P2-P9)
reversed POS-induced cognitive deficits in the MWM and the ORT,
but not the OLT at four months of age [15].

Other - In rats, supplementation with a combination of the fatty
acids LA and ALA and probiotic B. Breve (P28-77) had no effect on
POS-induced changes in pain behavior at P77 [125], but MFGM
combined with polydextrose and galacto-oligosaccharides (P21-
W13/14) decreased pain behavior at W7-13 [90].

Although some of the above described combination prepara-
tions seemed to be effective in the context of reducing ES-
induced impairments, due to the variety in nutrients, stressors and
supplementation duration/period, no definite conclusions can
be drawn.

Diets/Nutritional Programs.  Several studies investigated the effect
of a complete diet, for example a high-fat diet, or the
implementation of a nutritional program (human studies) on the
outcomes after ES. In these diets/programs, the exact nutrient
intakes are not specified, but a certain diet is provided over a
given time period.

Human studies: Five human studies investigated the effect of
specific diets/nutritional programs on ES-induced outcomes.

A community-based intervention trial (n = 240) showed that an
integrated nutrition rehabilitation intervention (supplementation
of the diet with shredded liver, fish and anchovy twice weekly for
6 months) had benefits on the socioemotional development
(BSID-II) in =24-month-old Earthquake survivors. There were no
effects of the intervention on the other BSID-IIl outcome domains
[126].

Moreover, a large longitudinal cohort (n=6979) provided
evidence that maternal depression symptoms during pregnancy
were associated with both more unhealthy and less healthy diets
as measured by a food frequency questionnaire during pregnancy
and postpartum. This was in turn prospectively associated with
reduced child cognitive function at eight years of age. This
suggests that maternal depression symptoms in pregnancy can
affect child development via a less healthy nutritional environ-
ment [127]. A longitudinal cohort study (n=1503), including
women-infant dyads with low socioeconomic status, found no
positive effect of The Special Supplemental Nutrition Program for
Women, Infants, and Children (a program in which nutritional
education and healthy supplemental foods are provided [128]) on
child competence or problem behaviors between 12 and 24-
months of age as measured by the Brief Infant Toddler Social
Emotional Assessment (BITSEA) [129]. Lastly, a longitudinal cohort
study (n=6404) showed that plant-based dietary intake fre-
quency measured by a questionnaire, was related to a reduction in
the association of more than four ACEs with later-life mental
health outcomes at any age [130]. Finally, a prospective cohort
study including 7438 mother-child pairs, investigated whether a
maternal anti-inflammatory diet reduced the risk of prenatal
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environmental adversity (PEA)-induced neurodevelopmental
delay. Diets with a low inflammatory score were protective for
an increased risk of PEA-related neurodevelopmental delay [131].

Rodent studies: Thirteen preclinical studies investigated the
effect of supplementation with a complete diet on ES-induced
behavioral deficits, out of which twelve studies found an effect of
the diet on at least one of the behavioral domains investigated
and those will be described below.

Depressive-like behavior - In rats, supplementation with a high
fat diet (HFD)(G14-P21) aggravated the PRS-induced depressive-
like behavior in old males in the FST at M19-20 [121].
Supplementation with an olive oil rich diet (G1-P21) [132], a
highly palatable food diet in females (P28-65) [133], a highly
palatable food diet in both sexes (P20-84) [134] or a HFD in males
(P20-84) [135] reversed the POS-induced depressive-like behavior
in the FST in males at P80-87 [132] and at W10-12 [134] and in
females at P54-59 [133], and in the SPT in males at P34-84 [135]. In
contrast, supplementation with a highly palatable food diet in
males (P22-59) [136] and an olive oil rich diet (G1-P21) [132] did
not have an effect on POS-induced depressive like behavior as
measured in the FST at P54-59 [136] and in the SPT at P80-87
[132].

Anxiety-like behavior - In rats, supplementation with HFD (GO-
P21 [137] and P20-84 [134], a high-fat-high-sugar diet (P21-91)
[138], palatable diet (P21-P60) [139] or highly palatable food diet
(P28-56 [133] and P22-59 [136] and P20-84 [135]) reversed the
POS-induced anxiety-like behavior as measured in the OFT at M4-
7 [137] and P54-59 [133, 136], in the EPM between W10-12
[134, 138], P60-P67 [139] and at P54-59 [133] and in the LDB at
W10-12 [134] and at P34-84 in females [135]. Supplementation
with highly palatable food diet (P22-59) did not have an effect on
POS-induced anxiety like behavior in the EPM at P54-59 [136].

In male mice, supplementation with Western-pattern diet (G14-
weaning and G14-P80/83) after PRS improved anxiety-like
behavior as measured in the OFT, but in females only the time
window of G14-P80/83 accomplished this effect [140].

Cognitive impairments — In rats, a HFD (G14-P21) did not have an
effect on the PRS-induced cognitive impairments as measured in
the MWM at M19-20 and the ORT at both M1-2 and M19-20 [121].
In male rats, a HFD (G0-P21) reduced POS-induced cognitive
impairments as measured in the MWM at M4-7 [137] and the
conditioned odor preference (COP) at M6 [141].

Social behavior — In male rats, a high-fat-diet (G0-P21) or a
palatable diet (P21-P75/76) reduced POS-induced social impair-
ments as measured in Sl at M4-7 [137], at P61-P64 [142] and at
P30-P37 and P60-P67 [139].

In conclusion, a HFD and a highly palatable diet seemed to be
effective in reducing ES-induced depressive and anxiety like
behaviors. However, for the cognitive domain there is too little
evidence that points in the same direction to draw firm
conclusions.

Other nutritional interventions. Several studies researched sup-
plementation interventions with nutrients that do not fall into the
categories as described above. Most of these are herb-, plant- or
berry-derived and sometimes used in alternative medicine, for
example bacopa monnieri, acacia gum, acai seed extract and
wolfberry preparation, but also for example the alkaloid
trigonelline.

Rodent studies: Fourteen preclinical studies investigated the
effect of supplementation with one of these ‘other’ nutrients on
ES-induced behavioral deficits. All of these studies found an effect
of the diet on at least one of the behavioral domains investigated
and will be described below.

Depressive-like behavior — In male rats, supplementation with
Euterpe oleracea Mart. (agai) seed extract (P76-110) ameliorated
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the POS-induced depressive like behavior in the FST at P106-108
[143]. In female rats, supplementation with spirulina platensis
(P41-P55) reversed the POS-induced depressive-like behavior in
the FST at P60-P70 [144]. In male mice, supplementation with
Trigonelline (P31-45/47) ameliorated the POS-induced depressive
like behavior in the FST and the ST at P45-47 [104].

Anxiety-like behavior — In male rats, supplementation with
Bacopa monnieri and acacia gum (G10-P23 and P15-30) [145] or
Bacopa monnieri and acacia gum or L-carnosine (G10-P23) [146] or
herbal medicine (G1-P0) [147] ameliorated the PRS-induced
anxiety-like behavior in the EPM at P30-32 [145], the LDB at
P31-33 and P84-86 [146], and the OFT at P25 [147]. In male rats,
supplementation with Euterpe oleracea Mart. (acai) seed extract
(P76-110) [143], capsaicin (P56-70) [148] and vanillic acid (VA)
(P46-60) [149], reduced POS-induced anxiety-like behavior in the
OFT at P106-108 [143], P63-70 [148] and P60 [149] and in the EPM
at P60 [149]. In female rats, supplementation with spirulina
platensis (P41-P55) reversed the POS-induced anxiety-like beha-
vior measured in the OFT and the EPM at P60-P70 [144]. In mice,
supplementation with Trigonelline in males (P31-45/47) and
2'Fucosyllactose (Weaning-W7) [150] reversed the POS-induced
anxiety-like behavior as measured in the EPM at P45-47 [104] and
at W7 [150].

Cognitive impairments — In rats, supplementation with Bacopa
monnieri and acacia gum (G10-P23 and P15-30) [145] to males and
with milk-based wolfberry preparation (2 weeks before breeding)
[151] to females ameliorated PRS-induced cognitive impairments
in the YM at P30-32 [145] and in the MWM at P30 [151]. In male rat
POS-offspring, supplementation with capsaicin (P56-70) [148],
VA(P46-60) [149], MFGM (P21-W13/14) [90] or quinoa supplemen-
ted food (P21-P52/53) [152] improved ES-induced cognitive
impairment at P63-70 in the ORT and BM [148] and in the SBT
at P60 [149], the MWM, but not the ORT at W7-13 [90] and in the
YM at P52-53 [152]. In female rats, supplementing the diet with
spirulina platensis (P41-P55) reversed the POS-induced cognitive
impairments measured in AL and the MWM at P60-P70 [153].

Other - In male rats, supplementations with MFGM G19/21-P100
[154] and from P21-W13/14 [90] reduced the POS-induced
alterations in pain behavior at P70-77 [154], but not at W7-13
[90]. In addition, in male rats, supplementations with capsaicin
(P56-70) [148] and VA (P46-60) [149] reduced ES-induced changes
in prepulse inhibition (PPI) at P63-70 [148] and repetitive behavior
at P60 [149].

In general, the above described studies show that supplemen-
tation with Bacopa monnieri, acacia gum, acai seed extract,
wolfberry preparation, milk fat globule and trigonelline was able
to mitigate the ES-induced alterations in behavior. Due to the
diversity of nutrients and the relative scarcity of studies pertinent
to each, it remains impossible to draw any conclusions at
this point.

POTENTIAL MECHANISMS UNDERLYING THE MODULATORY
EFFECTS OF NUTRITION

In the previous section, we described the effect of nutritional
interventions and their effectiveness in modulating the effect of
ES on various behavioral domains. It remains of importance to
understand not only if, but also how they modulate the ES-
induced effects and which are the specific neurobiological
processes mediating the effects of nutrients on the brain in the
context of ES. This poses a significant challenge considering that
most of the nutrients will have a broad impact on the brain as they
are essential building blocks as well as signaling molecules, acting
often as co-factors in biochemical processes in the various cell
types in our brain [12, 155] rather than targeting a specific brain
region, or cell type. In addition, to add an even further layer of
complexity, several of them act on converging pathways and
there is ample cross talk between the various mechanisms that are
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modulated by specific nutrients. In the next section, we will
discuss key processes and their potential crosstalk that have been
implicated in the long-term effect of ES and how the above-
described nutrients might contribute to or modulate these
processes. This section is based on the literature identified
resulting from primary search in our review, which addressed
the impact of early-life stress and nutritional interventions but
takes into consideration all papers independent on whether
behavioral outcomes were addressed.

Neurogenesis and neurotrophic factors

Adult hippocampal neurogenesis is the process in which new
neurons are generated in the hippocampus, a brain region critical
for cognitive functioning, anxiety and depression-related behavior
[156, 157]. Several preclinical studies have investigated immediate
and lasting effects of adverse early-life experience on hippocam-
pal neurogenesis and the associated behavioral alterations using
different models for ES [158]. Both PRS as well as POS lead to
learning deficits associated with a decrease in neurogenesis
[159-162]. Interestingly, Increasing the bio-availability of N-3
PUFAs [14], but not enriching the diet with a combination of
micronutrients [15] early in life protected against the ES-induced
reduction in neuronal survival. How N-3 PUFAs specifically
affected neuronal survival, how key the specific time window is
within which nutrients are supplemented and whether other
nutrients or the combination thereof might also modulate adult
hippocampal neurogenesis in the context of ES remains to be
determined.

Neurotrophic factors (e.g. brain derived neurotrophic factor
(BDNF)) are a family of molecules that support the growth, survival
and differentiation of both developing and mature neurons.
Several studies point to the importance of BDNF in pathways of
adult neurogenesis [163], suggesting it might contribute to the
effect of nutrients on among others the adult neurogenic process.
For example, that stress inhibits the pathway that leads to
production of BDNF [164] and that following dietary restriction
upregulation of BDNF is required for the antidepressant
treatment-induced increase in survival of newborn granule cells
[165]. Hydroxytyrosol [64], resveratrol [65], as well as DHA [45]
supplementation increased BDNF expression in the brain of the
ES-exposed offspring, potentially contributing to the beneficial
effects on the ES-induced cognitive decline observed. Similar
increases in BDNF levels were observed in the plasma of ES-
exposed mice after supplementing with other polyphenols [57].
The specific mechanism via which these nutrients modulate BDNF
and to what extents the role of BDNF is key for their effect on
neurogenesis remain to be determined.

Furthermore, neurogenesis can be influenced by various other
biological pathways, such as for example the gut microbiome
[166] and neuroinflammation [9], later discussed in this review.
Therefore, it is most likely that dietary factors may also indirectly
affect neurogenesis not only via BDNF, but rather via a synergistic
action through modulation of various pathways.

Apoptosis
Apoptosis is a tightly regulated process of programmed cell death
and plays a crucial role in shaping the developing CNS. Notably,
neurons are particularly vulnerable to programmed cell death, as a
significant proportion of newly generated neurons are eliminated
in specific brain regions during development [167]. A slight
perturbation in this developmental trajectory by, for example ES,
tipping the balance towards increased apoptosis, might be
detrimental. Indeed, there is evidence that ES affects apoptotic
pathways in the rodent brain. For example, POS leads to an
immediate increase in hippocampal apoptosis [168, 169] asso-
ciated with later-life cognitive deficits [168].

Nutrients could modulate apoptosis for example by
inhibiting pro-apoptotic BAX and (pro-)caspases and stimulating
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anti-apoptotic Bcl-2 [75, 81, 117, 145]. Supplementation with
DHA [45], B. trisporus [81], L. paracasei [75] and Bacopa monnieri
[145] reversed the ES-induced increase of apoptotic markers BAX
[45, 81, 117], caspase 3 [75, 81, 117, 145], pro-caspase 3 [45] and
pro-caspase 9 [45] and decrease in anti-apoptotic marker Bcl-2
[81, 117].

There is evidence that neuroinflammation, oxidative stress and
mitochondrial functioning might also be involved in the modula-
tion of apoptosis and its modulation by nutrients and stress. For
example, dysregulation of the NLRP3-Caspase 1 signaling pathway
caused by ES, was reversed by nutritional interventions wit
proanthocyanidins [53]. This signaling pathways is associated with
an inflammatory-programmed cell death [170].

Synaptic plasticity

Synaptic plasticity refers to activity-dependent modification of the
strength or efficacy of synaptic transmission at pre-existing
synapses in response to experiences [171]. There is ample
evidence that ES leads to long-lasting changes in synaptic
plasticity influencing both the pre- and post-synapse [172, 173].
For example, ES reduced synaptophysin (SYP) and post-synaptic
density (PSD)-95 expression, important in the formation and
maintenance of synapses and their transmission [174, 175].
Nutritional interventions could increase synapse maintenance
and stability by enhancing these neural proteins. Indeed,
supplementation with polyphenols [64] or a diet enriched with
Bacopa monnieri [145] and a diet rich in olive oil [132] were able to
reverse the ES-induced decrease in SYP and PSD-95.

The plastic cellular process underlying learning and memory,
long-term potentiation (LTP), and the herein essential glutamate
ionotropic receptor (GLuR) and N-methyl-D-aspartate (NMDA)
receptors (glutamatergic), are affected by ES [173]. There is
evidence that nutrients might be able to modulate LTP via
modulation of these receptors. For example, resveratrol supple-
mentation [65] was able to reverse the ES-induced increase of
NMDA receptors and supplementation with L. paracasei [75]
reversed the ES-induced increase in GluR1, GIuR2 and NMDA
receptors.

Similarly, inhibitory Gamma-aminobutyric acid (GABA)-ergic
synapses have been implicated in ES [176] and a combination of
pre- and probiotics supplemented after POS [84] was able to
reverse the increased number of GABA-A2 receptors [177].

Synaptic plasticity, closely linked to neurogenesis, plays a
pivotal role in integrating newly formed neurons into existing
neural circuits. Nutritional interventions that promote synaptic
plasticity may enhance neurogenesis. Additionally, chronic neu-
roinflammation can impair synaptic plasticity, while nutritional
interventions with anti-inflammatory properties may alleviate
neuroinflammation and facilitate synaptic plasticity, that might
mediate beneficial effects on cognition. Pro-inflammatory circum-
stances might also lead to aberrant mitochondrial functioning,
thereby leading to oxidative stress, detrimental to synaptic
plasticity.

Neuroinflammation

Neuroinflammation is defined as an inflammatory response within
the CNS, in which the key players are microglia and astrocytes,
endothelial cells and peripherally derived immune cells. This
inflammation is mediated by induction of cyto- and chemokines,
reactive oxygen species (ROS), and secondary messengers [178]. In
addition, peripheral inflammation can lead to the release of
inflammatory molecules that can cross the blood-brain barrier
(BBB) and contribute to neuroinflammation [178]. ES can have a
lasting impact on both peripheral and central immune systems.
For instance, there is both clinical [179] and pre-clinical [180]
evidence that ES leads to increased circulating levels of pro-
inflammatory cytokines and pre-clinical evidence for a similar
increase also in the brain later in life [181]. In addition, ES has been
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shown to modulate microglia directly after the stress paradigm
[182], as well as lastingly into adulthood [9, 23], possibly exerting
effects on key developmental processes like synaptic pruning
[183].

There are several pathways via which nutrients can influence
neuroinflammation: a more direct impact, with nutrient-derived
messengers crossing the BBB and thereby exerting their effects
directly in the CNS or a more indirect pathway, with nutrients
modulating peripheral inflammation, that can in turn exert its
effect on the central immune system.

One group of interventions that has shown to be effective in
reducing ES-induced (neuro)inflammation, are the probiotics.
Bifidobacteria [83] were potent in reducing ES-induced peripheral
[83], neuro- [81] and gut inflammation [87] potentially contribut-
ing to the modulatory effects on some of the behavioral domains.
Supplementation with Lactobacilli led to a reverse in the ES-
induced increase in pro-inflammatory cytokines and decrease in
anti-inflammatory cytokines [80]. Interestingly, strains from these
genera often converge at the functional level in terms of
production of short-chain fatty acids (SCFAs), such as propionate,
acetate and butyrate that may exert anti-inflammatory effects
[184]. Peripherally, SCFAs influence systemic inflammation via
inhibiting histone deacetylases, thereby inhibiting Nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) activation
[185]. Importantly, SCFAs can cross the BBB via monocarboxylate
transporters located on endothelial cells and influence BBB
integrity by upregulating the expression of tight junction proteins
[186] and thereby potentially exert direct effects on microglia.

Anti-inflammatory capacities are also reported after supple-
menting with N-3 PUFAs. Indeed, N-3 PUFA derivatives (e.g.
oxylipins) are able to directly influence microglia, by modulating
their phagocytic capacity, motility and their capacity to produce
inflammatory factors [23, 187].

For example, increasing N-3 PUFAs bioavailability which was
protective against the ES-induced cognitive decline, also reduced
the ES-induced increase in cluster of differentiation (CD)68
expression (a marker for activated microglia) [14]. Interestingly,
there is evidence that ES modulates the brain lipidome and
oxylipin profile long lastingly and that these profiles depend on
early life N-3 PUFA availability in the diet [188]. Another study
reported an increased bioavailability of N-3 PUFAs in the frontal
cortex after supplementation with fish oil [120, 122]. This increase
in bioavailability of N-3 PUFAs could lead to a more anti-
inflammatory environment [189] in these brain regions, potentially
modulating microglia. Finally, nutritional supplements can exert
anti-inflammatory effects via inhibition of NF-kB. For example,
supplementing with ferulic acid suppresses hippocampal NF-kB,
potentially contributing to a decrease in cytokine expression in
the ES-exposed offspring [54].

While it becomes thus clear that several nutrients exert
modulatory effects on (neuro)inflammatory processes, the specific
pathway via which they exert these effects remains to be
understood and are most likely a combination of direct and
indirect processes potentially involving for example the gut
microbiome [166] and the hypothalamus-pituitary-adrenal (HPA)-
axis [190].

Mitochondrial & Oxidative stress

Mitochondria have been receiving increasing attention for their
involvement in the stress response [191]. Energy demands
increase during stress due to the “fight or flight” response and
allostatic biological systems, both of which rely on adenosine
triphosphate (ATP) as an energy source. Mitochondria play a
crucial role in meeting this energy demand by increasing cellular
energy production, promoting cellular adaptation through signal
generation, and undergoing biogenesis [191, 192]. During the
production of ATP, ROS and reactive nitrogen species (RNS) are
formed. When the production of ROS and RNS exceeds the
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antioxidant defenses, oxidative stress occurs, leading to damage
to cellular components including lipids, proteins and deoxyribo-
nucleic acid (DNA). Clinical studies have addressed the potential
involvement of mitochondria in the context of ES. For example,
individuals exposed to ES exhibit an increased mitochondrial DNA
copy number content in leukocytes [193] and in saliva [194]
indicating that this effect might be widespread throughout the
body and have its origin in childhood. In addition, there is
evidence from preclinical studies that ES (POS in particular) affects
mitochondria in the brain. For example, ES-exposed offspring
exhibited increased ROS [195], decreased ATP production
[195, 196], higher oxidative stress [197] and decreased antioxidant
levels [196] and altered mitochondrial gene expression [198] in
the hippocampus when compared to controls.

Some of the nutritional interventions might exert their
beneficial effects in the context of ES via modulating mitochon-
dria. For example, hydroxytyrosol (a polyphenol) [64], DHA [45]
and taurine [117] supplementation in ES offspring all led to an
increased mitochondrial metabolism that potentially contributed
to cognitive improvement. Polyphenols have the capacity to
modulate mitochondria via various pathways. For example,
polyphenols have multiple hydroxyl groups within their structure
[199] rendering them exceptional in buffering excess ROS in the
CNS. Indeed, supplementation of hydroxytyrosol increased mito-
chondrial function and decreased oxidative stress [64]. Such
buffering could for example be mediated by activation of the
Nrf2-Keap1-ARE pathway, which has been shown to be increased
after polyphenol supplementation which in turn induces the
expression of phase Il detoxifying enzymes, responsible for
reducing endogenous toxic metabolites [65].

In addition to having a direct impact on mitochondria, nutrients
might also influence ROS levels via decreasing production of ROS,
increasing its breakdown or by mitigating downstream effects
of ROS.

For example, supplementing with proanthocyanidins (a poly-
phenolic compound) [53] reduced ROS in ES offspring. Playing a
crucial role in breakdown of ROS are superoxide dismutases (SOD),
which inhibit superoxide radicals; and catalase, which inhibit free
diffusion of hydrogen peroxide among cells. SOD and catalase
were found to be increased after the supplementation of amino
acids (specifically: NAC [41] and taurine [117] and diets rich in fatty
acids [132] (specifically N-3 PUFAs and MUFAs) in ES rat offspring,
related in turn to increased cognitive performance and a
reduction in depressive-like symptoms.

Additionally, taurine supplementation has been shown to
increase mitochondrial membrane potential, which in turn could
lead to increased respiratory chain enzymatic activity. This
increases ATP, which supplies for the increased energy demand
during stress. This could in turn increase the production of ROS
that might be mitigated by the increase that is seen in SOD1 [117].

N-3 PUFAs-induced beneficial effects [41, 45] might modulate
production of micelles with scavenger-free radicals, thus reducing
the production of ROS [200]. (Semi)vitamins, amino acids and FAs
had strong effects in mitigating the downstream effects of ROS.
For instance, protein carbonylation (a post-translational modifica-
tion in proteins exposed to oxidative stress) was found to be
reduced in ES-exposed offspring supplemented with folic acid
[41]. Another downstream effect of ROS is lipid peroxidation,
which leads to an increase in malondialdehyde (MDA), which can
react with DNA and proteins. The supplementation with Vitamin E
[104], Folic acid [41] and Auraptene [63] successfully inhibited the
increased lipid peroxidation and thereby the expression of MDA
caused by ES. N-3 PUFAs were only partially inhibiting this
increase, potentially because N-3 PUFA supplementation could
lead to exaggerated sensitivity to lipid peroxidation [201].

The involvement of mitochondrial functioning in the efficacy of
nutritional interventions could be dependent on cross-talking
pathways. For example, in response to acute stress exposure,
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mitochondria respond dynamically to cues from stress-signaling
pathways enacted by glucocorticoids [192], to meet increased
energy demands [202]. In addition, Myeloperoxidase (MPO) can
affect mitochondrial function by oxidizing mitochondrial proteins
and lipids [203], which can lead to mitochondrial damage and
dysfunction. MPO has been found to be expressed in microglia
and has been found to be reduced by PRS [41]. Thus, the decrease
found in the study could be potentially related to changes in
neuroinflammation which have been reported by other studies
after ES exposure.

Finally, pro-caspase 9 has been shown to get activated by
mitochondrial cytochrome c (which has been shown to be
increased in ES) [204] also linking oxidative stress and mitochon-
drial functioning to apoptosis.

The intricate interaction between the HPA axis, neuroinflamma-
tion, mitochondrial functioning and oxidative stress might be
crucial in mechanisms underlying the beneficial effects of the
nutritional interventions in the context of ES.

HPA-axis regulation

The HPA axis is the neuroendocrine stress axis orchestrating the
release of the stress hormones such as glucocorticoids. Upon
stress, corticotropin-releasing factor is released from the hypotha-
lamus, which leads to adrenocorticotropic hormone release from
the pituitary which stimulates the production of glucocorticoids
(cortisol in human and corticosterone in rodents) in the adrenal
gland. Under basal levels of glucocorticoids, negative feedback is
mediated mainly through the mineralocorticoid receptors (MR) in
the hippocampus. The less sensitive glucocorticoid receptor (GR)
comes into play in the hippocampus, hypothalamus, and pituitary
gland under stress and therefore high glucocorticoid concentra-
tions. The balance in these MR- and GR-mediated effects on the
stress system is of crucial importance to the functioning the of
HPA axis. Evidence from clinical and preclinical studies suggests
that disruption of the HPA axis and changes in GR and MR balance
are involved in the ES-induced behavioral alterations and the
increased risk to develop psychopathologies later in life
[162, 205-208].

HPA-axis regulation is one of the most addressed as a potential
mechanism through which nutritional intervention could work.
Nutritional supplementations with ferulic acid [54] hydroxytyrosol
[64], Lactobacilli and Bifidobacteria [75, 79, 80, 82, 84, 85], micro-
nutrients [15] and “comfort foods” (e.g. HFD [137], a high fat high
sugar diet [134], or highly palatable food [136]) have all been
proposed to ameliorate the ES-induced effects at least partly via
modulation of the HPA axis (i.e. reduction of ES-induced
corticosterone and modulation of GR expression).

Additionally, as already discussed above, none of the discussed
mechanisms is acting in solo but rather through well-orchestrated
interactions. There are indications that the HPA axis can be
activated by the microbiome as a result of increased permeability
of the intestinal barrier and a microbiota-driven proinflammatory
state [209]. Moreover, glucocorticoids act on almost all types of
immune cells and perform salient immunosuppressive and anti-
inflammatory functions through genomic and non-genomic
mechanisms [190].

Monoamine regulation

Monoamines are neurotransmitters that are derived from aromatic
amino acids and include for example serotonin, dopamine (DA),
and norepinephrine (NE) [210]. The serotonergic system has an
important role in development, functioning in regulation of
neurogenesis, synaptogenesis, neural connectivity, myelination
and synaptic remodeling [211]. There are four major dopaminergic
pathways, the mesolimbic and the mesocortical (important for
reward-related cognition and executive functions [212]), the
nigrostriatal (known for its role in motor function [213]) and the
tuberoinfundibular pathway (for the regulation of prolactin

Molecular Psychiatry (2025) 30:3269 -3300

J. Geertsema et al.

secretion [214]). The dopaminergic system undergoes essential
remodeling and maturation early in life. Perturbation in its
signaling early in life has been associated with several neuropsy-
chiatric disorders [215, 216]. For example, ES has been shown to
lead to an enhanced adult 5-HT2-mediated function [217, 218]
and elevated dopaminergic function [219]. Lastly, NE is a
neurotransmitter that plays an important role in the body’s “fight
or flight” response to stress. There is evidence that NE is affected
by ES [75, 87, 91].

5-HT, DA and NE are considered key neurotransmitters that
participate in the brain-gut axis. Indeed, supplementing with the
probiotics consisting of Lactobacilli [75, 791 modulated the ES-
induced alterations in the serotonergic system. SCFA-producing
bacteria in the gut influence the expression of tryptophan
hydroxylase and thereby 5-HT synthesis and release [220],
potentially affecting 5-HT levels in the brain [75, 79].

Similarly, supplementation with Lactobacillus [79] and Bifido-
bacterium [87] modulated DA in the prefrontal cortex [79] and in
the gut [87] as well as NA [87].

Several authors found a beneficial effect of supplementing
“comfort foods” on behavioral deficits found in ES [133-136, 138].
It could be that these comfort foods have influence via the ventral
tegmental area-nucleus accumbens reward network, emphasizing
the monoaminergic system to be involved as well [221].

Gut Microbiome

The gut and the brain are in constant bidirectional communica-
tion. With the emergence of the gut microbiome in modulating
host behavior via various routes (metabolites, neuronal, endocrine,
immune system), the microbiota-gut-brain axis has become a key
player in the research of different psychopathologies. Further-
more, the gut microbiome has a functional role in the develop-
ment of the brain and can determine host behavior. lllustrated by
the use of germ-free mice, it was shown that the microbiome is
necessary to induce at least some of the neuropsychiatric effects
observed after maternal separation [68]. There is also a bidirec-
tional relationship between stress and the gut microbiome, and
stress exposures often leaves an impact on the gut microbiome.
Multiple studies have thus shown a link between ES and
subsequent changes in gut microbiota compositional configura-
tions that persist into adulthood [67, 83]. However, the time of
initial arise and the trajectory of microbiota perturbations are
unclear. Furthermore, how these changes contribute to neurode-
velopmental changes leading to psychiatric disorders remains to
be elucidated, but there are substantial overlaps between the
assembly of the gut microbiome postnatally and important
neurodevelopmental time windows [222, 223]. A growing body
of research has shown that nutritional interventions including
PUFAs, polyphenols, and HFDs modulate both the microbiome
and brain. However, it is unclear how much diet-induced changes
in microbiota contributes to the effects on the brain per se [224].
Indeed, there are a number of important pathways by which the
gut microbiota can modulate behavior.

The most classical way of interaction between the gut
microbiota and the host is via the metabolites the bacteria
produce. The most commonly investigated metabolites are SCFA,
the product of host-indigestible dietary fibers fermented by
bacteria.

SCFA have been shown to have anti-inflammatory effects [225],
epigenetic modulation capabilities and affect hormone secretion
via G-protein coupled receptor binding [16]. It was shown that ES
can affect the production of SCFA measured directly [122] or
predicted based on the relative abundance of SCFA-producing
bacteria [57]. Diet plays a major role in sculpting the composition
and function of the gut microbiota such that these processes
might be modifiable by the interventions under consideration
here. For example, supplementation with polyphenols [57],
increased propionate, while a diet containing 7% of fish oil [122]
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increased SCFA producers in ES-exposed animals. This shows that
the effects induced by the intervention could either be due to the
direct effects of the polyphenols or indirectly by modifying the
configuration of the gut microbiota.

Importantly, in the last decade, a paradigm shift occurred in the
field of the microbiota-gut-brain axis highlighting the need to move
towards functional approaches for the assessment of gut microbes
that goes beyond just compositional alterations [226]. In addition to
the direct assessment of microbial metabolites discussed above, the
genomic content of microbes can be analyzed and used to predict
their metabolic capabilities of the gut microbiota in health and
disease, as well as for specific bacterial strains. This concept evolved
the field beyond compositional analysis into a functional analysis of
the metabolic output of the gut population [227] with alterations in
microbial metabolic pathways identified in stress-related disorders
[228, 229]. These microbial metabolites include SCFA, but also
monoamines and neurotransmitters including serotonin, DA, GABA
and glutamate [228].

As discussed above, one of the key microbial pathways affecting
host behavior is via bacteria-produced metabolites. One of the
types of metabolites produced by the gut microbiome are
monoamines and other neurotransmitters, most notably seroto-
nin. The majority of serotonin in the body is produced and used in
the gut from its precursor tryptophan. The concentration of
serotonin can be modulated by the gut microbiome in multiple
ways [230], most notably shown by altered concentration of
serotonin and its metabolites in the hippocampus of germ-free
animals [231]. This is most likely mediated via a humoral route
based on increased availability of its precursor tryptophan in the
plasma [231]. ES has been shown to affect central serotonin levels,
which can be alleviated by the use of probiotics [75, 79]. The gut
has multiple interactions with other involved pathways as
mentioned before. An example is the influence of the gut on
neurotransmitters and vice versa is the abovementioned mono-
aminergic system [76, 87, 232], where reduced DA and adrenaline
in the gut, which led to a decrease in anxiety-like behavior,
indicating probably a link of these neurotransmitters with
behavior. Another important neurotransmitter produced by a
wide range of Bifidobacterium and Lactobacillus strains, is GABA,
the major inhibitory neurotransmitter of the CNS. Modulation of
GABAergic neurotransmission, including receptor expression, by
probiotics following ES-induced depression has been shown
[72, 84]. While many studies provide evidence that the gut
microbiota is engaged with in reciprocal crosstalk with the HPA-
axis, the mechanism behind this interaction remains to be
elucidated [71].

It has been proposed that levels of GABA and its receptors are
one of the mechanisms by which the microbiome might modify
HPA axis function by inhibiting the activation of CRH-neurons
[233]. Changes in gut microbiota due to insults such as stress can
affect the gut barrier integrity. This can have secondary
implication on the host immune system due to potential increased
translocation of bacteria and their metabolites [234]. This has been
clearly demonstrated in multiple studies discussed here showing
an increased immune activation in ES animals which is reversible
by probiotics [80, 81, 87, 91]. Studies using similar probiotic
cocktails [82, 235, 236] as discussed in this review link these
changes to recovery of gut-barrier function, thus preventing
inflammation via translocation across the barrier [237]. Beyond
that, the precise mechanism resulting in a reduction of inflamma-
tion remains to be described.

CONCLUSION

In this comprehensive review, we set out to unravel the efficacy of
nutritional strategies in mitigating effects of ES on later-life
behavioral outcomes across clinical- and preclinical literature.
From the included human studies, five studies were observational
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and only three studies were clinical trials. Out of these three
clinical trials, only one study demonstrates an effect of a
combined diet and behavioral program, making it impossible to
disentangle the effects. The low number of clinical studies and the
heterogeneous study designs significantly constrain our ability to
draw conclusions regarding the effects of dietary interventions to
modulate the detrimental effects of ES in human subjects and
stresses the need to perform randomized clinical trials in humans.

However, in the included rodent studies, in 112 out of the 123
cases the ES induced later-life behavior could be mitigated by
nutritional supplementations, underscoring the potential for such
nutritional strategies. Indeed, despite large heterogeneity in the
studies (i.e. the differences in timing and nature of the stressors,
interventions and outcome measures), most of the interventions
were able to modulate the ES-induced behaviors. However, an
effect of (publication) bias cannot be ruled out and was not further
assessed by this review. Notably, even though we included all the
literature addressing the effects of ES and nutritional interventions
in both males and females, the included studies mostly failed to
test whether the efficacy of the nutritional supplementation might
be sex-specific. The lack of addressing the impact of sex is not
specific to the studies included in this review. In fact, even though
sex and gender influence the prevalence, manifestation and
progression of, as well as the treatment response to various
diseases, progress in biomedical research remains slow in this
domain. Indeed, most studies do not incorporate sex as a
discovery variable, and thus, in only a small proportion of studies,
sex is used as a predictor variable or a between-subject variable to
analyse for main and interaction effects rather than as a covariate
[238, 239]. Because of the key sex differences in the effect of ES
[240-243] and nutrition [244] and general metabolisms [245] and
disease prevalence and presentation [238, 239], it is key for future
studies to consider both sexes when assessing efficacy of
nutritional interventions in ES research and to include sex as a
discovery variable.

Although mainly based on preclinical evidence and observa-
tional studies in humans, this review highlights the great potential
of nutritional strategies for mental health of vulnerable population
exposed to ES. Thus, nutrition is a very attractive element to target
and to unlock its true potential and to develop an evidence-based
tool for the prevention and treatment there are several barriers
that we need to still overcome. In rodent studies, currently, the
heterogeneity in the measured outcomes (different tasks), out-
come age, and the stress models employed poses challenges to
drawing strong conclusions and to pinpoint the specifics of the
nutritional strategy. More studies are needed to determine which
nutrients should be used in nutrition-based interventions (which
exact nutrients/combinations/diets, dosages) and considering that
vulnerability varies across the lifespan and between individuals,
the optimal time window of opportunity (i.e. when we can best
apply specific nutritional strategies for either prevention or
intervention) remains to be addressed. Next to the points
mentioned above, considering the very limited number of human
studies, it will be key to increase clinical research in this area using
randomized controlled trials and focusing on collecting prospec-
tive longitudinal data, including all appropriate control groups.

Finally, it will be key to further our insights into the biological
mechanisms mediating the beneficial effect of nutrition on the
brain. Through this review, the incredible complexity of these
mechanisms becomes evident. While the studies presented in this
review have made use of preclinical in vivo studies to explore the
mechanisms underlying the biological mechanisms, an interesting
avenue potentially aiding to gain further insight into the processes
involved the effects of nutritional strategies in the context of ES
and their relevance in the context of human biology, are
humanised in vitro models. There are indeed first attempts to
use cerebral organoids for exploring the effects of glucocorticoids
on early human brain development, mimicking early-life stress
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exposures [246] as well as the use of human hippocampal
progenitor cells to test the effects of specific nutrients [247, 248]
and of how fatty acid exposure interacts with glucocorticoids [249]
on the neurogenic process. There is a wide plethora of various
nutrients, each with their broad impact on the brain, their dual
nature of building blocks, energy source and signalling molecules,
the intricate crosstalk between the biochemical cycles they are
involved in and the often converging pathways they act upon
rendering the unravelling of this complexity the next challenge to
move the field forward.
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