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Abstract: Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disor-

der, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental 

factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility 

chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappoint-

ing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, fo-

cusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic 

with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as sugges-

tions for future research are discussed. 
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INTRODUCTION 

 The term neurodevelopmental disorder is a relatively new 
term and includes a group of disorders with severely affected 
behavioral features caused by alterations in early brain de-
velopment. Most neurodevelopmental disorders are associ-
ated with a life-long endurance and have a severe impact on 
normal brain functioning, leading to affected behavior often 
resulting in large economical, emotional and physical prob-
lems, not only for the individual but also for the family and 
society as a whole. The various neurodevelopmental disor-
ders show similar features, including brain dysfunctioning 
(such as difficulties in sensor and motor systems, problems 
with speech and language) and a number of cognitive im-
pairments (e.g. in learning and organizational skills). 
Schizophrenia, autistic disorders, attention deficit hyperac-
tivity disorder (ADHD), bipolar disorder, mental retardation 
and Tourette’s syndrome are some of the more common neu-
rodevelopmental disorders, but also Rett syndrome, immu-
nodeficiency, centromeric region instability, facial anomalies 
(ICF) syndrome and X-linked alpha thalassemia/mental re-
tardation (ATR-X) syndrome are considered neurodevelop-
mental disorders (Table 1).  

NEURODEVELOPMENTAL DISORDERS AND GE-

NETIC AETIOLOGY  

 Neurodevelopmental disorders can be divided into four 
subgroups, based on their (mostly hypothetical) genetic aetio- 
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logy (Table 1). The first subgroup is characterized by ane-
uploidy (an abnormal number of chromosomes). The most 
well-known neurodevelopmental aneuploidy is Down’s syn-
drome with a trisomy of chromosome 21. Disorders of the 
second subgroup contain chromosomal micro-deletions, such 
as the deletion of chromosomal region 7q11.2 (which har-
bours more than 20 genes) in William’s-Beuren syndrome. 
In each neurodevelopmental disorder of the third subgroup, 
only a single gene is affected. For example, the fragile X 
syndrome is a genetic disorder caused by a mutation (CGG 
repeat expansion) of the fragile X mental retardation 1 
(FMR1) gene on the X chromosome. The neurodevelopmen-
tal disorders with a complex aetiology, such as autism and 
schizophrenia, comprise the fourth subgroup and are thought 
to be caused by (a combination of) genetic, environmental 
and epigenetic factors. In this review, we focus on the neu-
rodevelopmental disorders with a complex aetiology and the 
current thoughts on their genetic, environmental and epige-
netic aetiologies.  

IDENTIFICATION OF SUSCEPTIBILITY LOCI AND 

GENES  

 Twin, family and adoption studies have revealed an un-
ambiguous role for genetic factors in the aetiology of com-
plex neurodevelopmental disorders that can even exceed an 
estimated heritability of 90% (in autism; Table 2). Although 
a genetic component is thus clearly involved in the aetiology 
of a complex neurodevelopmental disorder, it is still elusive 
which gene (or genes) is responsible for its pathogenesis. 
Historically, the dopamine and also the glutamate neuro-
transmission system have often been implicated to play a 
role in neurodevelopmental pathogenesis. However, since 
many recently identified susceptibility genes have been 
found not to be related to either of the two neurotransmitter 
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systems, restriction to these systems is no longer justified. 
To identify susceptibility genes and to better understand the 
pathophysiology of complex neurodevelopmental disorders, 
many studies utilizing genetic, biochemical, pharmacologi-
cal, neurological and cognitive neuroscience techniques have 
been performed. In this section, we summarize the genetic 
approaches that have been used to identify risk factors at 
specific loci and genes.  

Linkage Studies 

 Linkage analysis is a method to locate disease-related 
loci using DNA markers across the genome that travel with a 
disease within families. The main advantage of linkage 
analysis is that it involves family-based analysis, and thus 
eliminates the problem of ethnical stratification. However, 
linkage analysis has a relatively low power to detect small-
effect variations [1]. 

Table 1. Neurodevelopmental Disorders and their Genetic Aetiologies 

Group Disorder Genetic Aetiology 

I 

(Aneuploidy) 
Down’s syndrome Trisomy of chromosome 21 (OMIM #190685). 

Prader-Willi syndrome / Angelman syndrome ~4 Mb deletion (~7 genes) of chromosome 15q11-q13 (OMIM #176270 and #105830). 

Smith-Magenis syndrome Deletion (3.7 Mb) of chromosome 17p11.2 (OMIM #182290). 

DiGeorge/velo-cardio-facial syndrome 
Hemizygous deletion (1.5 to 3.0-Mb) of chromosome 22q11.2  

(OMIM #188400 and #192430). 

II 

(Micro-deletion) 

William’s-Beuren syndrome Deletion of chromosomal region 7q11.2 (OMIM #194050). 

ATR-X syndrome Mutations in the ATR-X gene on the X-chromosome (OMIM #301040) 

Barth syndrome (X-linked cardioskeletal  

myopathy and neutropenia) 

Mitochondrial functional impairments due to the tafazzin (TAZ) gene on chromosome  

Xq28 (OMIM #302060). 

Fragile-X syndrome CCG repeat expansion of the FMR1 gene (OMIM #300624). 

ICF syndrome 
Mutations in the DNA methyltransferase 3B (DNMT3B) gene on chromosome 20  

(OMIM #242860). 

Neurofibromatosis 
Mutations or deletion (~1.5 Mb) in the neurofibromin gene on chromosome 17q11.2  

(OMIM +162200). 

Rett syndrome Mutations in the MeCP2 gene on the X-chromosome (OMIM #312750). 

III 

(Single-gene defect) 

Smith-Lemli-Opitz syndrome 
Mutations in the gene encoding sterol delta-7-reductase (DHCR7) on chromosome  

11q12-q13 (OMIM #270400). 

Addictive disorders 

Attention deficit (hyperactivity) disorders 

Anxiety disorders 

Asperger’s disorder 

Autistic disorders 

Depressive illness 

Dyslexia (reading disability) 

Eating disorders 

Epilepsy (seizure disorder) 

Fetal alcohol syndrome 

Hydrocephalus 

Manic depressive illness (bipolar disorder) 

Mental retardation 

Schizophrenia 

Spina bifida 

IV 

(Multifactorial) 

Tourette’s syndrome 

Multiple genes (?) 
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Table 2. Estimated Heritability of Complex Neurodevelopmen-

tal Disorders 

Disorder Estimated Heritability References 

Autism >90% [9] 

Schizophrenia 80% [17] 

ADHD 70% [36] 

Epilepsy  70% [60] 

Drug addiction 70% [91] 

Spina bifida 70% [212] 

Bipolar disorder 63% [22] 

Eating disorders 48-74% [154, 156] 

Dyslexia  50-70% [213] 

Alcohol addiction 50-60% [90]  

Panic disorder 30-46%  [214] 

Posttraumatic stress disorder 30% [148] 

Obsessive-compulsive disorder 26-47% [215, 216] 

Anxiety disorders 30-40% [108] 

Depressive illness 37% [27] 

 

Association Studies 

 Numerous association studies have been performed to 
test for association between genetic variations and neurode-
velopmental disorders [2, 3]. Compared to linkage analysis, 
one important advantage of association studies concerns its 
improved power when equal cohort sizes are used [4]. In 
association studies, the genotype or allele frequencies of 
genetic variations between patients and controls (non-related 
individuals; case-control design) or between parents and 
their offspring (related individuals; family-based design) is 
compared. For the case-control design, a more than by 
chance predicted difference in the frequency of a single-
nucleotide polymorphism (SNP) between the cases and 
controls indicates that the specific polymorphism may 
increase or decrease risk for the disorder, or is in linkage 
disequilibrium with a nearby genetic variant. The frequen- 
cies of genetic varations may vary among individuals from a 
different geographical or ethnical background and therefore a 
well-defined cohort is necessary. For family-based associa-
tion studies, the parents function as the controls for the af-
fected offspring (so-called trio-study). If the SNP is transmit-
ted from the parents to the offspring as expected by chance 
alone, no association with the disorder is present. Transmis-
sion of the SNP at a higher degree than expected by chance 
suggests association of the genetic marker with the affected 
phenotype.  

 Having decided on the study design and study samples, 
the next step is to select appropriate candidate genes. In gen-
eral, a gene is selected with some a priori relationship with 
the disorder, based on its localization (i.e. the gene is located 

in a chromosomal region with a significant linkage), or pro-
posed function in the pathogenesis of the disorder (e.g. the 
gene belongs to the dopamine or serotonin pathway in asso-
ciation studies for schizophrenia pathogenesis). Genome-
wide association (GWA) studies can now also be performed, 
whereby large numbers of DNA polymorphisms are ana-
lyzed in one experiment.  

Copy Number Variations 

 Recently, it became clear that besides mutations and 
SNPs (both coding and non-coding alterations) also genomic 
rearrangements and gene-dosage imbalances (duplications, 
deletions and inversions) play a role in the pathogenesis of a 
number of nervous system disorders [reviewed in 5]. These 
structural variants are common and ubiquitous in the genome 
and can range from kilobases to megabases in size. The hu-
man genome contains at least 1447 copy-number variants 
(CNVs), covering 360 megabases and comprising 12% of 
the genome [6]. Previous knowledge of CNVs in relation to 
diseases was limited due to insufficient methods to detect 
CNVs. Only large CNVs detected with cytogenetic tech-
niques, such as G-banding (Giemsa staining) and fluores-
cence in situ hybridization, have been previously identified. 
The advent of high-resolution genome-wide methods has 
significantly improved the power to detect CNVs.  

 At present, one of the most attractive techniques to detect 
CNVs is comparative genome hybridization (CGH) using 
DNA microarrays containing genomic DNA probes (e.g. 
bacterial artificial chromosome clones, cDNA clones or oli-
gonucleotides). The CGH technology allows a genome-wide 
screening with a relatively high resolution (with the resolu-
tion depending on the number, distribution and lengths of the 
probes present on the array), and may be particularly useful 
for the identification of CNVs that are too small to detect via 
routine cytogenetic analyses. Another type of array that can 
be used for detecting CNVs is the genome-wide SNP array. 
Besides normal SNP analysis (i.e. the identification of a sin-
gle-base polymorphism), these arrays also give intensity in-
formation and thereby the corresponding copy number of a 
genomic region. Once CNVs have been detected, studies for 
locus-specific CNV association have to be designed, such as 
targeted quantitative and semiquantitative PCR, multiplex 
ligation-dependent probe amplification or dynamic allele-
specific hybridization. 

mRNA and Protein Expression Profiling  

 The principle of mRNA and protein profiling is to iden-
tify genes that are differentially expressed in selected tissues 
of cases and (matched) controls. One of the promising 
strategies is the use of human post-mortem brain tissues, 
from which nowadays good quality mRNA can be extracted 

for microarray analysis [7]. However, when performing such 
studies one has to be aware of the possibility that the differ-
ential expression could be caused by years of medicine usage 
or by pre- or post-mortem artifacts.  

Animal Models 

 The use of animal models for the analysis of complex 
neurodevelopmental disorders appears to be an attractive 
alternative to circumvent the problems encountered when 



432    Current Genomics, 2007, Vol. 8, No. 7 van Loo and Martens 

human material is used for mRNA or protein profiling. 
However, animals do not exhibit higher-order functions, 
some of which may be associated with complex human dis-
orders. Nevertheless, one can take advantage of specific 
characteristics (endophenotypes) of an animal model to 
study the genetic and environmental factors that lead to a 
particular phenotypic outcome.  

 Several categories of animal models may be employed, 
including models based on a behavioral selection (e.g. the 
endophenotype prepulse inhibition), on a pharmacological 
selection (e.g. the psychotic effects of drugs, such as am-
phetamine) or on brain lesions (e.g. animal models with dis-
connections of the hippocampus). In addition, genetic animal 
models – with targeted genetic manipulations of specific 
genes - can be used, including knockout and transgenic mod-
els. Genetically modified animals can be subjected to a 
whole battery of behavioral tests to understand the role of a 
gene in neurodevelopmental aetiology. Furthermore, such 
models can be used to study environmental manipulations, 
including maternal or chronic stress paradigms. 

SUSCEPTIBILITY LOCI AND GENES OF COMPLEX 
NEURODEVELOPMENTAL DISORDERS  

 In the past decades, an impressive amount of linkage and 
association studies have been performed. However, conclu-
sive evidence from the numerous genetic linkage and asso-
ciation studies has not yet been obtained. The studies have 
continuously led to inconsistent and controversial findings. 
In the next paragraphs, the genetic aetiology of the complex 
neurodevelopmental disorders is summarized. However, 
because positive associations are often published more easily 
one has to realize publication bias and the fact that even re-
sults obtained by meta-analysis may represent false posi-
tives.  

Autism 

 Autism has a prevalence of ~0.6% in the general popula-
tion and is four times more prevalent in boys than in girls. 
Together with four other disorders (Asperger’s disorder, 
childhood disintegrative disorder, Rett syndrome and Per-
sonality Disorder Not Otherwise Specified) it belongs to the 
group of Pervasive Developmental Disorders (PDD). Autism 
is the most common PDD and usually appears during the 
first three years of life. Its symptoms include impairments in 
verbal and nonverbal communication, lack of social interac-
tion, and restricted and stereotypical behaviour [8]. Though 
autism is one of the most hereditary disorders in psychiatry, 
with an estimated heritability of up to 90% (Table 2) [9], the 
search for susceptibility genes has proven to be complex. 
Until now, a number of chromosomal loci have been identi-
fied that may represent regions predisposing to autism, in-
cluding regions on chromosome 1p12-p21.1, 1q21-q44, 
2q24.1-q33.1, 3q21.3-q29, 4q21.3-q35.1, 5p12-p15.33, 
6q14.3-q23.2, 7q21.2-q36.2, 10p12.1-p14, 10q23.3-q26.3, 
13q12.13-q33.1, 15q13.1-q26.1, 16p12.1-p13.3, 17q11.1-
q21.2, 19p13.11-p13.3 and 19q12-q13.12 [reviewed in 10]. 
Although most susceptibility regions have been studied in 
more detail via the candidate-gene approach (e.g. the Reelin 
gene on chromosome 7q22 and the serotonin transporter 
gene (SLC6A4) on chromosome 17q11.1-q12), no gene has 

been found to clearly contribute to autism susceptibility. 
Recently, the first GWA studies for autism have been re-
ported with significant associations, including CNVs, found 
in several genetic loci [11-13], but the results have been in-
conclusive. Thus, despite the high heritability estimates for 
autism, its genetic aetiology still needs to be elucidated. 

Schizophrenia  

 Schizophrenia is a common mental disorder affecting 
approximately 1% of the population [14]. It generally 
emerges between 16 and 30 years of age and is characterized 
by three main symptoms: cognitive disturbances, psychosis 
and negative symptoms [15]. Unfortunately, there are no 
genetic markers available for diagnosing schizophrenia. 
Therefore, diagnosis can only be based on clinical symptoms 
using the Diagnostic and Statistical manual for mental disor-
ders version IV (DSM-IV, 2000) or the International Classi-
fication of Disease version 10 (ICD-10, 1992).  

 The first genetic studies on schizophrenia date back from 
1916 and addressed the question whether the disorder has a 
genetic aetiology. Many subsequent family, twin and adop-
tion studies clearly revealed the importance of a genetic 
component in schizophrenia [16] with an estimated heritabil-
ity of around 80% (Table 2) [17], but the responsible gene 
(or genes) is still elusive. Although many susceptibility loci 
have been identified, numerous inconsistent and controver-
sial findings have been reported. The genes most often re-
ported to be related to schizophrenia are the genes encoding 
disrupted in schizophrenia 1 (DISC1; 1q42.1), neuregulin-1 
(NRG1; 8p12), dysbindin (DTNBP1; 6p22.3), D-amino acid 
oxidase activator (DAOA or G72; 13q34), D-amino-acid 
oxidase (DAO; 12q24), regulator of G-protein signaling 4 
(RGS4; 1q23.3) and the dopamine-catabolizing enzyme 
catechol-O-methyl transferase (COMT; 22q11.21) [reviewed 
in 18, 19]. However, relative risk effects of the variations 
range between 1.5 to 2.0, indicating only small-effect sizes. 
Recently, the first GWA study for schizophrenia using the 
Affymetrix GeneChip 500K Mapping Array Set on 178 
schizophrenic patients and 144 controls has been reported. 
One SNP (rs4129148) close to the colony stimulating factor 
2 receptor alpha chain gene (CSF2RA) on chromosome 
Xp22.32 and Yp11.3 showed association beyond the ge-
nome-wide significance threshold [20]. Independent replica-
tions to confirm this finding are however necessary. (For a 
more detailed overview of the genes reported to be associ-
ated with schizophrenia, we refer to http://www.polygenic- 
pathways.co.uk/schizgenesandfunc.html).  

Bipolar Disorder 

 Bipolar disorder, also known as manic-depressive illness, 
is a severe mental disorder characterized by recurrent manic 
and depressive episodes causing dramatic mood swings. The 
prevalence of bipolar disorder is estimated to be 0.8-2.6% 
[21]. Although some have their first symptoms in childhood, 
most patients develop episodes in late adolescence or early 
adulthood. Bipolar disorder patients show many clinical fea-
tures that are similar to those of schizophrenic patients, such 
as age of onset, psychotic symptoms, episodic courses of 
illness and a lifelong endurance. However, also clear distinc-
tions exist between the two disorders. For example, bipolar 
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disorder manifests as an impairment of mood, whereas 
schizophrenia is a primary disorder of cognition. Further-
more, most bipolar patients benefit from lithium therapy, 
whereas schizophrenics seldom do.  

 Twin and family studies have shown that bipolar disorder 
tends to run in families with an estimated genetic hereditary 
of 63% [22]. Interestingly, besides the shared clinical symp-
toms, bipolar disorder and schizophrenia may also share a 
genetic background [23]. A number of promising susceptibil-
ity genes for schizophrenia have been reported to associate 
with bipolar disorder as well, including G72, DAO, DISC1, 
NRG1, RGS4, COMT, neural cell adhesion molecule 1 
(NCAM1; 11q23.1), brain-derived neurotrophic factor 
(BDNF; 11p13) glutamate receptor, metabotropic 3 and 4 
(GRM3; 7q21.1-q21.2 and GRM4; 6p21.3), glutamate recep-
tor, ionotropic, N-methyl D-aspartate 2B (GRIN2B; 12p12), 
megalencephalic leukoencephalopathy with subcortical cysts 
1 (MLC1; 22q13.33), synaptogyrin 1 (SYNGR1; 22q13.1) 
and solute carrier family 12 (potassium/chloride transport-
ers), member 6 (SLC12A6; 15q13-q15) [reviewed in 21, 24]. 
Recently, The Wellcome Trust Case Control Consortium 
reported a GWA study on bipolar disorder using the Af-
fymetrix GeneChip 500K Mapping Array Set and found one 
chromosomal region with strong evidence of association 
(16p12) and 13 regions with moderate association (2p25, 
2q12, 2q14, 2q37, 3p23, 3q27, 6p21, 8p12, 9q32, 14q22, 
14q32, 16q12 and 20p13) [25]. (For a complete list of the 
genetic associations with bipolar disorder, we refer to 
http://www.polygenicpathways.co.uk/Bipolargenes.html).  

Major Depression 

 Like bipolar disorder, depression is a major mood disor-
der. Although many clinical aspects are comparable between 
major depression and bipolar disorder, a number of charac-
teristics are different between the two disorders: depression 
is much more heterogeneous, has a higher environmental 
contribution and has a higher prevalence with an overall life-
time risk of 16.2% in the United States [26]. Since the ge-
netic contribution to major depression is only ~37% [27] and 
the illness is highly heterogeneous, unravelling its genetic 
pathogenesis is extremely difficult. To date, no clear genetic 
risk factors for major depression have been identified. Most 
studies have focused on well-known polymorphisms that 
have been hypothesized to associate with other psychiatric 
disorders. For example, the Val66Met variant in the BDNF 
gene, the short allele of the SLC6A4 gene, and the 
Val158Met variation in the COMT gene have been studied 
in depression cohorts [28-30], but the results are contradic-
tory [31-33].  

ADHD 

 ADHD was first described in 1845 and affects up to 1 in 
20 children [34, 35]. The principal problem for children with 
ADHD is the impairment to control their behaviour, due to 
inattention, hyperactivity and impulsivity. According to the 
DSM-IV guidelines, these symptoms should appear early in 
a child’s life, before age 7, and should continue for at least 6 
months, otherwise the diagnosis ADHD is not justified. 
Other disorders often accompany ADHD, including learning 
disabilities, oppositional defiant disorder, conduct disorder, 
Tourette’s syndrome and/or depressive illness.  

 Twin studies have indicated a relatively high genetic con-
tribution reaching an average of 70% [36]. Thus far, many 
candidate gene studies on ADHD have focused on the do-
pamine and serotonin pathways. Meta-analyses of the avail-
able data have suggested several of the genes belonging to 
either pathway to be involved in ADHD pathogenesis, in-
cluding the dopamine receptors D4 (DRD4; 11p15.5) and D5 
(DRD5; 4p16.1), SLC6A4, the dopamine transporter (DAT 
or SLC6A3; 5p15.3), the 5-hydroxytryptamine (serotonin) 
receptor 1B (HTR1B; 6q13), dopamine beta-hydroxylase 
(DBH; 9q34) and synaptosomal-associated protein of 25kDa 
(SNAP25; 20p12-p11.2) [reviewed in 36]. In addition, re-
cently a large candidate gene analysis was performed involv-
ing 1,038 SNPs and spanning 51 candidate genes (belonging 
to the circadian rhythm genes and the dopamine, norepineph-
rine or serotonin pathways) that confirmed association with 
DRD4 and DAT1 [37], the two most replicated associations.  

Tourette’s Syndrome  

 Tourette’s syndrome (also called Gilles de la Tourette 
syndrome) is a neuropsychiatric disorder that occurs with an 
estimated prevalence of 1% among school-age children [38], 
is characterized by multiple chronic tics (involuntary move-
ments and vocalizations) and is often accompanied by other 
behavioural disorders, including ADHD and obsessive-
compulsive disorder (OCD) [34]. Although family and twin 
studies have suggested a contribution of genetic factors in 
Tourette’s syndrome, its precise contribution rate remains 
unclear [39]. Until now, most association studies have fo-
cussed on candidate genes belonging to the dopaminergic 
pathway, and showed several positive associations for the 
DAT, monoamine oxidase A (MAOA; Xp11.3) and the do-
pamine receptors D2 (DRD2; 11q23), D3 (DRD3; 3q13.3) 
and D4 [40-47]. However, since not all subsequent replica-
tion studies were positive [48-53] and other genes were 
found to associate as well [54], the contribution of the do-
paminergic pathway to Tourette’s syndrome remains to be 
established.  

Dyslexia (Reading Disability) 

 Dyslexia affects 5–10% of school-age children [55] and 
is characterized by problems with word recognition and 
spelling. Linkage studies have revealed a number of chromo-
somal susceptibility loci for dyslexia (1p34-p36, 2p16-p15, 
3p12-q12, 6p21, 6q13-q16, 11p15, 15q21, 18p11 and Xq27) 
[reviewed in 56]. Within and near these loci several genes 
have been studied using association analyses, resulting in a 
few candidate genes for dyslexia: dyslexia susceptibility 1 
candidate 1 (DYX1C1; 15q21) [57], roundabout Drosophila 
homolog 1 (ROBO1; 3p12) [58] and doublecortin domain-
containing protein 2 (DCDC2; 6p22.1) [59], but again the 
results are not conclusive and therefore the genetic aetiology 
of dyslexia is currently still unclear. 

Epilepsy (Seizure Disorder) 

 Epilepsy is a heterogeneous group of disorders with ab-
normal electrical brain activity. In adults, temporal lobe epi-
lepsy (TLE) is the most common form of epilepsy with an 
age of onset in late childhood or adolescence. In childhood, 
the most common form of epilepsy is febrile seizures (FSs), 
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with a prevalence of 2-5% in Western countries and an esti-
mated heritability of 70% [60]. Genetic linkage analyses 
have identified a number of loci for familial FS, including 
the loci on chromosome 19p13.3, 2q23-q24, 5q14-q15 and 
18p11.2 containing the genes encoding casein kinase I 
gamma 2 isoform (CSNK1G2; 19p13.3), sodium channel, 
voltage-gated, type I, alpha subunit (SCN1A; 2q24.3), G 
protein-coupled receptor 98 (GPR98; 5q13) and inosi-
tol(myo)-1(or 4)-monophosphatase 2 (IMPA2; 18p11.2), 
respectively [61-64]. Although linkage of these loci has been 
replicated in some other familial cases, only for CSNK1G2 
and IMPA2 association was found in subsequent association 
analysis [64, 65]. In addition, a number of other candidate 
genes have been identified via association studies, including 
the genes encoding cholinergic receptor nicotinic alpha 4 
(CHRNA4; 20q13.2-q13.3), gamma-aminobutyric acid A 
receptor gamma 2 (GABRG2; 5q31.1-q33.1) and -beta 3 
(GABRB3; 15q11.2-q12), interleukin 1 beta (IL1B; 2q14) 
and interleukin 1 receptor antagonist (IL1RN; 2q14.2) [66-
70]. However, the latter associations could not be replicated 
in subsequent cohorts [71-75].  

Mental Retardation 

 Mental retardation (MR) occurs in approximately 2-3% 
of the population in developed countries [76]. For the diag-
nosis MR a number of criteria have to be fulfilled, including 
an IQ lower than 70 and behavioural disabilities that are al-
ready evident in childhood. The underlying causes of MR 
can be diverse, varying from inborn causes such as Down’s 
syndrome, Fragile X syndrome and fetal alcohol syndrome 
(these three causes are responsible for 30% of the MR cases 
[77]), but also malnutrition and problems during pregnancy 
or birth can increase the risk for MR [78].  

 Although it is evident that a genetic factor is involved in 
the aetiology of MR and the genetic cause of a number of 
subtypes has been identified (e.g. trisomy of chromosome 21 
in Down’s syndrome), the majority of cases have an un-
known genetic aetiology. Since MR has a clearly X-linked 
inheritance pattern and is more often found in males than 
females, variations in the X-chromosome may increase the 
risk for MR. A number of X-linked genes have been identi-
fied as susceptibility genes for MR, including fragile X men-
tal retardation 2 (FMR2; Xq28), oligophrenin 1 (OPHN1; 
Xq12), p21 (CDKN1A)-activated kinase 3 (PAK3; Xq22.3-
23), GDP dissociation inhibitor 1 (GDI1; Xq28), Rac/Cdc42 
guanine nucleotide exchange factor (GEF) 6 (ARHGEF6; 
Xq26), ribosomal protein S6 kinase, 90kDa, polypeptide 3 
(RPS6KA3; Xp22.2-p22.1), interleukin 1 receptor accessory 
protein-like 1 (IL1RAPL1; Xp22.1-p21.3), tetraspanin 7 
(TSPAN7; Xp11.4), methyl CpG binding protein 2 (MECP2; 
Xq28), acyl-CoA synthetase long-chain family member 4 
(ACSL4; Xq22.3-q23) and aristaless related homeobox 
(ARX; Xp21) [79-89]. However, many other genes are likely 
linked to MR. 

Addictive Disorders 

 Many twin studies have been performed on addictive 
disorders (both alcohol and drug abuse), which indicated 
heritability levels of 50-60% in alcohol consumption [90] 
and up to 70% in severe smoking [91]. Since the dopaminer-

gic pathway plays a central role in the reward system, the 
genes involved in this pathway are thought to be susceptibil-
ity genes for addictive disorders. Indeed, a number of studies 
have identified polymorphisms in this pathway that infer 
susceptibility to addiction: genetic variations in the DRD2, 
DRD3, COMT and DAT1 genes have been reported to asso-
ciate with smoking, alcoholism, cocaine abuse and heroin 
addiction [92-101]. Nevertheless, despite the large number 
of studies reporting association, meta-analyses have shown 
that the effects are only weak or not significant [102, 103].  

Fetal Alcohol Syndrome 

 During pregnancy, alcohol use by the mother may lead to 
fetal alcohol syndrome (FAS) that occurs at a rate of 0.5-2 
individuals per 1000 live births. A number of family, twin 
and animal studies have suggested a genetic component in 
FAS pathogenesis, one of the main candidate genes being the 
alcohol dehydrogenase 1B (ADH1B) gene located on chro-
mosome 4q21-q23. However, whereas some studies report a 
protective effect for a number of ADH1B subtypes, others 
were not successful in reproducing these results [reviewed in 
104]. Besides ADH1B, other candidate genes have been 
suggested as risk factors for FAS pathogenesis, such as the 
cytochrome P450 2E1 gene (CYP2E1; 10q24.3-qter) [105, 
106].  

Anxiety Disorders 

 Panic disorder, OCD, separation anxiety, overanxious 
disorder, agoraphobia and other phobias all belong to the 
group of anxiety disorders and are relatively common (life-
time prevalence of 25% [107]). Twin studies have indicated 
that a genetic factor is involved in anxiety disorders, but the 
genetic contribution to the disorders is only modest (30-
40%) [108]. Yet, many linkage and association studies have 
been performed to determine the chromosomal locations or 
genes involved in the pathogenesis of the various subtypes of 
anxiety disorders. Panic disorder showed significant linkage 
to chromosomal regions 9q31, 13q and 22q [109, 110], for 
OCD linkage was reported to chromosome 1q, 3q27-28, 6q, 
7p, 9p24, 10p15, 14 and 15q [111-114], and for other anxiety 
disorders linkage was observed for chromosome 14p (simple 
phobia) [115], 16 (social phobia) [116], 1q, 4q, 7p, 12q and 
13q (neuroticism) [117] and 8p21-23 (harm avoidance) 
[118]. Recently, also genome-wide linkage analyses on indi-
viduals with a broad anxiety phenotype rather than based on 
the DSM-IV anxiety disorder diagnosis have been performed 
and significant linkage was observed for chromosome 14 
[119] and 4q31-q34 [120].  

 Besides linkage analysis, many case-control design stud-
ies on candidate genes for anxiety pathogenesis have been 
performed. For panic disorder, a positive association was 
found for the serotonin receptors HTR1A (5q11.2-q13) and 
HTR2A (13q14-q21) [121, 122], COMT [123], the neuro-
peptide cholecystokinin (CCK; 3p22-p21.3) [124], the ade-
nosine A2a receptor (ADORA2A; 22q11.23) [125], MAOA 
[126], the nuclear transcription factor cAMP-responsive 
element modulator (CREM; 10p11.21) [127], the peripheral 
benzodiazepine receptor (PBR or TSPO; 22q13.31) [128], 
glutamic acid decarboxylase 1 (GAD1; 2q31) [129], diaze-
pam binding inhibitor (DBI; 2q12-q21) [130], calmodulin-
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dependent protein kinase kinase b (CaMKKb; 12q24.2) 
[131] and angiotensin-converting enzyme (ACE; 17q23.3) 
[132]. In addition, an association analysis of 90 SNPs lo-
cated in 21 candidate genes revealed eight SNPs to be asso-
ciated with panic disorder (located in the CCK, serotonin and 
dopamine systems), but all with a minor individual effect 
[133].  

 Besides association with panic disorder, a number of sus-
ceptibility genes have been found to associate with other 
subtypes within anxiety disorders as well, such as the sero-
tonin system in OCD and neuroticism [134-139], MAOA in 
generalized anxiety disorder and neuroticism [140, 141], 
COMT in neuroticism and phobic anxiety [141, 142] and 
BDNF in anxiety-related personality traits [143, 144].  

Posttraumatic Stress Disorder  

 Posttraumatic stress disorder (PTSD) can occur in a sub-
set of individuals exposed to extreme traumatic events [145], 
and has a lifetime incidence of ~9–15% [146, 147], and an 
estimated genetic inheritance of ~30% [148]. Susceptibility 
genes for PTSD have not yet been identified, but to date the 
number of individuals screened is low, while the few genetic 
studies that have been performed mainly focussed on key 
candidate genes, including BDNF, neuropeptide Y (NPY; 
7p15.1), the glucocorticoid receptor (NR3C1; 5q31.3), and 
components of the serotonin and dopamine pathways [149-
153].  

Eating Disorders 

 Anorexia and bulimia nervosa are two major eating dis-
orders with still unknown risk factors. For a long time, eating 
disorders have been considered to be caused by sociocultural 
factors. However, it has recently become clear that also ge-
netics may play a substantial role in its aetiology. Family and 
twin studies have shown that heritability estimates for eating 
disorders vary from 48% to 74% in anorexia nervosa and 
from 55% to 83% in bulimia nervosa [154-157]. Since sero-
tonin plays an important role in mood and feeding, genetic 
variations in the serotonergic pathway are thought to lead to 
eating disturbances. Indeed, a number of positive associa-
tions with the serotonin receptors HTR2A and HTR2C 
(Xq24), and also with the serotonin transporter gene have 
been reported [158-160], however, replication was not al-
ways successful [161, 162]. Furthermore, associations were 
found for BDNF [163, 164], the growth hormone se-
cretagogue receptor (ghrelin receptor or GHSR; 3q26.31) 
[165] and COMT [166, 167].  

Spina Bifida 

 Spina bifida is caused by unsuccessful closure of the neu-
ral tube during early development (between embryonic day 
17 and 30) and occurs with a frequency of 1-2 cases per 
1000 births. The exact aetiology of spina bifida is poorly 
understood, but it is clear that both genetic and environ-
mental factors are involved [168]. Since individuals with 
spina bifida often die prenatal or early postnatal and thus 
hardly any families exist with several affected members, this 
disease could well be the most difficult complex disorder to 
study at the genetic level. Based on animal and epidemiol-
ogical studies, genes involved in folic acid (folate), vitamin 

B12 and homocysteine metabolism, or genes involved in 
neurulation have been hypothesized to play a role in spina 
bifida genesis [reviewed in 169]. However, until now, only a 
few genes have been reported to represent risk factors for 
spina bifida, including 5,10-methylenetetrahydrofolate re-
ductase (MTHFR; 1p36.3) [170], methionine synthase reduc-
tase (MTRR; 5p15.3-p15.2) [171], platelet-derived growth 
factor receptor alpha (PDGFRA; 4q11-q13) [172] endothe-
lial nitric oxide synthase 3 (NOS3; 7q36) [173] protein-L-
isoaspartate (D-aspartate) O-methyltransferase (PCMT1; 
6q24-q25) [174] and cofilin 1 (non-muscle) (CFL1; 11q13) 
[175].  

Hydrocephalus 

 Hydrocephalus occurs at a frequency of approximately 
0.5 in 1000 births [176, 177] and is characterized by abnor-
mal flow or resorption of cerebrospinal fluid. It is considered 
a heterogeneous complex disorder [178] with genetic and 
environmental aetiologies [179, 180]. Although approxi-
mately 37% of the hydrocephalus cases have a possible ge-
netic aetiology [180], clear susceptibility genes for hydro-
cephalus have not been identified yet. Studies in animal 
models have suggested several loci as susceptibility regions 
for hydrocephalus, but these regions have not yet been re-
ported as susceptibility regions in human [reviewed in 181].  

COMPLEX NEURODEVELOPMENTAL DISORDERS 
AND THE ENVIRONMENT 

 Since in general complex neurodevelopmental disorders 
have an estimated heritability lower than 100% (Table 2), 
their aetiology includes another component that is thought to 
be primarily the environment (e.g. stressful life events). Nu-
merous factors acting during early development of a foetus 
may contribute to the genesis of a neurodevelopmental dis-
order, including insufficient maternal nutrition, daily smok-
ing, viral infection and repeated psychological stress [182]. 
Most environmental vulnerability factors are however diffi-
cult to assign and quantify. 

 The type and timing of the early environmental risk fac-
tors to which an organism is exposed appear to determine the 
phenotypic outcome. For example, a prenatal exposure of 9-
days-pregnant mice to a sublethal intranasal administration 
of influenza virus led to both short-term and long-lasting 
deleterious effects on the developing brain structures and to 
abnormal behavior in the offspring of the mice [183]. Be-
sides risk factors during early (prenatal) development, also 
obstetrical complications, including the use of resuscitation 
or an incubator, premature membrane rupture, diabetes, 
rhesus incompatibility, bleeding, preterm birth or caesarean 
birth, may increase the vulnerability to neurodevelopmental 
disorders [184, 185]. 

 One obvious gene-environment link concerns the season 
in which birth took place. An excess of winter-spring births 
in bipolar disorder and schizophrenia has been observed 
[186]. A similar tendency has been found in schizoaffective 
disorder (December-March), major depression (March-May) 
and autism (March) [reviewed in 187]. Besides the season of 
birth, also the place of birth is thought to be associated. Ur-
ban–born (and brought-up) subjects are more susceptible to 
neurodevelopmental disorders than rural-born (and brought-



436    Current Genomics, 2007, Vol. 8, No. 7 van Loo and Martens 

up) subjects [188]. Furthermore, risk factors like immigra-
tion and adoption may contribute to the development of psy-
chiatric disorders [189, 190]. 

GENE-ENVIRONMENT INTERACTIONS IN COM-
PLEX NEURODEVELOPMENTAL DISORDERS 

 One of the reasons that the genetic and environmental 
factors in complex neurodevelopmental disorders are diffi-
cult to define is the fact that the two factors may interact. 
However, such an interaction may be complex and act at 
various levels. For instance, genetic and environmental fac-
tors may have an additive effect, genetic factors may affect 
the influence of the environment on a phenotype or envi-
ronmental factors may modulate the expression of genetic 
variants.  

 An example of a gene-environment interaction concerns 
the influence of stressful life events on depressive individu-
als with a functional polymorphism in the promoter region of 
the serotonin transporter gene. Individuals with the short 
allele have been found to respond differently to stressful life 
events (e.g. childhood maltreatment) and as such are more 
vulnerable to develop depressive symptoms than individuals 
with the long allele [29]. A second example of gene-
environment interaction is the valine/methionine polymor-
phism (SNP rs4680) in the COMT gene. Upon cannabis use, 
individuals carrying the valine allele have a higher chance to 
exhibit psychotic symptoms and to develop schizophreni-
form disorders when compared to individuals with two me-
thionine alleles [191].  

COMPLEX NEURODEVELOPMENTAL DISORDERS 

AND EPIGENETICS 

 Epigenetics is defined as heritable changes in gene ex-
pression patterns that occur without changing the DNA se-
quence itself [192], and includes DNA methylation and post-
translational modifications of histone proteins. DNA methy-
lation, i.e. a covalent binding of a methyl group to the 5-
position of the cytosine ring within the sequence 5’-CG-3’ 
(CpG), can be tissue- and cell-type specific and is found in 
all vertebrates, and many invertebrates and plants. CpG clus-
ters with a minimum of 200 base pairs, a CG percentage 
greater than 50% and an observed/expected CpG ratio 
greater than 0.6 are called CpG islands. These islands are 
often found in gene promoter regions and can protect single 
CpGs within a CpG island from DNA methylation.  

 An apparent link between the methylation status and 
gene transcription levels has led to the speculation that al-
terations in the methylation pattern (epimutations) might 
contribute to altered gene expression. Such epimutations are 
thought to occur upon exposure to environmental risk fac-
tors, including early developmental stress. Since early em-
bryos seem to be particularly sensitive to epimutations [193, 
194], this factor should be considered for the aetiology of 
neurodevelopmental disorders. For instance, epigenetic al-
terations are responsible for a number of neurodevelopmen-
tal disorders with single-gene defects, such as Rett Syn-
drome, ICF Syndrome, Fragile X Syndrome and ATR-X 
Syndrome [195-198]. A role for DNA methylation has also 
been proposed in connection with complex neurodevelop-
mental disorders. For example, spina bifida can be caused by 

a lack of folate [reviewed in 199], a compound needed for 
the generation of S-adenosylmethionine (SAM) that donates 
the methyl group in the DNA methylation process. Also, 
some patients with depressive illness and schizophrenia dis-
play lower serum folate levels [200]. Animal models further 
provide evidence for a possible link between epigenetics and 
neurodevelopmental disorders. Following a diet with L-
methionine, a precursor in the biosynthesis of SAM, the 
reeler mouse (a model for schizophrenia) showed increased 
promoter methylation of the reelin gene, reduced reelin ex-
pression and a declined prepulse inhibition of startle. These 
effects could subsequently be reversed by valproic acid, a 
mood-stabilizing drug used for treatment of epilepsy, bipolar 
disorder and schizophrenia [201]. In addition, the adult off-
spring of rat mothers that showed high licking and grooming 
(LG) and arched-back nursing (ABN) (two forms of mater-
nal behaviour in the rat that serve as the basis for the indi-
viduals programming of the stress response) are less fearful, 
have a lower hypothalamic-pituitary-adrenal response to 
stress, and have a lower DNA methylation status in the pro-
moter region of the glucocorticoid receptor gene when com-
pared to the offspring of low-LG and -ABN mothers [202]. 
Thus, alterations in epigenetic profiles may contribute to the 
generation of complex neurodevelopmental disorders.  

COMPLICATING FACTORS IN ASSOCIATION 

STUDIES 

 Although numerous studies suggest that genetic variants 
play a significant role in the aetiology of complex neurode-
velopmental disorders, in almost all cases the precise genetic 
background remains to be identified. Several factors (see 
below) have greatly complicated the identification of the 
genetic basis of neurodevelopmental disorders.  

Definition of Phenotype 

 In the genetics of psychiatric disorders, the definition of a 
phenotype is one of the main problems. Most genetic studies 
use patient characterization according to the DSM-IV or 
ICD-10 criteria. However, investigators nowadays believe 
that the phenotype should be specified in more detail, since 
most neurodevelopmental disorders include a number of 
intermediate clinical subtypes and distinct phenotypical pa-
rameters (endophenotypes) [203], presumably each with a 
different genetic background. Such endophenotypes may 
help in the identification of risk factors, although the effec-
tiveness of this approach has recently been questioned [204]. 
Nevertheless, analysis of an endophenotypically defined 
group of patients may increase replication efficacy. 

Population Stratification  

 Genetic variations often occur among (geographically or 
ethnically) different populations and this fact may thus in-
crease the difficulty in data interpretation as well. For correct 
stratification and successful replication, it is therefore highly 
important that samples are clinically, geographically and 
ethnically well characterized.  

Gene-Environment Interactions 

 Another complicating factor in the identification of sus-
ceptibility genes for neurodevelopmental disorders concerns 
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the possibility of multifactorial gene-plus-environment inter-
actions, as mentioned above. Unfortunately, such interac-
tions are still difficult to quantify and interpret.  

Multiple Genes Hypothesis 

 The search for susceptibility genes is further complicated 
when the aetiology of a complex neurodevelopmental disor-
der can not be explained by a single genetic variant with a 
relatively large effect but is rather caused by an interplay of a 
number of genes with small (additive) effects. For schizo-
phrenia pathogenesis, the essential parameters for single- and 
multiple-locus models have been calculated and an interac-
tion of about three different genes together with the envi-
ronment was predicted to underly this disorder [205]. Not 
surprisingly, in general the greater the number of genes in-
volved the more difficult their identification will be and 
larger (or additional) cohorts will be necessary to reach sig-
nificant association. In addition, besides the possibility that 
multiple susceptibility genes are involved, individuals may 
be affected by the absence of protective alleles, while epista-
sis may also play a role.  

Common Disease-Common Variant or Rare-Variant Hy-

pothesis 

 At present, it is not clear whether only a relatively small 
number of common genetic variants are linked to the aetiol-
ogy of neurodevelopmental disorders (known as the “com-
mon disease-common variant hypothesis”, often abbreviated 
CD-CV) [206, 207], or if a large number of rare genetic vari-
ants is involved (“rare-variant-hypothesis” or heterogeneity 
hypothesis) [208]. In case of CD-CV, association analyses 
(e.g. GWA studies) may detect genetic variants if the studies 
contain enough power. It is clear that association analyses 
will be more difficult in rare variant cases [209].  

CONCLUSIONS AND FUTURE DIRECTIONS 

 Our summary of the current knowledge of the genetic, 
environmental and epigenetic contribution to the aetiology of 
neurodevelopmental disorders illustrates that unravelling the 
pathogenesis of these disorders is highly complex. Although 
further insights into the degree of the genetic contribution to 
the aetiology of neurodevelopmental disorders has been ob-
tained, the identities of the genes involved and thus diagnos-
tic markers are mostly lacking.  

 Up to now, in general, a presumptive susceptibility gene 
appears to be linked to a single neurodevelopmental disor-
der. However, the existence of a single susceptibility gene 
for both schizophrenia and bipolar disorder [reviewed in 21, 
24] illustrates that we probably have to await the results of 
future genetic research for a definitive conclusion concerning 
this issue. The future results will also reveal which pathways 
are involved in the complex disorders. 

 For a better understanding of the aetiologies involved, it 
will be fruitful to obtain detailed clinical, ethnical and geo-
graphical information on large groups of individuals. In ad-
dition, the environmental factors need to be well defined and 
documented. However, until now our knowledge of the rele-
vant environmental risk factors is rather limited. Clearly, 
close collaborations between psychiatrists and genetic re-
searchers are required.  

 Undoubtedly, in the near future many more GWA studies 
with the 500K and even larger SNP arrays will be reported. 
Such studies will however not cover all genetic variations in 
the genome [210], because SNPs with a low minor allele 
frequency (MAF) (<0.05) are usually not included on the 
arrays, thereby excluding analysis of rare genetic variants. 
This is unfortunate, since the rare genetic variants are gener-
ally considered to have a higher chance of being causative 
[211]. Thus, candidate gene approaches of selected SNPs 
with a low prevalence may increase the chances to identify 
functional genetic variants. Because one would expect that 
causal SNPs have an effect in any population, a further con-
sideration may involve a choice of SNPs with a low MAF in 
all ethnical populations. In this connection, one has to be 
aware of the possibility that such a SNP may need an addi-
tional polymorphism(s) to explain the phenotype (multiple 
genes hypothesis), while the additional genetic variation(s) 
may not be present in a particular ethnical population. One 
of the practical problems in dealing with low-MAF SNPs 
concerns the sample size necessary to obtain reliable associa-
tion data, i.e. the lower the MAF the more samples are re-
quired to reach statistical significance. It is likely that inclu-
sion of potentially functional SNPs (non-synonymous SNPs 
and SNPs in gene promoter regions or exon-intron bounda-
ries) will increase the success rate in the analysis. At present, 
chips containing 20,000 non-synonymous human SNPs from 
~11,000 genes are already available (www.affymetrix.com).  

 This review has attempted to provide an overview of the 
aetiologies of complex neurodevelopmental disorders. 
Clearly, many questions remain unanswered with respect to 
the pathogenesis of such disorders. Nevertheless, it is to be 
expected that within the next years the tsunami of genetic 
research will lead to more insights into the susceptibility 
genes. This new information can then be applied to start new 
research strategies, including the use of genetically manipu-
lated cells or animal model systems carrying the susceptibil-
ity gene for functional studies on the pathways involved. 
Eventually, the acquired understanding of the molecular 
mechanisms underlying complex disorders may lead to 
translational research, including the design of gene/pathway-
specific drugs and the application of disease-preventing 
strategies. 
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ABBREVIATIONS 

ABN = Arched-back nursing 

ADH1B = Alcohol dehydrogenase 1B 

ADHD = Attention deficit hyperactivity disorder 

ATR-X = X-linked alpha thalassemia/mental  
retardation 

BDNF = Brain-derived neurotrophic factor 

CCK = Cholecystokinin 

CD-CV = Common disease-common variant 

CGH = Comparative genome hybridization 
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CNV = Copy-number variants 

COMT = Catechol-O-methyl transferase 

CSNK1G2 = Casein kinase I gamma 2 isoform 

DAO = D-amino-acid oxidase 

DAOA = D-amino acid oxidase activator 

DAT = Dopamine transporter  

DISC1 = Disrupted in schizophrenia 1 

DRD2 = Dopamine receptor D2 

DRD3 = Dopamine receptor D3 

DRD4 = Dopamine receptor D4 

DSM = Diagnostic and Statistical manual for mental 
disorders  

FAS = Fetal alcohol syndrome 

FMR1 = Fragile X mental retardation 1 

FS = Febrile seizures 

GWA = Genome-wide association 

HTR2A = 5-hydroxytryptamine (serotonin) receptor 2A 

ICD = International Classification of Disease  

ICF = Immunodeficiency, centromeric region  
instability, facial anomalies 

IMPA2 = Inositol(myo)-1(or 4)-monophosphatase 2 

LG = Licking and grooming 

MAF = Minor allele frequency 

MAOA = Monoamine oxidase A 

MeCP2 = Methyl CpG binding protein 2 

MR = Mental retardation 

NRG1 = Neuregulin-1 

OCD = Obsessive-compulsive disorder 

PDD = Pervasive developmental disorders 

PTSD = Posttraumatic stress disorder 

RGS4 = Regulator of G-protein signalling 4 

SAM = S-adenosylmethionine 

SLC6A4 = Serotonin transporter 

SNP = Single-nucleotide polymorphism 
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