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Abstract

Epidermal growth factor receptor (EGFR) is over-expressed in about 50% of Triple negative

breast cancers (TNBCs), but EGFR inhibitors have not been effective in treating TNBC

patients. Increasing evidence supports that autophagy was related to drug resistance at

present. However, the role and the mechanism of autophagy to the treatment of TNBC

remain unknown. In the current study, we investigated the effect of autophagy inhibitor to

gefitinib (Ge) in TNBC cells in vitro and in nude mice vivo. Our study demonstrated that inhi-

bition of autophagy by 3-Methyladenine or bafilomycin A1 improved Ge’s sensitivity to MDA-

MB-231 and MDA-MB-468 cells, as evidence from stronger inhibition of cell vitality and col-

ony formation, higher level of G0/G1 arrest and DNA damage, and these effects were

verified in nude mice vivo. Our data showed that the mitochondrial-dependent apoptosis

pathway was activated in favor of promoting apoptosis in the therapy of Ge combined autop-

hagy inhibitor, as the elevation of BAX/Bcl-2, Cytochrome C, and CASP3. These results

demonstrated that targeting autophagy should be considered as an effective therapeutic

strategy to enhance the sensitivity of EGFR inhibitors on TNBC.

Introduction

Triple negative breast cancer (TNBC), characterized as estrogen receptor negative, progesterone

receptor negative, and human epidermal growth factor receptor 2 negative, accounts for roughly

15%-20% of all breast cancer patients [1, 2]. Women with TNBC have a peak risk of recurrence

and mortality within 3 to 5 years from the time of diagnosed due to its aggressive nature, and a

median survival after recurrence of ~9 months [3, 4]. Because TNBC lacks an approved targeted

therapy, the only remaining systemic treatment is chemotherapy, which has been reported to

PLOS ONE | https://doi.org/10.1371/journal.pone.0177694 May 22, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Liu Z, He K, Ma Q, Yu Q, Liu C, Ndege I, et

al. (2017) Autophagy inhibitor facilitates gefitinib

sensitivity in vitro and in vivo by activating

mitochondrial apoptosis in triple negative breast

cancer. PLoS ONE 12(5): e0177694. https://doi.

org/10.1371/journal.pone.0177694

Editor: Ming Tan, University of South Alabama,

UNITED STATES

Received: January 1, 2017

Accepted: May 2, 2017

Published: May 22, 2017

Copyright: © 2017 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The reagents were supported by the

Grants from the Natural Science Foundation of

Shandong Province (ZR2015HM055). The URL is

http://jihlx.sdstc.gov.cn/STDPMS/ZR/

ProjectApplication/MyProjectList.aspx, and ZYY

received the funding; Laboratory supplies was

supported by the Grants from the key research and

development plan of Shandong Province

https://doi.org/10.1371/journal.pone.0177694
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177694&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177694&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177694&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177694&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177694&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177694&domain=pdf&date_stamp=2017-05-22
https://doi.org/10.1371/journal.pone.0177694
https://doi.org/10.1371/journal.pone.0177694
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://jihlx.sdstc.gov.cn/STDPMS/ZR/ProjectApplication/MyProjectList.aspx
http://jihlx.sdstc.gov.cn/STDPMS/ZR/ProjectApplication/MyProjectList.aspx


respond poorly [5, 6]. Therefore, novel therapies are urgently required to improve its prognosis.

Epidermal growth factor receptor (EGFR), which is over-expressed in about 50% of TNBCs, is

related to boosting tumor growth and increasing metastasis rates, and representing poor clinical

outcomes [7, 8]. EGFR inhibitors are considered as a hopeful strategy for cancer therapy in

diverse EGFR+ cancers clinically: Gefitinib (Ge, small molecules EGFR tyrosine kinases inhibi-

tor), which inhibits cancer growth mainly through targeting the adenosine triphosphate binding

sites in the cytoplasmic domain of EGFR, is widely applied in non-small-cell lung cancer

(NSCLC); Cetuximab (monoclonal antibody) was approved in colorectal cancer, etc. Unfortu-

nately, their efficacy for breast cancer is limited due to drug resistance [9]. Several lines of evi-

dence suggested that EGFR targeted therapy could induce cytoprotective autophagy that was

related to both innate and acquired drug resistance in different tumor cell lines [10–12].

Autophagy, an evolutionarily conserved lysosomes degradation process, degrades the

cytosolic contents into essential components for the recycling and the rebuilding of cellular

macromolecules [13]. It has been well acknowledged that the abnormal autophagic process

responsible for drug resistance could emerge in cells stressed by targeted drugs, so autophagy

inhibitor appeared to be a therapeutic approach for sensitizing target therapy [14–16]. Evi-

dences reported that blockage of autophagy increased the sensitivity of chemotherapy, radio-

therapy, and EGFR target therapy in NSCLC cells [17–19]. Chen et al reported that inhibiting

the cytoprotective autophagy induced by gemcitabine enhanced apoptosis in TNBC cells [20].

Cufi et al found that autophagy was involved in HER2-targeted therapy in breast cancer, and

was associated with drug resistance [21]. However, we found few report about EGFR target

therapy and autophagy in TNBC cells.

Mitochondria, playing a central role of ATP generation, is the key mediator involved in the

process of apoptosis [22]. When caspase protease was activated, it would digest numerous pro-

teins which can result in cell death, such as, cleaved CASP3, one of the final players in the apo-

ptosis signaling pathway [23, 24]. Usually, caspase can be activated by the mitochondrial,

which is the main process in the induction of apoptosis [25]. When mitochondrial were dam-

aged, mitochondrial outer membrane protein (MOMP) would be triggered. After the activa-

tion of MOMP, mitochondrial intermembrane space proteins, notably cytochrome C, would

be released. Cytochrome C, did not only plays an essential role in mitochondrial ATP genera-

tion but also was vital for caspase activation following its release from mitochondria [26].

In this study, we found that autophagy inhibitor such as 3-MA and Baf.A facilitated the effi-

ciency of Ge as evidence from cell proliferation inhibition by activating mitochondrial apopto-

sis in TNBC cells.

Materials and methods

Pharmacological reagents

Gefitinib (Ge) was purchased from Tocris Bioscience Company (Bristol, UK). 3-Methylade-

nine (3-MA) and bafilomycin A1 (Baf.A) were purchased from Selleckchem (Houston, USA).

Ge, 3-MA and Baf.A were dissolved in 100% dimethyl sulfoxide (DMSO; Fisher Scientific,

Pittsburgh, PA, USA). In all cases of cell treatment, the final DMSO concentration never

exceeded 0.2% in the culture medium. Stock solutions of all drugs were stored at −20˚C.

Cell culture and treatment

TNBC derived cells lines (MDA-MB-468 and MDA-MB-231) were purchased from the Cell

Bank of Shanghai Institute of Cell Biology, Chinese Academy of Sciences, and were cultured in

DMEM media (High glucose, HyClone Company, UT, United States) supplemented with 10%

fetal bovine serum (Sijiqing Company, Hangzhou, China) and 100 units/ml antibiotics
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(penicillin/streptomycin, Gibco/Invitrogen) in a humidified atmosphere of 5% CO2 at 37˚C.

Cells were seeded in cell culture plates and allowed to adhere overnight, subsequently sub-

jected to DMSO (0.2%), 3-MA (10 mM), Baf.A (1nM), Ge (5 μM), Ge (5 μM) +3-MA (10 mM)

and Ge (5 μM) +Baf.A (1nM) treatment for 48 hours, respectively.

Immunofluorescence (IF)

Cells were seeded on Glass Bottom Cell Culture Dishes (NEST, 801007) and then the cells

were exposed to treatments as indicated above for 48 hours. Cells were seeded with 4% para-

formaldehyde, incubated with 0.1% Triton X-100 for 30 min, and then incubated with anti-

LC3 antibodies (1:200) (CST, 2775S) overnight at 4˚C. Next, cells were incubated with Cy3-la-

beled Goat Anti-Rabbit IgG (H+L) (1:200) (Beyotime, A0516) for 1 hour, washed with PBS.

Then 4’, 6-diamidino-2-phenylindole (DAPI) (Biosharp, C1002) were used to stain nuclei.

Microscopy was done on a confocal laser microscopy (OLYMPUS, BX53).

CCK8 assay

The MDA-MB-468 and MDA-MB-231 cells were respectively plated in 96-well plates. After

treatment with the indicated concentration (0, 1.25, 2.5, 5, 10 and 20 μM) of Ge in present of

3-MA/Baf.A or not for 48 hours, CCK8 was added to each well, followed by incubation at

37˚C in 5% CO2 for 2 hours. Absorbance (A) was measured on a Bio-Rad 680 microplate

reader (Bio-rad 680, Bio-Rad Laboratories, Hercules, USA) at 570 nm, and the results were

reported relative to a reference wavelength of 630 nm. The cell viability rate was calculated

according to the following: Cell viability rate = (Adrug-treated/ADMSO) × 100%. The experiment

was repeated three times.

Colony formation assay

The cells were plated in 6-well plate and exposed to above drugs, and then incubated at 37˚C

for 14 days. Then the cells were fixed with 4% paraformaldehyde and stained with crystal vio-

let. The number of colonies (>50 cells) was counted. The colony formation rate was calculated

with the following formula: Survival Fraction = (Clones/Cell numbers) × 100%.

In vivo studies

All animal studies were approved by the Committee on the Ethics of Animal Experiments of the

Shandong Cancer Hospital (Permit Number: SDTHEC-201503041). Mice were housed accord-

ing to the guidelines outlined with full respect to the EU Directive 2010/63/EU for animal exper-

imentation. Forty healthy BALB/c female nude mice (4–6 weeks old) were purchased from the

HFK Bioscience Company (Beijing, China). The mice were fed with water and food in a specific

environment maintained at 23±1˚C. Animals were under isoflurane inhalation anesthesia when

they were injected every time to minimize suffering. Approximately 1×107 MDA-MB-468 cells

in 100 μl PBS were subcutaneously inoculated into the left flank of nude mice. Then we placed

animals in their cages to recover and monitored them until they were awake. Animals were

monitored every day including vitality, mental state, and skin color. When thirty mice’s tumor

xenografts had grown to nearly 100 mm3 in size, the mice were randomized into six treatment

groups with 5 mice every group as follows: vehicle, 3-MA, Baf.A, Ge, Ge+3-MA, and Ge+Baf.A.

3-MA and Baf.A were injected intratumorally, Ge was administered via oral gavage. The com-

bined treatment was the same as the single agent treatment. DMSO was administered to the

vehicle-treated group. There were 4 mice sacrificed after the oral gavage, and we thought it may

be resulted from the operation of the oral gavage. All mice with or without tumors were
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sacrificed under isoflurane inhalation anesthesia 15 days later after the drug treatment, and the

tumors were separated after completion of treatment. Size of local tumors were calculated by

measuring length and width every two days using a caliper, and the tumor volume (TV) was cal-

culated according to the formula: TV (mm3) = 1/2 × (length × square width).

Analysis of the cell cycle distribution

The cells were respectively seeded in 6-well plates overnight. Then the cells were treated with

the before mentioned treatment at indicated concentrations for 48 hours and then fixed in

70% of ethanol for 72 hours. After being washed twice with PBS, the cells were stained with

propidium iodide (PI) for 30 min. Flow cytometric analysis was performed on the FACS Cali-

bur (Becton Dickinson, USA). The data were analyzed using ModiFit software (Topsham, ME,

USA).

Western blot

The cells were plated and treated as described above for 48 hours, and then were lysed in cell

lysis buffer (Beyotime, P0013, Beijing, China) supplemented with 0.5 mM phenylmethanesul-

fonyl fluoride (PMSF, Beyotime, ST506). The total cellular protein concentration was deter-

mined with a BCA Protein Assay Kit (Thermo Fisher Scientific Inc., 23227, Rockford, USA).

The proteins were applied to sodium dodecyl polyacrylamide gel electrophoresis, and trans-

ferred onto a PVDF membrane (Millipore, Billerica, MA, USA). Then membranes were

blocked with 5% evaporated skimmed milk for 1 hour and probed overnight at 4˚C with the

following primary antibodies: cleaved-CASP 3 (9664), Cytochrome C (4280), Phospho-Chk1

(2348), Phospho-Chk2 (2197), Phospho-ATM (5883), Phospho-Histone H2A.X (9718), BAX

(2772), Bcl-2 (2870), (all 1:1000; Cell Signaling Technology, Danvers, MA, USA), antibody

against ACTB (1:2000; Zsbio, sc-53142, Beijing, China), followed by incubation with horserad-

ish peroxidase coupled secondary anti-mouse (Zsbio, ZB-2305) or anti-rabbit antibodies

(Zsbio, ZB-2301) for 1 hour at room temperature. The protein bands were visualized using

ECL blotting detection reagents (Beyotime, P0018), and developed and fixed onto x ray films.

ACTB was served as a loading control.

Ex vivo analysis of MDA-MB-468 xenografts tissue

The nude mice were euthanized before separation of tissue. Tumor tissues were fixed and pre-

pared as 5 μm paraffin sections on microscope slides for hematoxylin-eosin staining and

immunofluorescence, and they were dewaxed using routine techniques. The slides were incu-

bated in antigen retrieval buffer and boiled for 10 min, then cooled to room temperature.

After peroxidase blocking with 3% H2O2 for 15 min, specimens were blocked with goat serum

(Solarbio, China) in phosphate-buffered saline (PBS) for 15 min. Then cleaved-CASP 3 (9664),

(1:200; Cell Signaling Technology, Danvers, MA, USA) were carried out overnight at 4˚C.

After hematoxylin staining, dehydration, transparent, and sealing film, we observed the micro-

scope slides at 400 × microscope.

Statistical analysis

Data were analyzed using GraphPad Prism 6.02 (GraphPad Software, San Diego, CA, USA).

Significant differences between two samples were conducted by t-test. All statistical signifi-

cance was evaluated with data from at least three independent experiments. Data were pre-

sented as the mean ± SD. statistical tests employed at a significance level of 0.05 to determine

whether a significant difference existed.
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Results

Autophagy is activated by Ge, and inhibited by 3-MA or Baf.A in TNBC

cells

To evaluate Ge-induced autophagy in TNBC cells, we detected the LC3 expression with immu-

nofluorescence staining in MDA-MB-468 and MDA-MB-231 cells after their treatment with

Ge. As shown in Fig 1, we confirmed the inhibitory effect of 3-MA and Baf.A on Ge induced

autophagy by monitoring the protein level of LC3 with or without presence of 3-MA or Baf.A.

As expected, 3-MA (blocking the form of autophagosome) decreased the numerous of autop-

hagosomes while Baf.A (blocking the fusion of lysosomes and autophagosome) lead to an

accumulation of autophagosomes. Both 3-MA and Baf.A involved in the autophagy inhibited

reaction. Taken together, our data indicated that autophagy was accompanied by Ge therapy,

which might contribute to the resistance of Ge.

Autophagy inhibitor facilitates cytotoxicity of Ge in TNBC cells in vitro

In order to detect the facilitation of autophagy inhibitor on Ge in breast cells, we employed

and exposed MDA-MB-231 and MDA-MB-468 cell lines to treatment with control (Dimethyl

Sulphoxide, DMSO), 3-MA, Baf.A, Ge, Ge+3-MA, Ge+Baf.A, respectively. As shown in Fig

2A, Ge inhibited the cell viability of MDA-MB-468 and MDA-MB-231 cells more potently

when combined with 3-MA or Baf.A than Ge alone. In addition, a clonogenic assay was also

performed and demonstrated that colony formation was suppressed significantly by combina-

tion of Ge and autophagy inhibitor, as evidenced by a lower clonogenic survival rate, whereas

Ge alone slightly weaken colony formation in all detected cells (Fig 2B and 2C). These results

supported that autophagy inhibitor combined with Ge enhanced the inhibition of cells in

growth and colony formation.

Autophagy inhibitor facilitates cytotoxicity of Ge in TNBC xenografts in

vivo

To confirm the facilitation of autophagy inhibition on Ge in vivo, xenografts derived from

MDA-MB-468 were constructed. As expected, tumors administrated with combination of

Fig 1. Autophagy is activated by Ge and inhibited by 3-MA or Baf.A in TNBC cells. Cells were exposed with 3-MA (10 mM) and

Baf.A (1 nM) alone or with gefitinb (5 μM) for 48 hours, and the inhibitory were confirmed by immunofluorescence staining. LC3

puncta in the cells were detected by immunofluorescence under confocal laser microscopy in MDA-MB-231 (A) and MDA-MB-468

(B).

https://doi.org/10.1371/journal.pone.0177694.g001
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Fig 2. Autophagy inhibitor facilitates cytotoxicity of Ge in TNBC cells in vitro. (A) MDA-MB-231 and MDA-MB-468 cells were

treated with 0, 1.25, 2.50, 5.00, 10.00, 20.00 μM Ge alone or combined with 3-MA (10 mM) or Baf.A (1 nM) respectively for 48 hours,

DMSO acted as the control, and then subjected to CCK8 assay. Absorbance value was calculated and standardized to DMSO group.

Three independent experiments were performed. (B) The above cells were treated with DMSO (0.2%), 3-MA (10 mM), Baf.A (1 nM), Ge

(5 μM), Ge (5 μM) +3-MA (10 mM) and Ge (5 μM) +Baf.A (1 nM), DMSO acted as the control, and subjected to cell colony formation

assay. (C) Cell surviving fraction were calculated and presented as mean ± SD; *p < 0.05. Three independent experiments were

performed.

https://doi.org/10.1371/journal.pone.0177694.g002
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autophagy inhibitor and Ge grew slower than those with monotherapy (Fig 3A). Accordingly,

the weight and size of separated tumors were smaller in combined therapy groups than those

in monotherapy groups (Fig 3B, 3C and 3D), indicating combined treatment of autophagy

inhibitor with Ge were substantially effectively than that of Ge treatment alone, along with the

results in vitro. Taken together, the date provides further understanding with the cytotoxic

effect of autophagy inhibitor on Ge against TNBC cells in vivo.

Autophagy inhibitor facilitates Ge induced G0/G1 arrest and DNA

damage repair pathway activation in TNBC cells

Cell-cycle distribution was analyzed to verify the synergistic effect of autophagy inhibitor and

Ge by flow cytometry. MDA-MB-231 and MDA-MB-468 were exposed with DMSO, 3-MA,

Baf.A, Ge, Ge+3-MA and Ge+Baf.A for 48 hours, respectively. As shown in Fig 4, combined

treatment (Ge+3-MA, or Ge+Baf.A) increased the population at the G0/G1 phase and

Fig 3. Autophagy inhibitor facilitates the sensitivity of Ge in TNBC xenografts in vivo. MDA-MB-468 xenograft tumor was

established and treated as follows: DMSO, 3-MA (1.0 mg/kg), Baf.A (1.0 mg/kg), Ge (100 mg/kg), Ge (100 mg/kg) +3-MA (1.0 mg/kg) and

Ge (100 mg/kg) +Baf.A (1.0 mg/kg). 3-MA and Baf.A were injected intratumorally, Ge was administered via oral gavage. Tumor growth

curves (A), tumor weight (B), tumor image (C), and nude mouse image (D) with different treatment were detected. The results are shown

as means ± SD; *p < 0.05.

https://doi.org/10.1371/journal.pone.0177694.g003
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decreased the population at the G2/M and S phase in all tested cells compared to Ge alone.

These results revealed that the combined treatment arrested MDA-MB-231 (Fig 4A and 4B)

and MDA-MB-468 (Fig 4C and 4D) cell cycle at the G0/G1 phase. ATM recruited to the dam-

aged site when DNA was damaged. The activated of ATM phosphorylated histone H2AX

(yielding γ-H2AX) and transmited the DNA damage related signaling molecules, including

phosphorylated Chk1 and Chk2 [27]. As shown in Fig 5, western blot showed that DNA dam-

age related molecular such as Phospho-Chk1, Phospho-Chk2, Phospho-ATM, Phospho-His-

tone H2AX were overexpressed in the combined groups.

Autophagy inhibitor facilitates Ge induced cell death via mitochondrial

apoptosis pathway

In order to determine whether tumor cells treated with above drugs underwent cell death, we

performed western blot and immunohistochemical assay to detect changes of protein expres-

sion in apoptosis related pathway. More positive results were showed by immunohistochemi-

cal assay when treated with combined drug other than treated with Ge alone in MDA-MB-468

xenograft (Fig 6B and 6C). To further confirm the underlying apoptosis signal pathway, we

detected apoptosis related gene expression in MDA-MB-231 and MDA-MB-468 cells. As

shown in Fig 6A, combined drugs treatment led to an increase in expression of cleaved CASP

3, indicating it might induce cell death in a caspase-dependent manner. Notably, Cytochrome

C and the rate of BAX/Bcl-2 were elevated in response to combined drugs treatment, all these

genes were vital markers involved in mitochondrial apoptosis pathway, indicating that mito-

chondrial apoptosis was activated and played a prominent role in the process that autophagy

inhibitor facilitates Ge induced cell death.

Discussion

Ge, a small-molecule TKI against EGFR, inhibits cancer growth mainly through targets the

adenosine triphosphate binding sites in the cytoplasmic domain of EGFR [28–30]. Although

Ge had been widely used in EGFR+ NSCLC patients, unfortunately, it demonstrated little

effectiveness in treating breast cancer [31, 32]. The interactions of EGFR downstream path-

ways, including PI3K/Akt and ERK1/2 pathway, led to continued activation of EGFR down-

stream molecular and insensitivity toward TKI [33]. Intrinsic resistance to Ge remains a main

obstacle in the therapy of TNBC. In this research, we proposed autophagy inhibitor could facil-

itate the sensitivity of Ge in EGFR+ TNBC cells.

Insufficient blood supply and nutritional deprivation lead to cell death in established

tumors growth. Autophagy is a self-degradation process that promote tumor cell survival

under stress through degrading and recycling intracellular constituents to provide cells with

energy [34, 35]. Autophagy also contributes to the survival excellence of cancer cells under

therapeutic stress and facilitates their drug resistance in diverse types of cancer. EGFR targeted

therapy led to varied autophagic response which plays a protective role and is associated with

resistance for established tumors. Evidence reported that small molecule EGFR-TKI targeting

EGFR can increase autophagy in head and neck squamous cell carcinoma (HNSCC) cells,

ovarian cells, and bladder cancer cells [36–38]. The inhibition of autophagy might be a treat-

ment strategy to overcome drug resistance of TKI in EGFR expression patients [39–43]. In our

study, 3-MA (an early stage autophagy inhibitor) as well as Baf.A (a late stage autophagy inhib-

itor), both enhanced gefitinib-induced cell death. Our data showed that the combined groups

with autophagy inhibitor and Ge seemed to cause mitochondrial dysfunction accompanied

with Cytochrome C expression, which activated caspase signaling pathways.
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Mitochondria, which plays a crucial role in apoptosis signal transduction process, regulates

autophagy via multiple mechanisms [44]. In turn, defective autophagy enhances the accumula-

tion of damaged mitochondria, and appeared to induce apoptosis via mitochondrial DNA

damage [45–47]. Evidence reported that defective mitochondrial could lead to DNA damage,

which then would activate ATM. DNA damage signal was transmitted by ATM to downstream

targets including p-Chk1 and p-Chk2 which played an important role in cell cycle regulation

[48–51]. When autophagy was blocked, damaged mitochondria would release ROS and induce

of G0/G1 cell cycle arrest [26, 52], causing oxidation of DNA and resulting in DNA damage.

In this study, we found that as the measure molecular of DNA damage, the expression of γ-

H2AX, ATM, p-Chk1 and p-Chk2 were increased when Ge and autophagy inhibitor

Fig 4. Autophagy inhibitor facilitates Ge induced G0/G1 arrest in TNBC cells. Cells were treated with DMSO, 3-MA, Baf.A, Ge, Ge

+3-MA and Ge+Baf.A for 48 hours. The cycle distributions of MDA-MB-231 and MDA-MB-468 cells were analyzed.

https://doi.org/10.1371/journal.pone.0177694.g004
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combined. Our findings confirmed that the synergistic treatment with Ge and autophagy

inhibitor results in the G0/G1 cell cycle arrest of tumor cells when DNA is damaged beyond

repair [53].

Cytochrome C release and BAX activation with the process of mitochondrial damage, are

considered as the key components in mitochondrial apoptosis [54, 55]. The Bcl-2 family pro-

teins include the pro-apoptotic Bcl-2 proteins (e.g., BAX and BAK) and the anti-apoptotic Bcl-

2 proteins (e.g., Bcl-2 and Bcl-xL). The pro-apoptotic Bcl-2 proteins play a key role in the

Fig 5. Autophagy inhibitor facilitates DNA damage in TNBC cells. Cells were treated with DMSO, 3-MA,

Baf.A, Ge, Ge+3-MA and Ge+Baf.A for 48 hours. Phospho-ATM, Phospho-Chk1, Phospho-Chk2, γ-H2AX,

and ACTB of MDA-MB-231 and MDA-MB-468 cells were analyzed by western blot.

https://doi.org/10.1371/journal.pone.0177694.g005

Fig 6. Autophagy inhibitor facilitates Ge induced cell death via mitochondrial apoptosis pathway. The above cells were treated with

DMSO, 3-MA, Baf.A, Ge, Ge+3-MA and Ge+Baf.A for 48 hours and were subjected to western blot using following antibodies, Cytochrome

C (Cyto C), cleaved CASP3, BAX, Bcl-2 and ACTB (A). Hematoxylin-eosin staining (B) and immunohistochemical assays (anti-cleaved

CASP 3) (C) were performed in MDA-MB-468 xenograft.

https://doi.org/10.1371/journal.pone.0177694.g006
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regulation of MOMP and apoptosis by combination with the Bcl-2 homology domain-only

(BH3-only) subclass [56]. The intrinsic apoptosis pathway, as known as mitochondrial apopto-

sis, begins with BH3 protein induction or activation, which leads to the inactivation of Bcl-2

and the activation of BAX and BAK. Cytochrome C release and mitochondrial fission were

enhanced with the activation of BAX and BAK, which results in the activation of apoptotic

protease activating facter-1 (APAF1) into an apoptosome and activates the caspase dependent

apoptosis [57, 58]. In our study, the proteins associated with mitochondrial apoptosis, includ-

ing Cytochrome C, BAX, and cleaved caspase-3 were found in the combined treatment with

Ge and autophagy inhibitor. Taken together, our findings indicated the involvement of the

mitochondrial apoptosis pathway in the process that autophagy inhibitor enhanced the sensi-

tivity of Ge in TNBC cells.

Conclusions

Collectively, we have shown that autophagy inhibitor facilitates the cytotoxicity of Ge in

TNBC cells. Autophagy inhibitor appears to be useful as a potential candidate for TNBC tar-

geted therapy.
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