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Abstract: In this work, we successfully developed a novel and sensitive gas sensor for the
determination of trace acetophenone based on its cataluminescence (CTL) emission on the surface of
nano-praseodymium oxide (nano-Pr6O11). The effects of working conditions such as temperature,
flow rate, and detecting wavelength on the CTL sensing were investigated in detail. Under the
optimized conditions, the sensor exhibited linear response to the acetophenone in the range of
15–280 mg/m3 (2.8–52 ppm), with a correlation coefficient (R2) of 0.9968 and a limit of detection (S/N = 3)
of 4 mg/m3 (0.7 ppm). The selectivity of the sensor was also investigated, no or weak response to other
compounds, such as alcohols (methanol, ethanol, n-propanol, iso-propanol, n-butanol), aldehyde
(formaldehyde and acetaldehyde), benzenes (toluene, o-xylene, m-xylene, p-xylene), n-pentane,
ethyl acetate, ammonia, carbon monoxide, carbon dioxide. Finally, the present sensor was applied to
the determination of acetophenone in human exhaled breath samples. The results showed that the
sensor has promising application in clinical breath analysis.
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1. Introduction

In recent years, the development of cataluminescence (CTL)-based gas sensors have drawn
extensive interest, mainly because of the high sensitivity, fast response, long-term stability, and simplicity
of the device [1–3]. CTL is defined as the light emission during the catalytic oxidation reaction on the
surface of catalytic solid material [4,5]. This phenomenon was firstly reported by Breysse et al. in
1976 [6]. After that, Analytical chemists have made great efforts to promote the development of CTL.
Nowadays, CCL was proved to be a powerful technology for rapid analysis, which shows promising
applications in environmental analysis [7–9], food analysis [10–12], clinical breath analysis [2,13,14],
and biochemical analysis [15,16].

Sensing material plays an important role in a sensor system, it interacts with analytes to induce
detectable signals. The characteristic of the sensing material directly affects the sensitivity, selectivity
and stability of the sensor. In 2002, Zhang et al. first introduced nanomaterials as sensing material
into the design of CTL gas sensor, they demonstrated that nanomaterials can greatly enhance CTL
performances, due to the pleasing advantages of high surface areas and high reaction activity for
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nanomaterials [17]. Since then, many nanomaterials were prepared and used for design of CCL sensors.
For instance, nanomaterial Zn/SiO2-based sensor for ethyne [18], nanosized NaYF4:Er-based sensor for
ketone [19], sensor based on α-MoO3 nanobelts for diethyl ether [20], sensor based on nano-MgO2 for
iso-butanol [21], sensor based on nanomaterial g-C3N4 for carbon monoxide [22], nanomaterial NiO
for H2S sensor [23], nanosized ZnO-based sensor for propionaldehyde [24].

There are abundant volatile organic compounds (VOCs) in human exhaled breath, some of
them have been identified as biomarkers of diseases [25,26]. Analysis of concerned VOCs in exhaled
breath has been recognized as a useful method for diagnosis of disease such as diabetes [27–29],
asthma [30,31], lung cancer [32–34] and breast cancer [35,36]. The most outstanding advantage of
breath analysis is that the pain-free and noninvasive collection of sample represents minimal risk to
the human subjects [13,37]. Gas chromatography or chromatography/mass spectroscopy (GC/MS) are
the traditional methods for breath analysis. However, these methods require complicated, bulky and
expensive instruments, and their measuring procedures are also relatively tedious [38,39]. Sensors for
breath analysis have attract wide attention because of their simple and compact device fabrication, as
well as easy operation [40,41]. Examples include a WO3-based sensor for diagnosis of diseases [42],
carbon nanotube (CNT)-based sensors functionalized with ionic liquids for infectious diseases [43],
surface-enhanced Raman scattering sensor based on gold nanoparticles on reduced graphene oxide for
gastric cancer [44].

Exhaled acetophenone in human breath is considered as an important biomarkers of breast cancers
patients [45,46]. In the present work, nano-praseodymium oxide (nano-Pr6O11) was synthesized by
hydrothermal method. The prepared nano-Pr6O11 exhibited strong CTL response to acetophenone,
but no or weak responses to other compounds. Thus, the nano-Pr6O11 was used as sensing material to
design CTL sensor for acetophenone. The sensor showed high sensitivity to acetophenone with a limit
of detection of 4 mg/m3 (0.7 ppm). We demonstrated that the proposed sensor can be used for analysis
of acetophenone in human exhaled breath. To the best of our knowledge, this work is first report of a
CTL sensor for acetophenone.

2. Results and Discussion

2.1. Characterization

The physical-chemical characteristics such as morphology, size, and crystal form of nanomaterial
directly affect the CTL behaviors. The surface morphology of the prepared Pr6O11 was investigated by
SEM. As Figure 1a shows, quasi-hexagonal nanoparticles having about 50 nm diameters were obtained.
Figure 1b shows the X-ray power diffraction patterns of Pr6O11. The diffraction peaks at 28.2◦, 32.7◦,
47.7◦, 56.7◦, 59.3◦, 69.8◦, 77.0◦, 79.4◦ can be attributed to the (111), (200), (220), (311), (222), (400), (331),
(420) planes. All of diffraction peaks are well indexed to a Pr6O11 (JCPDS.NO.41-1219) according to the
standard card.
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2.2. Selectivity of the CTL Sensor Based on Nano-Pr6O11

The selectivity of the CTL sensor based on nano-Pr6O11 was investigated. In a total of 18 kinds
of chemical compounds include acetophenone, iso-propanol, benzophenone, n-propanol, n-butanol,
methanol, ethanol, formaldehyde, acetaldehyde, n-pentane, ethyl acetate, toluene, o-xylene, m-xylene,
p-xylene, ammonia, carbon monoxide, carbon dioxide, at concentration of 100 mg/m3 were tested.
As shown in Figure 2, acetophenone produce strong CTL intensity, iso-propanol, n-propanol and
n-butanol just induce weak response. The intensities of iso-propanol, benzophenone, n-propanol and
n-butanol are 5.5%, 4.1%, 3.1% and 2.6% of the acetophenone. In addition, no detectable CTL signals
were observed for other compounds. Under the same conditions, ceramic heater without coating
with nano-Pr6O11 was used to detection of acetophenone, no CTL signal was detected, indicating that
appropriate nanomaterial is essential to the CTL emission of acetophenone.
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Figure 2. The response of sensor based on nano-Pr6O11 to different compounds. Temperature, 248 ◦C;
air flow rate, 230 mL/min; detecting wavelength, 425 nm, concentration, 100 mg/m3. Error bars stand
for ±S.D (standard deviation).

It was reported that CTL responses are different for a given chemical compound on different
nanomaterials, and the same nanomaterial shows dissimilar CTL responses to different chemical
compounds. Although the detail reaction mechanism of CTL still remains uncertain, it is now well
recognized that CTL emission must meet some requirements. One of the essential requirements is
that the chemical compound can be oxidized to form a CTL intermediate, then the intermediate can
produce photoemission when it returns to the ground state during the reaction process. It means
that not all the chemical compounds can emit CTL on the same nanomaterial, even if they could be
oxidized on the surface of nanomaterial. Although it is difficult for us to clarify the mechanism behind
the reaction of acetophenone on nano-Pr6O11 surface, the above results demonstrate that the prepared
nano-Pr6O11 exhibits satisfactory selectivity for sensing of acetophenone.

2.3. Optimization of Working Temperature

During the CTL sensing process, working temperature has a great effect on the CTL response.
The effect of working temperature on the CTL response was investigated by changing the working
temperature from 199 to 278 ◦C. As shown in Figure 3, the CTL intensity increases with temperature
from 199 to 258 ◦C and decreases when the temperature over 258 ◦C. This phenomenon may be
attributed to the reaction rate increases with increasing working temperature, but higher working
temperature accelerate molecular motion that may results in quenching of CTL intensity. In addition,
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higher working temperature emits stronger thermal radiation, leading to higher background noise is
recorded. These factors determine the CTL signal and the S/N (signal-to-noise ratio) increase firstly
then decrease with increment of working temperature. Because S/N reaches the maximum at 248 ◦C.
Therefore, working temperature of 248 ◦C was chosen for further exploration.
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Figure 3. Effect of temperature on the cataluminescence (CTL) intensity and the S/N. Air flow rate,
230 mL/min; detecting wavelength, 425 nm, concentration, 100 mg/m3. Error bars stand for ±S.D.

2.4. Optimization of Air Flow Rate

The effect of the air flow rate on the CTL intensity was investigated by changing the flow rate
in a rage of 180–250 mL/min. As shown in Figure 4, the CTL intensity increases gradually with the
air flow rate from 180–230 mL/min, and reaches the maximum at 230 mL/min. Whereas, the CTL
intensity becomes decline when the flow rate over 230 mL/min. This trend possibly results from the
total reaction rate at low flow rate is controlled by the diffusion rate of acetophenone, and thereby CTL
intensity increases with increasing flow rate. However, when the flow rate exceeds a certain degree,
higher flow rate leads to insufficient reaction time, resulting in decrease in CTL intensity. Therefore,
the optimal flow rate of 230 mL/min was selected for sensing of acetophenone.
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2.5. Optimization of Detecting Wavelength

In order to investigate the effect of detecting wavelength on CTL response, a series of optical
filters, including 380, 400, 425, 440, 460, 490, 535, 555 and 575 nm were selected in sequence to detect
acetophenone using nano-Pr6O11 as sensing martial. The CTL emission from the catalytic oxidation of
acetophenone on the surfaces of nano-Pr6O11 and the S/N values at different emission wavelength
are shown in Figure 5. It can be seen that the CTL intensity gradually increases with the wavelength
from 380–460 nm and then decreases when the wavelength over 460 nm. The maximum emission
wavelength is observed at 460 nm. However, the background noise emitted by thermal radiation
increases dramatically with the wavelength, and the maximum S/N is observed at 425 nm. As a result,
425 nm was selected as the detecting wavelength for sensing of acetophenone.
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2.6. CTL Response Profile and Analytical Characteristics

The CTL response profiles of acetophenone on the surface of nano-Pr6O11 were investigated by
sensing of acetophenone at different concentrations under the above-optimized conditions. As shown
in Figure 6a, the shape of the CTL response profiles is similar to each other. The CTL intensity sharply
increases from the baseline to maximum value within 5 s after sample injection, the time of the CTL
intensity decays from maximum value to baseline is about 20 s. These results demonstrate the capacities
of rapid response and fast recovery of the sensor for acetophenone.
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Under the optimized conditions, the CTL intensity is proportional to the concentration of
acetophenone and exhibits a linear range of 15–280 mg/m3 (2.8–52 ppm), and a detection limit of
4 mg/m3 (0.7 ppm) is obtained at S/N = 3. The linear regression equation is Y = 100.9 X – 1356
(correlation coefficient R2 = 0.9968), where Y is the relative CTL intensity, X is the concentration of
acetophenone (Figure 6b). Compared to the previously reported sensors for acetophenone [47,48],
the present sensor shows wider linear range and lower LOD. The detail can be seen in Table 1.

Table 1. Comparison of the analytical characteristics of the sensors for acetophenone.

Principle Sensing Materials Linear Range (ppm) LOD (ppm) References

CTL Nano-Pr6O11 2.8–50 0.7 Present work

Electrochemistry 1-Octyl, 3-methylimidazolium
tetrafluoroborate 5–80 2.0 [47]

Quartz
microbalance Macrocyclic oligolactams 5–40 2.0 [48]

2.7. Sample Analysis

Acetophenone in exhaled breath is identified as a biomarker of breast cancer. In order to probe the
potential application of the designed sensor, 100 mL of exhaled breath samples from three volunteers
were collected in sampling bags, then were detected by the CTL sensor based on nano-Pr6O11.
However, no signal was measured, possibly due to the concentration of acetophenone was too low
to be detectable. The three samples were spiked with different concentrations of acetophenone,
subsequently, the spiked sample were measured by the sensor for recovery analysis, the results are
shown in Table 2. The recoveries of acetophenone in the three samples are 106.7–113.1%, the RSDs are
3.2–4.0%. The satisfactory results demonstrate the potential of the sensor for real sample analysis.

Table 2. Determination of acetophenone in the exhaled breath samples spiked with acetophenone by
the designed sensor (n = 3).

Sample No. Spiked Concentration
(mg/m3)

Measured
Concentration (mg/m3) Recovery (%) RSD (%)

1 20.0 21.9 ± 0.9 109.5 4.0
2 25.0 26.7 ± 0.9 106.7 3.2
3 30.0 33.9 ± 1.3 113.1 3.8

3. Experimental Section

3.1. Materials and Instrumentation

Praseodymium nitrate hexahydrate, urea, acetophenone, iso-propanol, n-propanol, n-butanol,
methanol, ethanol, formaldehyde, acetaldehyde, n-pentane, ethyl acetate, toluene, o-xylene,
m-xylene, p-xylene, ammonia were purchased from Aladdin Reagent Co. Ltd. (Shanghai, China).
Carbon monoxide and carbon dioxide were purchased from The National Standard of Material
Resources Network (Beijing, China).

The morphology of Pr6O11was characterized by using a scanning electron microscopy (Helios G4
CX). X-ray diffraction patterns were recorded on a Rigaku Ultima IV X-Ray Diffractometer using CuKα

radiation with a scan speed of 5◦/min ranging from 10◦ to 80◦. (λ = 1.54 Å, operated on 40 mA and
40 kV current). BPCL ultra-weak luminescence analyzer (Guangzhou Microphotonics Technologies
Co., Ltd., Guangzhou, China) was used to measured luminous signal. The luminescence analyzer
equipped with a photomultiplier detector, a high voltage of 680 V was applied to the photomultiplier,
the Data acquisition rate was set as 0.5 s.
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3.2. Synthesis of Praseodymium Oxide Nanoparticles

1.0 g of praseodymium nitrate hexahydrate and 6.5 g of urea were dissolved in 240 mL deionized
water under ultrasonically vibrating for 20 min. The resulting solution was dried at 100 ◦C for 2 h.
Subsequently, the obtained gels were rinsed with deionized water and ethanol. Finally, the product
was calcined at 500 ◦C for 4 h in air to obtain the target products.

3.3. Procedure for Sensing

The CTL sensor for acetophenone was fabricated according to our previous work [13,49]. In brief,
3.0 mL of deionized water was mixed with 0.5 g of solid catalyst, then the suspended liquid containing
catalyst was dripped onto the surface of a ceramic heater and was heated to 450◦ for 20 min. The ceramic
heater coating with catalyst was put into a lab-made quartz tube that with a gas inlet and outlet.
A voltage regulator was used to control the temperature of the ceramic heater by adjusting the
output voltage. An air pump was used to support air carrier, and the flow rare was controlled by
a flowmeter. The CTL signal was measured and processed by the BPCL ultra-weak luminescence
analyzer. The detecting wavelength was selected by choosing optical filter. At the beginning of each
series of experiments, the CTL sensor based on praseodymium oxide was heated to 450◦ for 10 min in
air to activate the catalyst, and eliminate the influence of previous absorbates. Then the temperature of
the sensor was reduced to a certain value for subsequent detection.

4. Conclusions

In summary, we synthesized nano-Pr6O11 via a simple hydrothermal method, and demonstrated
that the prepared nanomaterial can be used as sensing material for CTL detection of acetophenone.
The CTL sensor exhibited good selectivity, fast response, and high sensitivity for sensing acetophenone.
The sensor was applied to the determination of acetophenone in exhaled breath samples, satisfactory
recoveries in the range of 106.7–113.1% were obtained. This work provides a simple, rapid,
and sensitivity method for sensing of acetophenone in many cases, especially in exhaled breath.
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