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Abstract

Background: The Cochran-Armitage trend test (CATT) is powerful in detecting association between a susceptible
marker and a disease. This test, however, may suffer from a substantial loss of power when the underlying genetic
model is unknown and incorrectly specified. Thus, it is useful to derive tests obtaining the plausible power against
all common genetic models. For this purpose, the genetic model selection (GMS) and genetic model exclusion
(GME) methods were proposed recently. Simulation results showed that GMS and GME can obtain the plausible
power against three common genetic models while the overall type I error is well controlled.

Results: Although GMS and GME are powerful statistically, they could be seriously affected by known confounding
factors such as gender, age and race. Therefore, in this paper, via comparing the difference of Hardy-Weinberg
disequilibrium coefficients between the cases and the controls within each sub-population, we propose the
stratified genetic model selection (SGMS) and exclusion (SGME) methods which could eliminate the effect of
confounding factors by adopting a matching framework. Our goal in this paper is to investigate the robustness of
the proposed statistics and compare them with other commonly used efficiency robust tests such as MAX3 and c2

with 2 degrees of freedom (df) test in matched case-control association designs through simulation studies.

Conclusion: Simulation results showed that if the mean genetic effect of the heterozygous genotype is between
those of the two homozygous genotypes, then the proposed tests and MAX3 are preferred. Otherwise, c2 with 2
df test may be used. To illustrate the robust procedures, the proposed tests are applied to a real matched pair
case-control etiologic study of sarcoidosis.

Background
The population-based case-control association study is a
powerful approach in detecting the association between
a candidate marker and a disease. Compared with the
family-based association study which recruits samples
from family members, the case-control study is more
cost effective because cases and controls are unrelated
hence easy to recruit from population. To test the
genetic association using the case-control design, the
genotypic data for a bi-allelic marker are usually
described by a 2 × 3 table where rows represent the dis-
ease status and columns represent the genotypic counts.
Hence, to test for genetic association is equivalent to
test for association between the rows and the columns.
Generally, the Pearson’s c2 with 2 df test can be used to
detect such an association. Besides, if a linear trend

among the rows can be assumed, a more powerful test
which utilizes the score test for a logistic regression can
be obtained. This score test is known as the Cochran-
Armitage trend test (CATT) [1-3].
To apply the CATT, increasing scores are specified a

priori for the underlying genetic model. A genetic
model refers to the model of inheritance, which defines
some relationship of the risks of having the disease
given different genotypes. The common genetic models
include, but not limit to, recessive (REC), additive
(ADD) and dominant (DOM) models. If the underlying
genetic model is known, the asymptotically optimal
CATT can be used. Otherwise, the CATT is not robust
when the scores are misspecified [4]. Unfortunately, the
underlying genetic model is usually unknown in practice
and an incorrect choice of the genetic model may result
in a substantial loss of power for the CATT. Thus, a
robust method which does not assume a prior knowl-
edge of the underlying genetic model is often useful.
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Methods robust for a variety of underlying model of
inheritance have recently become an important area of
research. The Pearson’s c2 test with 2 df does not assume
any structure of a genetic model so it is a robust test
against the genetic model. Moreover, the maximin effi-
ciency robust test (MERT) and the MAX method using
the maximum of the CATTs optimal for REC, ADD and
DOM respectively were extensively studied [5-10].
Recently, Zheng and Ng [11] proposed the genetic model
selection (GMS) method to test for genetic association.
Different from other robust tests, the GMS approach is a
two-phase analysis which uses the Hardy-Weinberg dise-
quilibrium trend test (HWDTT) [12] to choose the most
suitable genetic model in the first phase followed by the
CATT optimal for the selected genetic model to detect
the association in the second phase. Since the same data
were used twice in the analysis, the nominal type I error
for the second test needs to be adjusted so that the GMS
can obtain a correct size. This GMS has an assumption
that the marker allele associated with the disease allele is
known. Such assumption can be difficult to justify, for
instance, in many complex diseases. Thus, to remove this
restriction, Joo et al. [13] proposed to use the CATT
optimal for the ADD model to detect the risk allele. After
the risk allele is determined, the GMS corresponding to
the detected risk allele is then carried out. As a result,
using their GMS, people do not need to assume that the
risk allele is known. Besides the modified GMS, Joo et al.
[13] developed another two-phase test called the genetic
model exclusion (GME) which excludes the most unlikely
genetic model rather than selecting the most likely one.
They also showed that when the genetic relative risks
(GRRs) are small, the GME is more efficiency robust
than the GMS. Besides the frequentist analysis, a
Bayesian hierarchical model which regards the genetic
model parameter as a fixed effect has been proposed by

Minelli et al. [14]. If expert opinion or external evidence
is available, an informative prior distribution of the
genetic model parameter could be adopted; otherwise, a
vague prior distribution should be used to avoid the
undue influence on the posterior distribution.
Although the population based case-control study is

powerful and feasible to implement, spurious association
may arise due to known confounding factors such as
gender, age and race. Intuitively, the GMS and GME do
not work in the presence of confounding factors. One of
the reasons is that when the samples are divided into
several sub-populations via the confounding factors, the
Hardy-Weinberg equilibrium (HWE) assumption needed
in the first phase of the GMS and GME does not hold
any more. Besides, the CATTs used in the second phase
of the GMS and GME do not control the size well due
to the confounding factors.
Typically, when the confounding factors can be

observed, they could be treated as the covariates of
interest and incorporated in the logistic regression.
However, further calculation to adjust for the covariates
may complicate the trend test. Alternatively, the match-
ing strategy is frequently used as a much simpler way to
control potential confounding factors in epidemiological
studies. Specifically, a single case is matched with a cer-
tain number of controls based on the confounding
factors constructing for each matched set. Then, a con-
ditional logistic regression analysis is normally used to
fit the matched data. Recently, an increasing number of
matching studies are conducted by either adopting the
matched design [15-18] or developing statistical proce-
dures [19-24] for matched genetic association studies.
Similar to the unmatched case-control association

study, when the underlying genetic model is unknown,
the robustness of the statistics for the matched case-
control design is also worth studying. Zheng and Tian
[21] proposed the MAX3 test based on the matching
trend test (MTT) derived from a conditional logistic
regression. However, to our knowledge, this is the only
paper discussing the robust tests in matched case-
control design, compared to the large amount of litera-
ture in the unmatched design. Thus, in this paper, we
start by developing the stratified genetic model selection
(SGMS) and exclusion (SGME) methods for matched
case-control association, then we study the robustness
of the test statistics. The performance of the robust
tests and MTTs is compared by simulation for a wide
range of scenarios. Finally, the tests are applied to a real
matched pair case-control etiologic study of sarcoidosis.

Methods
Genetic model selection and exclusion
When the genetic model is unknown, the THWDTT test
proposed by Song and Elston [12] can be used to detect

Table 1 Type I error rates of GMS and GME based on
10,000 replicates without confounding (Scenario 1) and
in the presence of confounding factors (Scenarios 2-8),
with the significance level 0.05 using rl cases and sl
controls; pl is the risk allele frequency and kl is the
prevalence, l = 1,2

Scenario r1 r2 s1 s2 p1 p2 k1 k2 GMS GME

1 250 250 250 250 0.3 0.3 0.05 0.05 0.0510 0.0502

2 250 250 250 250 0.05 0.5 0.01 0.1 0.0199 0.0141

3 250 250 250 250 0.1 0.5 0.01 0.1 0.0190 0.0167

4 250 250 250 250 0.2 0.4 0.03 0.07 0.0391 0.0384

5 300 200 200 300 0.2 0.4 0.03 0.07 0.3923 0.4403

6 325 175 175 325 0.2 0.4 0.03 0.07 0.7337 0.7880

7 350 150 150 350 0.2 0.4 0.03 0.07 0.9077 0.9567

8 375 125 125 375 0.2 0.4 0.03 0.07 0.9625 0.9954
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the latent genetic model. Zheng and Ng [11] demon-
strated that under Hardy-Weinberg equilibrium (HWE)
and when the allele investigated is the risk allele
(denoted as D), THWDTT > 0 under the REC model and
THWDTT < 0 under the DOM model. Denote T0, T0.5

and T1 as the CATTs optimal for REC, ADD and DOM
respectively, Zheng and Ng [11] proposed to use T0 if
THWDTT > c; T1 if THWDTT < –c and T0.5 otherwise to
test for genetic association, where c is a pre-specified
threshold.
Note that for the original GMS mentioned above, the

risk allele is assumed to be known. However, if the risk
allele cannot be correctly specified, such GMS may have
some problems. Specifically, consider a bi-allelic marker
with alleles D and d and assume D is the risk allele. So
if D is really the risk allele, T0, T0.5 and T1 are optimal
for the REC, ADD and DOM models respectively. On
the other hand, if d is the true risk allele, then –T1,
–T0.5 and –T0 are optimal for the REC, ADD and DOM
models respectively. Joo et al. [13] proposed to use T0.5

to decide which one is the risk allele followed by the
corresponding GMS which depends on the determined
risk allele. Joo et al. [13] suggested the modified GMS
which can be written as

T T I T I T c T I T I T c

T I
GMS HWDTT HWDTT= > > + > ≤

+
0 0 5 0 5 0 5

1

0 0( ) ( ) ( ) (| | ). . .

(( ) ( ) ( ) ( )

( )
. .

. .

T I T c T I T I T c

T I T
0 5 1 0 5

0 5 0 5

0 0

0

> < − − ≤ >
− ≤

HWDTT HWDTT

II T c T I T I T c(| | ) ( ) ( ),.HWDTT HWDTT≤ − ≤ < −0 0 5 0
(1)

where I(.) is an indicator function.
When the GRRs are small, Joo et al. [13] found that

the probability of selecting the true genetic model by
using THWDTT becomes small. On the other hand, the
probability of correctly excluding the most unlikely
genetic model remains high against the GRRs. Further-
more, when the most unlikely genetic model is
excluded, the simple MERT [5] can be carried out to
build a robust test against the remaining models. These
facts inspired Joo et al. [13] to develop the genetic
model exclusion (GME) approach. Specifically,
first denote T T T T T0 0 0 5 0 0 5 0 5 0 52 1*

. , . .
*

.( ) / ( ( )),= + + =∧ and
T T T1 1 0 5 1 0 52 1*

. , .( )/( ( ))= + + ∧ where ˆ , x x1 2
is an estimate

of the correlation between Tx1 and Tx2 under the null
hypothesis of no association, then one can obtain the
GME statistic from the GMS test by replacing T0, T0.5

and T1 in (1) by T0
* , T0 5.

* and T1
* respectively. Since

the GMS and GME are two stage tests and the same
data set is used twice, the critical values of the tests in
the second stage need to be adjusted to control the
overall type I error rates; see Zheng and Ng [11] and
Joo et al. [13].
Although GMS and GME are efficiency robust tests,

they could be seriously affected by confounding factors.
In the presence of sub-populations, GMS and GME may

not keep the correct size. Therefore, to overcome this
limitation, we propose the stratified genetic model selec-
tion (SGMS) and exclusion (SGME) approaches in the
following.

Notation
Consider a bi-allelic marker with alleles d and D and
assume D is the risk allele. Denote the three genotypes of
this marker as G0 = dd, G1 = Dd and G2 = DD. Suppose
that the confounding factors define L strata, denoted by
Cl, l = 1,..., L. In the lth stratum, rl cases are drawn from
the population and m controls are matched to each case.
Thus, the total number of controls in the lth stratum is
sl = mrl for l = 1,..., L. The genotype counts for (G0, G1,
G2) in cases and controls in the lth stratum are denoted
by (r0l, r1l, r2l) and (s0l, s1l, s2l), respectively. Hence,
r rl ili

= =∑ 0

2 and s sl ili
= =∑ 0

2 . The total number of cases is
r = ∑l rl and the total number of controls is s = mr. The
total sample size is then n = (m + 1)r.
In the lth stratum (l = 1,..., L), denote the penetrance

by fil = Pr(case|Gi, Cl) for i = 0, 1, 2, the disease preva-
lence by kl = Pr(case|Cl) = ∑i filPr(Gi|Cl), and the geno-
type frequencies in cases and controls by pil = Pr(Gi|
case,Cl) = filPr(Gi|Cl)/kil and qil = Pr(Gi|control, Cl) = (1
- fil)Pr(Gi|Cl) = (1 - kil), respectively. Define GRRs in the
lth stratum as l1l = f1l/f0l and l2l = f2l/f0l (f0l > 0). A
genetic model is REC, ADD and DOM if l1l = 1, l1l =
(l2l + 1)/2 and l1l = l2l, respectively. We assume that
HWE holds in each stratum. Thus, Pr G C ql l( | )0

2= , Pr
(G1|Cl) = 2plql and Pr G C pl l( | )2

2= where pl is the
allele frequency of A in the lth stratum and ql = 1 - pl.

Stratified genetic model selection and exclusion
Let X1lj and X2ljk denote the genotypic scores for the jth
case and the kth control matched with the jth case in the
lth stratum, j = 1,..., rl, k = 1,..., m and l = 1,..., L. Each score
takes one of the three possible values: 0, x or 1 for the gen-
otypes G0, G1 or G2 respectively, where x is 0, 0.5 or 1 for
the REC, ADD or DOM model. Following Day and Byar
[25] and Zheng and Tian [21], the likelihood function con-
ditional on the outcomes of cases and matched controls
for the candidate marker can be written as
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The null hypothesis of no association H0 : b = 0
can be tested by the score statistic given by
Z x U x U x L LH HMTT Var( ) ( ) /{ ( ( ))} ( log / ) /{ ( log / )/= = ∂ ∂ − ∂ ∂

0 0

1 2 2 2  HH0

1 2} / .
Using the matched case-control data, the closed form of
the matching trend test (MTT) can be written as [21]
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ZMTT(x), follows N(0,1) under the null hypothesis of no
association.

Suppose a family of scientifically plausible models is
defined. Similar to the CATTs, corresponding to each
model, an asymptotically optimal normally distributed
MTT can be obtained. For example, ZMTT(0), ZMTT(0.5)
and ZMTT(1) are optimal for the REC, ADD and DOM
models respectively. When the genetic model is uncertain,
a pre-specified test from this family is not fully efficient,
hence, MTTs are not suggested to be directly used when
the underlying genetic model is unknown. This underlying
genetic model, however, can be ascertained using the
Hardy-Weinberg Disequilibrium (HWD) coefficient which
is de-noted as Δ = Pr(DD) - [Pr(DD)+Pr(Dd)/2]2. In the
unmatched study, denote the HWD coefficients in the
case group and the control group as Δp = Pr(DD|case) -
[Pr(DD|case)+Pr(Dd|case)/2]2 and Δq = Pr(DD|control) -
[Pr(DD|control) + Pr(Dd|control)/2]2, Zheng and Ng [11]
obtained that Δp - Δq > 0 under REC and Δp - Δq < 0
under DOM. Using the matched design described above,
we denote Δpl and Δql as the HWD coefficients in the case
group and the control group of the lth sub-population
respectively, l = 1,..., L. Similar to the unmatched counter-
part, we have Δpl - Δql > 0 for each l, l = 1,..., L thus

( )Δ Δpl qll

L − >=∑ 1
0 under REC and Δpl - Δql < 0 for each l, l

= 1,..., L thus ( )Δ Δpl qll

L − <=∑ 1
0 under DOM.
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ˆ /p r ril il l= and ˆ / ( )q s mril il l= for i = 0, 1, 2 and l =
1,..., L. Under the null hypothesis of no association and
assume HWE in each stratum, using simple algebra we
can obtain ˆ ( ˆ ) ( )( ˆ ) ˆ / ( )Λ Δl H l l l lVar m p p r m= = + −

0 1 1 2 2 where
ˆ [ ( ) ( )] / [ ( ) ]p r s r s m rl l l l l l= + + + +2 2 12 2 1 1 . Thus, using the same
motivation as the Cochran-Mantel-Haenszel (CMH) sta-
tistic [1,25,26] we can construct the stratified model
reduction test (SMRT):
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Notice that the denominator of ZSMRT is estimated
under the null hypothesis thus ZSMRT is a score test [27].
We may also use the Wald test or likelihood ratio test.
However, if we adopt the Wald test, the statistic becomes

much more complex; if we adopt the likelihood ratio test,
the statistic cannot be expressed explicitly thus it is hard
to derive the correlations between the two stage tests and
calculate the p-value of the overall test. For these reasons,
the score test is adopted. Under the null hypothesis,
ZSMRT asymptotically follows a standard normal distribu-
tion N(0, 1). ZSMRT tends to be large if the true genetic
model is REC and tends to be small if the true genetic
model is DOM. Hence, with a pre-specified threshold c >
0 (set to be F-1(0.95)), we can classify the underlying
genetic model as REC if ZSMRT > c, DOM if ZSMRT < -c
and ADD otherwise. So when the underlying genetic
model is decided, ZMTT(x) optimal for the corresponding
genetic model can be used to test for association. Notice
that in the above discussion, we assume that D is the
risk allele. If D is the risk allele as we assume, ZMTT(0)
and ZMTT(1) are optimal for the REC and DOM models
respectively. On the other hand, if d is the risk allele,
then ZMTT(0) and ZMTT(1) are optimal for the DOM
and REC models respectively. Besides, the expected
values of ZMTT(0) and ZMTT(1) are negative in this case.
Similar to Joo et al. [13], we use ZMTT(0.5) to determine
the risk allele. That is, if ZMTT(0.5) > 0, ZMTT(0), ZMTT

(0.5), ZMTT(1) are optimal for the REC, ADD and DOM
models; if ZMTT(0.5) ≤ 0, -ZMTT(1), -ZMTT(0.5), -ZMTT(0)
are optimal for the REC, ADD and DOM models.
Hence, the stratified genetic model selection (SGMS) test
is proposed as

Z

Z I Z Z I Z Z c

SGMS

MTT MTT MTT MTT SMRTif

=
> − ≤ >( ) ( ( . ) ) ( ) ( ( . ) )0 0 5 0 1 0 5 0

ssign ifMTT MTT SMRT
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Z Z Z c

Z I Z
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≤
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⎧
⎨
⎪
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⎪

(5)

Under the null hypothesis of no association, we show
that (ZMTT(0.5), ZSMRT, ZMTT(x)) asymptotically follows
a multivariate normal distribution N(0, ∑x) where

Σ x
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x = 0, 1. In addition, ZMTT(0.5) and ZSMRT are asympto-
tically independent. Detailed proof and the forms of rx and
rx,0.5 as well as their consistent estimates are derived in the
Appendix. Define øx(z1, z2, z3) as the density function of N
(0, ∑x) and ø(z) as the density function of the standard nor-
mal distribution. Let t > 0 be the observed value of ZSGMS

and the corresponding p-value is obtained as
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x
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(6)

With a pre-specified significance level ζ, we declare a
significant association if PVs < ζ.
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Although ZSMRT can be used to determine the under-
lying genetic model, the probability of selecting the cor-
rect genetic model is low when the GRRs are small or
moderate. On the other hand, the probability of cor-
rectly excluding the most unlikely genetic model
remains high when GRRs are very small. That is, when
ZSMRT > c, the underlying genetic model is likely to be
either REC or ADD rather than just REC and excluding
the DOM model is more reasonable than just selecting
the REC model. Similarly, when ZSMRT < -c, excluding
REC is more reasonable than just selecting the DOM
model. Therefore, when the GRRs are low, the strategy
of excluding the most unlikely genetic model is more
preferred to that of selecting the most suitable genetic
model.
Similar to Joo et al. [13], we define the MERT-type

statistic named the matching averaged test (MAT) as

Z Z ZMAT MTT MTT( ) ( ( ) ( . ))/ ( ),0 0 0 5 2 1 0 05= + + ∧ and

Z Z ZMAT MTT MTT( ) ( ( ) ( . ))/ ( ), .1 1 0 5 2 1 1 0 5= + + ∧ . The

definition of MATs indicate that ZMAT(0) is optimal for

either REC or ADD and ZMAT(1) is optimal for either
DOM or ADD. Besides, ZMTT(0.5) is still optimal for
just ADD. Utilizing the stratified genetic model exclu-
sion (SGME) strategy, we use ZMAT(0) to test for asso-
ciation if ZSMRT > c thus DOM is excluded; use ZMAT(1)
if ZSMRT < -c thus REC is excluded and ZMTT(0.5) other-
wise. In addition, similar to SGMS, ZMTT(0.5) is used at
the beginning to determine the risk allele. Hence, the sta-
tistic for the SGME approach can be written as

Z

Z I Z Z I Z Z
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=
> − ≤ >( ) ( ( . ) ) ( ) ( ( . ) )0 0 5 0 1 0 5 0 cc

Z Z

Z I Z Z I Z

sign MTT MTT

MAT MTT MAT

( ( . )) ( . )

( ) ( ( . ) ) ( ) (

0 5 0 5

1 0 5 0 0> − MMTT

SMRT

SMRT

if

if ( . ) )

| |

0 5 0≤
≤

< −

⎧
⎨
⎪

⎩
⎪

Z c

Z c
(7)

Under the null hypothesis of no association, we obtain
that (ZMTT(0.5), ZSMRT, ZMAT(x)) asymptotically follows

a multivariate normal distribution N x( , )*0 Σ where
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x = 0, 1. Define x z z z*( , , )1 2 3 as the density function

of N x( , )*0 Σ , similar to the test of ZSGMS, the p-value of
ZSGME can be derived as
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We declare a significant association if PVe <ζ where ζ
is the pre-specified significance level.

Other robust procedures
In equation (2), we use one indicator to code three gen-
otypes. One the other hand, if we define two dummy
variables ((X1lj1, X1lj2) for the cases and (X2ljk1, X2ljk2) for
the controls) taking values (0,0), (0,1) and (1,1) to code
three genotypes G0, G1 and G2, the conditional likeli-
hood function becomes [10]
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The score test derived from equation (9), denoted by
Z 2 with 2 df, has an asymptotic c2 distribution with 2

Table 2 Type I error rates of ZMTT(0), ZMTT(0.5), ZMTT(1),
ZSGMS, ZSGME, ZMAX3 and Z 2 with 2 df based on 10,000
replicates in the presence of confounding factors with
the significance level a using R cases and S controls

Scenario a ZMTT

(0)
ZMTT

(0.5)
ZMTT

(1)
ZSGMS ZSGME ZMAX3 Z 2

A 0.05 0.0527 0.0498 0.0518 0.0501 0.0490 0.0527 0.0531

B 0.0487 0.0503 0.0493 0.0494 0.0502 0.0515 0.0481

C 0.0510 0.0512 0.0509 0.0506 0.0510 0.0513 0.0490

D 0.0526 0.0524 0.0537 0.0529 0.0528 0.0516 0.0484

E 0.0519 0.0512 0.0534 0.0536 0.0526 0.0501 0.0507

F 0.0485 0.0486 0.0479 0.0488 0.0467 0.0501 0.0481

G 0.0493 0.0497 0.0490 0.0492 0.0498 0.0457 0.0491

H 0.0522 0.0493 0.0480 0.0522 0.0521 0.0525 0.0522

A 0.01 0.0092 0.0081 0.0100 0.0083 0.0081 0.0075 0.0084

B 0.0096 0.0091 0.0106 0.0106 0.0103 0.0096 0.0101

C 0.0093 0.0101 0.0109 0.0108 0.0104 0.0101 0.0109

D 0.0121 0.0101 0.0098 0.0093 0.0093 0.0095 0.0105

E 0.0098 0.0094 0.0101 0.0093 0.0092 0.0083 0.0114

F 0.0109 0.0095 0.0106 0.0109 0.0102 0.0102 0.0109

G 0.0100 0.0094 0.0105 0.0114 0.0103 0.0111 0.0093

H 0.0087 0.0111 0.0104 0.0099 0.0103 0.0117 0.0107

A : R = (150, 150, 200), S = (300, 300, 400), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

B : R = (100, 300, 100), S = (200, 600, 200), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

C : R = (300, 300, 400), S = (300, 300, 400), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

D : R = (200, 600, 200), S = (200, 600, 200), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

E : R = (250, 250), S = (500, 500), P = (0.2, 0.4), K = (0.01, 0.02).

F : R = (150, 350), S = (300, 700), P = (0.2, 0.4), K = (0.01, 0.02).

G : R = (500, 500), S = (500, 500), P = (0.2, 0.4), K = (0.01, 0.02).

H : R = (300, 700), S = (300, 700), P = (0.2, 0.4), K = (0.01, 0.02).
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df under H0 : b1 = b2 = 0. Note that Z 2 with 2 df does
not rely on any information of the underlying genetic
model so it is a robust test against model of inheritance.
Another robust test is the MAX3 which was also pro-

posed as an efficiency robust test for unmatched genetic
association studies [7,28]. Analogy to the unmatched
counterpart, Zheng and Tian [21] proposed the MAX3
statistic for matched case-control association study
which is defined as

Z max Z Z ZMAX MTT MTT MTT3 0 0 5 1= (| ( )|,| ( . )|,| ( )|).

Compared with the optimal MTTs and c2 test with 2 df,
MAX3 has the largest minimum power across the three
genetic models [21,29]. As mentioned in Zheng and Tian
[21] and Joo et al. [10], the null distribution of ZMAX3 can
be approximated by Monte-Carlo simulation. In addition,
the p-value of ZMAX3 can also be obtained according to
the asymptotic formula given by Zang et al. [29].

Results
Simulation
To check whether GMS and GME can keep the correct
size in the presence of confounding factors, we carried
out simulation studies to examine the performance of
GMS and GME in the presence of sub-populations. The
nominal level was set at 0.05. We assumed that due to
confounding factors, each of the case and control popu-
lations was divided into two sub-populations with equal
probability. The simulation results are summarized in
Table 1. We find that when there are no confounding
factors (Scenario 1 ), GMS and GME can control the
size well. On the other hand, in the presence of con-
founding factors and adopt the matched design to each
of the sub-populations, GMS and GME are found to be
conservative (Scenarios 2, 3 and 4 ). Furthermore, with-
out the matched design, the type I error rates of GMS
and GME are seriously inflated (Scenarios 5 to 8 ). The
simulation results show that in the presence of sub-
populations, GMS and GME cannot keep the correct
size whether or not the matched design is utilized.
To check if the ability of ZSMRT to select the correct

genetic model is low when GRRs are small, we con-
ducted a simulation to compare the selection procedure
with the exclusion procedure. Considered 300 cases
with 600 matched controls, the samples were divided
into 3 sub-populations with proportions being 0.3, 0.3
and 0.4 respectively. Set the MAFs and the penetrance
in the three strata as (p1, p2, p3) = (0.1, 0.3, 0.5) and (f01,
f02, f03) = (0.01, 0.05, 0.02). The threshold c was fixed as
F-1(0.95) and let GRR2 = l2l increase from 1.1 to 2.0
with increments of 0.1, l = 1,..., L.
The results are summarized in Figure 1, with circles

representing the probabilities of selecting the correct
genetic models and triangles representing the probabil-
ities of correctly excluding the most unlikely genetic
models. From Figure 1 we can find that under REC and
DOM the triangles are always higher than 90%, whereas
the circles can be less than 20% when the GRR2 is
small. However, when ADD is the true genetic model,
the circles coincide with the triangles. This is because
under ADD, both REC and DOM are the most unlikely
models thus the selection procedure is just the same as
the exclusion procedure.
Next, we performed simulations with no disease asso-

ciation and under various genetic models to evaluate the
performance of the proposed robust methods. Moreover,
we also considered the MTTs optimal for the REC,
ADD and DOM models, i.e. ZMTT(0), ZMTT(0.5) and
ZMTT(1) respectively. Let R, S, Fi, K and P denoted the
vectors of rl, sl, fil, kl and pl respectively across sub-
populations, l = 1,..., L, i = 0, 1, 2. Each sub-population
was in HWE. We first examined the type I error rates

Table 3 Type I error rates of ZMTT(0), ZMTT(0.5), ZMTT(1),
ZSGMS, ZSGME, ZMAX3 and Z 2 with 2 df for small sample
size

Scenario a ZMTT

(0)
ZMTT

(0.5)
ZMTT

(1)
ZSGMS ZSGME ZMAX3 Z 2

A* 0.05 0.0474 0.0501 0.0487 0.0493 0.0495 0.0452 0.0502

B* 0.0531 0.0479 0.0497 0.0480 0.0485 0.0462 0.0503

C* 0.0569 0.0526 0.0489 0.0507 0.0526 0.0516 0.0488

D* 0.0470 0.0480 0.0516 0.0482 0.0484 0.0488 0.0503

E* 0.0492 0.0498 0.0489 0.0518 0.0511 0.0535 0.0498

F* 0.0519 0.0503 0.0514 0.0535 0.0537 0.0486 0.0489

G* 0.0484 0.0505 0.0526 0.0483 0.0466 0.0551 0.0502

H* 0.0504 0.0453 0.0451 0.0451 0.0456 0.0484 0.0504

A* 0.01 0.0076 0.0083 0.0092 0.0102 0.0089 0.0108 0.0126

B* 0.0075 0.0091 0.0097 0.0078 0.0088 0.0086 0.0081

C* 0.0078 0.0089 0.0096 0.0082 0.0084 0.0126 0.0092

D* 0.0080 0.0095 0.0116 0.0093 0.0092 0.0111 0.0099

E* 0.0072 0.0093 0.0098 0.0099 0.0092 0.0091 0.0120

F* 0.0087 0.0081 0.0089 0.0085 0.0081 0.0091 0.0116

G* 0.0077 0.0120 0.0120 0.0113 0.0125 0.0081 0.0102

H* 0.0079 0.0087 0.0088 0.0073 0.0081 0.0098 0.0095

The results are simulated based on 10,000 replicates in the presence of
confounding factors with the significance level a using R cases and S controls.

A*: R = (15, 15, 20), S = (30, 30, 40), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

B*: R = (10, 30, 10), S = (20, 60, 20), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

C*: R = (30, 30, 40), S = (30, 30, 40), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

D*: R = (20, 60, 20), S = (20, 60, 20), P = (0.1, 0.3, 0.5), K = (0.01, 0.05, 0.02).

E*: R = (25, 25), S = (50, 50), P = (0.2, 0.4), K = (0.01, 0.02).

F*: R = (15, 35), S = (30, 70), P = (0.2, 0.4), K = (0.01, 0.02).

G*: R = (50, 50), S = (50, 50), P = (0.2, 0.4), K = (0.01, 0.02).

H*: R = (30, 70), S = (30, 70), P = (0.2, 0.4), K = (0.01, 0.02).
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of the mentioned tests under the null hypothesis of no
association with nominal levels taken as 0.05 and 0.01
respectively. The results are summarized in Table 2.
We considered eight separate scenarios (A to H) with

different numbers of cases, controls, risk allele frequen-
cies and disease prevalences. For example, in scenario A,
150, 150 and 200 cases from 3 different sub-populations
comprised the whole case group and each case was
matched with 2 controls within the same sub-population.
The risk allele frequencies of the 3 sub-populations were
0.1, 0.3 and 0.5 respectively and the disease prevalences
equalled to 0.01, 0.05 and 0.02. Table 2 shows that the
type I error rates of all the mentioned tests are close to
the nominal levels and so the robust tests and MTTs can
control the sizes well. Besides, although we assume that
HWE holds in each sub-population, a moderate depar-
ture from HWE has little impact to the sizes of SGMS
and SGME (results skipped for brevity).
We also conducted simulation to investigate the per-

formance of the proposed tests for small sized samples,
where the number of cases is at most 100. The results
are summarized in Table 3. The settings were the same
as those in Table 2 except that the sample sizes in

Table 3 were only 10% of those in Table 2. The results
show that the proposed tests can keep the size reason-
ably well even for small sample case.
The powers of the MTTs and robust tests were com-

pared under three genetic models (REC, ADD and
DOM). The settings were the same as those in Table 2
except that the nominal level was set to be 0.05 and the
GRR was determined so that the optimal MTT has the
maximum power of about 80%. The results are summar-
ized in Table 4. In each row, the power of the robust
test which performs best among the four robust tests
considered in Table 4 is bold-faced.
From Table 4 we notice that although the MTTs can

obtain the highest power if the genetic models are cor-
rectly specified, the minimum powers of ZMTT(0) and
ZMTT(1) are below 20% and the minimum powers of
ZMTT(0.5) are between 50% to 60%. On the other hand,
the minimum powers of the robust tests are about 65%
across all genetic models. Table 4 clearly shows the
advantage of the robust tests that, when the genetic
model is unknown, the robust tests are more preferred
than the MTTs. Besides, from Table 4 we can conclude
that if only the REC, ADD and DOM models are

Table 4 Empirical powers of ZMTT(0), ZMTT(0.5), ZMTT(1), ZSGMS, ZSGME, ZMAX3 and Z 2 with 2 df based on 10,000
replicates

Scenario Model ZMTT(0) ZMTT(0.5) ZMTT(1) ZSGMS ZSGME ZMAX3 Z 2 r*

A REC 0.8059 0.5590 0.1369 0.6981 0.6760 0.7340 0.7154 0.3267

ADD 0.4890 0.7998 0.7126 0.7594 0.7896 0.7629 0.7188 0.7623

DOM 0.1237 0.6818 0.8040 0.7142 0.7155 0.7300 0.7158 0.2639

B REC 0.8073 0.5367 0.1356 0.6725 0.6497 0.7229 0.7147 0.3423

ADD 0.4637 0.7977 0.7258 0.7646 0.7908 0.7502 0.7140 0.7445

DOM 0.1287 0.7011 0.8054 0.7168 0.7259 0.7383 0.7199 0.2756

C REC 0.8057 0.5503 0.1330 0.6970 0.6691 0.7244 0.7153 0.3038

ADD 0.4896 0.8052 0.7139 0.7654 0.7952 0.7648 0.7094 0.7295

DOM 0.1193 0.6877 0.8062 0.7153 0.7210 0.7445 0.7112 0.2710

D REC 0.7978 0.5235 0.1400 0.6655 0.6433 0.7177 0.7144 0.3124

ADD 0.4639 0.8045 0.7308 0.7654 0.7934 0.7499 0.7090 0.7037

DOM 0.1204 0.7024 0.8071 0.7144 0.7225 0.7250 0.7033 0.2792

E REC 0.7974 0.5276 0.1453 0.7166 0.6782 0.7288 0.7218 0.3492

ADD 0.4667 0.8014 0.7294 0.7554 0.7884 0.7517 0.7131 0.7396

DOM 0.1261 0.6989 0.8027 0.7135 0.7234 0.7161 0.7077 0.2795

F REC 0.8056 0.5547 0.1535 0.6991 0.6742 0.7317 0.7173 0.3561

ADD 0.5014 0.8068 0.7195 0.7650 0.7955 0.7524 0.7112 0.7661

DOM 0.1389 0.6933 0.8003 0.7167 0.7231 0.7291 0.7141 0.2887

G REC 0.8045 0.5241 0.1499 0.7233 0.6786 0.7316 0.7082 0.3172

ADD 0.4562 0.8020 0.7313 0.7522 0.7883 0.7560 0.7068 0.6970

DOM 0.1247 0.7091 0.8004 0.7167 0.7297 0.7468 0.7099 0.2825

H REC 0.7967 0.5481 0.1467 0.6950 0.6651 0.7203 0.7136 0.3279

ADD 0.4885 0.8017 0.7154 0.7610 0.7911 0.7529 0.7009 0.7272

DOM 0.1254 0.6944 0.8055 0.7183 0.7248 0.7366 0.7091 0.2945

The settings are the same as those in Table 2 except that the GRRs are determined so that the optimal MTT has the maximum power of about 80%. The
significance level is 0.05. r* is the minimum correlation of the optimal tests.
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considered, ZSGME and ZMAX3 perform better than the
other two robust tests and ZMAX3 always dominate Z 2

with 2 df under such situations. Table 4 also reports r*,
which is defined as the minimum correlation of the
optimal tests [5]. For example, when REC is the true
model, then r* = min(corr(ZMTT(0), ZMTT(0.5)), corr
(ZMTT(0), ZMTT(1))). r* is considered here as a guideline
for choosing efficiency robust tests between ZSGME and
ZMAX3. From Table 4 we find that when r* is small
(around 0.3), ZMAX3 performs better or at least as
powerful as ZSGME. However, when r* is large (around
0.7), ZSGME is a better choice. Notice that this finding is
similar to the property of the efficiency robust proce-
dures in survival data analysis studied by Freidlin et al.
[30] who also suggest to use the MAX-type statistic if
r* is less than 0.6 or 0.7.

We further compared ZSGMS, ZSGME, ZMAX3 and Z 2

with 2 df under different genetic models. The parameter
settings were the same as those of scenario A in Table 2
except that l2 increased from 1.1 to 2.0 with increments
of 0.1 and l1l = 1 + x(l2l - 1). The results are summar-
ized in Figures 2, 3, 4 and 5 with titles a, b, c, d, e, f, g
representing x = 0.25, 0, 0.25, 0.5, 0.75, 1, 1.25
respectively.

Notice that x = 0, 0.5, 1 (figures b, d, f) correspond to
the REC, ADD and DOM models respectively. Under
these three commonly used genetic models, ZSGMS,
ZSGME and ZMAX3 have comparable powers although
ZMAX3 may be slightly more powerful than the other
two tests under the REC and DOM models, and ZSGME

may dominate ZMAX3 and ZSGMS under the ADD
model. Z 2 with 2 df has the least power among all the
tests considered here. x = 0.25 (figure c) indicates a
genetic model between REC and ADD and x = 0.75 (fig-
ure e) corresponds to a genetic model between ADD
and DOM. The performance of the robust tests under
such two genetic models is similar to that under ADD.
ZSGME is slightly more powerful than ZSGMS and ZMAX3,
and Z 2 with 2 df still obtains the least power.
x = - 0.25 and 1.25 indicate two less plausible models,

the under-recessive model (figure a) and over-dominant
model (figure g). Under the under-recessive model
where f1l < f0l, Z 2 with 2 df is the most powerful test
followed by ZSGMS and ZMAX3. ZSGME performs the
worst in such a situation. Under the over-dominant
model where f1l > f2l, all the robust tests perform very
similarly.
To summarize, if the mean genetic effect of the het-

erozygous genotype is between those of the two homo-
zygous genotypes, then we suggest ZMAX3, ZSGMS and
ZSGME. On the other hand, if the genetic effects
are not ranked in accordance with the genotypes, then
Z 2 with 2 df is preferred. This is reasonable because
Z 2 with 2 df does not take the order of the genetic
effects into consideration so it should perform well if
the genetic effects are not ranked in accordance with
the genotypes.
Notice that in our simulation we consider the com-

mon disease common variant (CDCV) which is cur-
rently the most popular theory underlying complex
disease etiology. However, if the common disease rare
variant (CDRV) assumption holds which implies that
the disease etiology is caused collectively by multiple
rare variants with moderate to high penetrances, the
proposed tests perform conservatively and underpow-
ered for detecting association [31]. In this case, the com-
bined multivariate and collapsing (CMC) method
proposed by Li and Leal [31] may be used to increase
the power of the proposed tests.

An application
We applied MTTs and the robust tests to a matched
pair case-control etiologic study of sarcoidosis
(ACCESS) [15]. In this study, a total of 497 matched
pairs of case-control sets samples based on their age
(within 5 years), race (Caucasian and African-American)
and gender were recruited to test for association
between immunoglobulin gene polymorphism and

Table 5 The pair-matched case-control study of ACCESS

Controls

Caucasian ’11’ ’13’ ’33’ Total

Cases ’11’ 0 0 1 1

’13’ 0 9 36 45

’33’ 2 29 201 232

Total 2 38 238 278

Controls

Female/African-American ’11’ ’13’ ’33’ Total

Cases ’11’ 1 11 8 20

’13’ 8 26 40 74

’33’ 4 34 24 62

Total 13 71 72 156

Controls

Male/African-American ’11’ ’13’ ’33’ Total

Cases ’11’ 1 2 5 8

’13’ 1 14 17 32

’33’ 1 11 11 23

Total 3 27 33 63

Controls

Combined ’11’ ’13’ ’33’ Total

Cases ’11’ 2 13 14 29

’13’ 9 49 93 151

’33’ 7 74 236 317

Total 18 136 343 497
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sarcoidosis. A subset containing 219 African-American
matched pairs was used by Zheng and Tian [21]. We
consider the KM(1,3) polymorphism as the candidate
marker. After estimating the risk allele frequencies in
controls of the matched sets defined by the two

confounding factors (gender and race), we find three
sub-populations namely Caucasian, Female African-
American and Male African-American. The details of
the matched data and sub-structure information are
summarized in Table 5.
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Figure 1 The probabilities of correctly selecting the genetic models and of correctly excluding the most unlikely genetic models
based on 10,000 replicates.
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First we applied the MTTs optimal for the REC, ADD
and DOM models to the data set and obtained the
p-values being 0.058, 0.025 and 0.093 for ZMTT(0), ZMTT

(0.5) and ZMTT(1) respectively. Thus, whether or not
there is a significant association is unclear under a nom-
inal level 0.05 because different genetic models give dif-
ferent answers.

Then we applied Z 2 with 2 df and ZMAX3 to the data

set and obtained the p-values as 0.076 and 0.056, which
were also hard to provide a more conclusive finding
under a significance level of 0.05. Note that the p-value
of ZMAX3 was calculated according to the asymptotic for-
mula obtained by Zang et al. [29]. Thereafter we applied

ZSGMS and ZSGME to the same data. We obtained ZSMRT =
0.124, which falls in the interval [-1.645,1.645] and
strongly suggested an ADD model. Thus, for SGMS we
select ADD and for SGME we exclude REC and DOM.
Using formulas (6) and (8) we obtained the p-values as
0.0398 for ZSGMS and 0.0310 for ZSGME, both suggesting a
marginally significant association. According to our simu-
lation, ZSGME is the most powerful robust test under the
ADD model. We also obtained the minimum correlation
of the optimal tests r* = 0.603, which indicates that ZSGME

is a better choice than ZMAX3 according to our previous
discussion for Table 4. Obviously, our results are consis-
tent with the findings in that discussion. To sum up, we

Figure 2 Empirical powers of ZSGMS, ZSGME, ZMAX3 and Z 2 with 2 df under genetic model a. The significance level is 0.05.
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observe that there is some association between the candi-
date marker and sarcoidosis.

Discussion
In this paper, we extended the GMS [11] and GME [13]
methods to the matched case-control association study
and proposed the SGMS and SGME methods so that
they can be used when there are confounding factors in
the recruited samples. We showed that the p-values of
both tests can be determined analytically based on the
asymptotic tri-variate normal distributions. Besides, we
also reviewed some other robust tests in matched case-
control association study such as the MAX3 test and
the c2 with 2 df test. Simulations were carried out to
examine the robustness of all these tests. The tests were
also used to analyze a real pair matched data set of sar-
coidosis. Simulation results indicate that when the
genetic model is unknown, a mis-specification of the
genetic model may result in a substantial loss of power
for the MTTs. In this situation, robust tests are pre-
ferred. Further comparisons among the robust tests
were also conducted. According to our simulation, when
the genetic effects are ordered in accordance with their
genotypes, MAX3, SGMS and SGME are preferred. On
the other hand, if the less plausible genetic models such

as the over-dominant and under-recessive models can-
not be excluded, then c2 with 2 df test is a good choice.
We adopted the matching framework in the stage of

recruiting samples so our study is a pre-matched case-
control association study. In practice, even in the
unmatched case-control design matching is still an
important tool to eliminate the effect of latent con-
founding factors such as the population stratification
and cryptical relatedness. For example, Guan et al. [24]
recently proposed a matched design in an unmatched
case-control study. They post-matched individuals by
their genotypes followed by a conditional matching ana-
lysis to correct for population stratification in genome-
wide association studies. In fact, after applying their
method or the principal components method [32] and
its extension [33] to classify the latent population struc-
ture, all the robust tests discussed in this paper can be
used as robust approaches as well as correcting the
latent population stratification in the unmatched case-
control or genome-wide association studies. The regres-
sion approach is also suggested in the literature to
adjust for confounding factors other than markers.
However, if the whole population has many subpopula-
tion due to confounding, the performance of the regres-
sion method could be affected because too many
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Figure 3 Empirical powers of ZSGMS, ZSGME, ZMAX3 and Z 2 with 2 df under genetic models b and c. The significance level is 0.05.
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nuisance parameters need to be estimated. Furthermore,
how to derive the variance-covariance matrices of the
distribution of the robust tests in this case is still uncer-
tain. Further research in this area is needed.

Conclusion
Simulation results and real data analysis show that
SGMS and SGME can keep a correct Type I error rate
for stratified data while have good efficiency robustness
against genetic model uncertainty. Besides, the proposed
formulas in this paper can easily be used to calculate
the corresponding p-values. Thus, SGMS and SGME are
useful for genetic data analysis of matched case-control
design.

Appendix
First we derive the correlation rx between ZSMRT and
ZMTT(x). Define U(x) as the numerator of ZMTT, under
the null hypothesis,
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for pl, we obtain the estimate ̂ x for rx (x = 0, 0.5, 1).
Next we report the correlation rx,0.5 between ZMTT(x)

and ZMTT(0.5) (x = 0, 1). Under the null hypothesis,
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