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Abstract

Dams have been a fundamental part of the U.S. national agenda over the past two hundred

years. Recently, however, dam removal has emerged as a strategy for addressing aging,

obsolete infrastructure and more than 1,100 dams have been removed since the 1970s.

However, only 130 of these removals had any ecological or geomorphic assessments, and

fewer than half of those included before- and after-removal (BAR) studies. In addition, this

growing, but limited collection of dam-removal studies is limited to distinct landscape set-

tings. We conducted a meta-analysis to compare the landscape context of existing and

removed dams and assessed the biophysical responses to dam removal for 63 BAR stud-

ies. The highest concentration of removed dams was in the Northeast and Upper Midwest,

and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and

low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–

1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also

have these characteristics, suggesting that our understanding of responses to dam remov-

als is based on a limited range of landscape settings, which limits predictive capacity in

other environmental settings. Biophysical responses to dam removal varied by landscape

cluster, indicating that landscape features are likely to affect biophysical responses to dam

removal. However, biophysical data were not equally distributed across variables or clus-

ters, making it difficult to determine which landscape features have the strongest effect on

dam-removal response. To address the inconsistencies across dam-removal studies, we
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provide suggestions for prioritizing and standardizing data collection associated with dam

removal activities.

Introduction

Dams have been a fundamental part of the U.S. national agenda and economic-development

ideology over the past two hundred years because of their essential role in flood control,

municipal water supply, power generation, and irrigation. In the past several decades, how-

ever, there has been a paradigm shift in dam and watershed management—driven by environ-

mental, economic, and engineering concerns—leading to the removal of obsolete, unsafe, and

economically non-viable dams emerging as a significant management and restoration strategy.

This new agenda has led to the removal of> 1,000 dams in the past few decades [1, 2], yet sci-

entific assessment of the effects of dam removal lags the rate of removal [2], a theme typical of

other river restoration efforts nationally [3–5]. Though the scientific community has been

studying various aspects of dam removal in limited capacity for the last few decades, there is

still a need to provide resource managers with basic information about the likely effects of dam

removal that could affect the cost, planning process, permit requirements, and monitoring

components of dam removal projects. Moreover, dam removal studies have not been con-

ducted across a broad enough range of landscapes to establish a predictive framework linking

the context of the dam location to anticipated outcomes affecting river hydrology, channel

morphology, sediment budgets, water quality, and ecological trajectories.

General lessons regarding river response to dam removal, however, are slowly emerging.

These lessons can help identify fundamental operative processes and biophysical responses to

dam removal and further enlighten management decisions [6–8]. Multiple factors drive the

variability in geomorphic responses to dam removal, including dam size; removal method; res-

ervoir size and shape; sediment volume, cohesiveness, and grain size; and released sediment

volume relative to background sediment flux [1, 6, 9, 10]. Contrary to some perceptions,

Major et al. [11] and East et al. [12] found that river channels can stabilize relatively quickly

after dam removal—within months or years, not decades—approaching pre-dam emplace-

ment morphology.

Ecological response trajectories after dam removal are difficult to generalize because

response rates can be highly variable across taxa [13] and can be affected by past and current

conditions [14–16]. In addition, most dam removal studies are short in duration and focus on

a single response metric [2]. Despite these limitations, some patterns have emerged from the

literature: there may be a lag between geomorphic and ecological responses [17, but see 18];

aquatic species typical of flowing rivers (lotic habitats) tend to replace stillwater (lentic) com-

munities in the reservoir after dam removal [15]; and upstream fish migration that was for-

merly impeded by the dam may occur swiftly after dam removal in some cases [19–22].

Biophysical river responses to dam removal are affected by the surrounding landscape, but

these effects are poorly understood [15, 23] because the literature consists mainly of specific

case studies focused on short-term responses with limited comparison across regions. Without

understanding a site’s landscape context (i.e., location within a watershed or regional and local

patterns of climate, geology, and vegetation), it is difficult to interpret the broad applicability

or local limitations of the biophysical responses to dam removal [24]. As a result, our funda-

mental understanding of long-term trajectories and broad-scale patterns of ecological, geo-

morphic, and hydrologic responses to dam removal is lacking. Furthermore, the breadth (or

lack thereof) of published studies is directly tied to the expertise of researchers in each case
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study; truly interdisciplinary studies are rarely conducted for the same dam removal [2], and

studies that integrate the trajectories of physical and biological responses are even more rare

[25, but see 26].

To assess the state of science for understanding outcomes to dam removal and to determine

the representativeness of dam removal case studies compared to the national dam population,

we conducted a meta-analysis examining the landscape context—including natural and

anthropogenic factors—of more than 50,000 existing dams and nearly 900 removed dams in

the conterminous U.S. We also reviewed 104 published studies [27] with before- and after-

removal (BAR) data from 63 dam removals to analyze the influence of landscape context in

driving the biophysical response to dam removal. Because removals have occurred in settings

where the human footprint may influence the response trajectory, we characterized landscape

context as a combination of natural (e.g., ecoregion, watershed size) and anthropogenic (e.g.,

population density, transportation infrastructure) attributes. We used this approach to assess

the landscape context of dams and removed dams; examine the biophysical response of river

systems in different landscape settings; and highlight landscape contexts where additional

research is needed. In doing so, we attempt to unpack “environmental context” into more spe-

cifically defined statistical associations but with the full knowledge that we are working with

limited and geographically biased data. Finally, propose approaches for standardizing elements

of dam-removal research that could increase our understanding of biophysical responses and

help guide watershed management and restoration efforts. This type of comprehensive review

has not been reported and our study is the first to formally examine the landscape context of

dam removals with linked geospatial data at a national scale in the U.S. We also had access to a

unique dam removal database compiled by American Rivers that allowed us to examine the

geographic context for a larger population of dam removals than has been previously publicly

available.

Methods

We compiled geographic information for 50,772 existing dams listed in the National Anthro-

pogenic Barrier Dataset (NABD) [28], a subset of dams from the 2009 National Inventory of

Dams (U.S. Army Corps of Engineers– http://nid.usace.army.mil/cm_apex/f?p=838:12,

accessed July 2010). We gathered the same information for the 874 removed dams included in

the USGS Dam Removal Information Portal (DRIP– https://www.sciencebase.gov/drip/;

accessed 1 July 2016). All existing and removed dams were linked to the National Hydrogra-

phy Dataset Plus Version 1 (NHDPlusV1), allowing us to gather additional information from

the National Fish Habitat Partnership’s (NFHP) 2015 National Assessment of Fish Habitat

Condition Database [29, 30] and Anthropogenic Disturbance Database [31], as well as land-

cover data summaries from the National Land Cover Database (NLCD– http://www.mrlc.gov/).

From these sources, we identified natural and anthropogenic landscape-context factors in the

river segment for each existing and removed dam (Table 1). We also examined the distribution

of dams and dam removals in relation to Environmental Protection Agency (EPA) Level III

Ecoregions, which characterize nation-wide landscape characteristics based on geology, land-

forms, soils, vegetation, climate, land use, wildlife, and hydrology [32] (https://www.epa.gov/

eco-research/ecoregions; accessed 30 January 2017).

We generated summary statistics using these landscape characteristics for existing and

removed dams to determine how representative removals have been of the overall dam popu-

lation. We reduced the number of individual landscape factors used in our analyses because

some of the variables were used to derive a habitat condition index (HCI) [29, 30], an index

based on regionally specific responses of stream fishes to anthropogenic landscape factors. We

Landscape context of dam removal and river response
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Table 1. Landscape variables.

Data obtained from the National Fish Habitat Partnership (version 2015)

Data Type Data description

*Catchment slope Mean catchment slope (degrees)

*Catchment elevation Mean catchment elevation (m)

*Groundwater index Percent groundwater contribution to stream baseflow

*Precipitation Mean annual precipitation (mm)

*Air temperature Mean annual air temperature (Co)

*Habitat Condition Index Index scoring the risk of habitat degradation for fish (scored as 0–5, with 0

representing very low risk of habitat degradation/very high fish habitat and 5

representing very high risk of habitat degradation/very poor fish habitat)

Population density Census 2000 average population per catchment density (average population

count/km2)

Road crossings Road crossing density in the catchment (#/km2)

Toxic Release sites Toxic Release Inventory (EPA) sites in the catchment (#/km2)

Superfund sites EPA Superfund National Priority in the catchment (#/km2)

NPDES sites National Pollutant Discharge Elimination System sites in the catchment

(#/km2)

Water withdrawal Total annual water withdrawal (million gallons per year–MGY)

Agriculture water

withdrawal

Annual agriculture water withdrawal (MGY)

Domestic water withdrawal Annual domestic water withdrawal (MGY)

Industrial water withdrawal Annual industrial water withdrawal (MGY)

Thermoelectric water

withdrawal

Annual thermoelectric water withdrawal (MGY)

Elevation at dam location Elevation above sea level at the base of the dam location (m)

Data obtained from the National Land Cover Database (version 2006)

Data Type Data description

Open water Percent of catchment

Perennial snow/ice Percent of catchment

Developed open space Percent of catchment

Developed low intensity Percent of catchment

Developed medium

intensity

Percent of catchment

Developed high intensity Percent of catchment

Barren land Percent of catchment

Deciduous forest Percent of catchment

Evergreen forest Percent of catchment

Mixed forest Percent of catchment

Shrub/Scrub Percent of catchment

Grassland/Herbaceous

plants

Percent of catchment

Pasture/Hay Percent of catchment

Cultivated crops Percent of catchment

Woody wetlands Percent of catchment

Emergent herbaceous

wetlands

Percent of catchment

Landscape data obtained for existing and removed dams from the National Fish Habitat Partnership (NFHP)

and the National Land Cover Database (NLCD). Landscape data were summarized within network

catchments for the stream reaches immediately above the dams.

* indicates variables that were used in our analyses.

https://doi.org/10.1371/journal.pone.0180107.t001
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excluded the variables used to create that index—including land cover, population density,

road density, and the number of dams, mines, and point-source pollution sites—from subse-

quent analyses to avoid overrepresentation. The HCI uses a ranking of 1 through 5, with low

scores corresponding to low risk of fish-habitat degradation and high scores to high risk of

fish-habitat degradation.

We used seven variables—mean watershed slope, elevation, and area; precipitation; air tem-

perature; ground water input; and HCI—in a Principal Components Analysis (PCA) to deter-

mine which landscape variables best explained the variability in landscape context among dam

removals. Because landscape variables were measured using a variety of units, all variables

were normalized prior to analysis (for each variable, the variable mean was subtracted from

the value and then divided by the standard deviation). We also conducted a cluster analysis

(using a resemblance matrix based on Euclidean distance) to determine whether dam removals

formed significantly distinct clusters based on landscape context. We used similarity profile

analysis (SIMPROF) to assign groupings for all dam removals and a subset of dam removals

with BAR studies that had statistically different (p� 0.01) landscape characteristics [33].

To determine if biophysical response to dam removal varied with landscape context, we

selected a subset of dam removals from the DRIP database that had BAR data upstream of the

reservoir, within the reservoir, and/or downstream of the dam site. When we accessed the

database (November 2016), it contained information from 104 BAR studies from 63 dam

removals (S1 Table). For each study, we classified the response to dam removal categorically

for each biophysical variable as “increased,” “no change,” or “decreased.” We did not control

for time frame of response (e.g., weeks to years after dam removal) following dam removal

because the duration of studies was highly variable. For each variable (e.g., turbidity), we tallied

the number of each response type, irrespective of methodological differences. We recognize

that this way of analyzing the data resulted in a loss of resolution and somewhat limits our abil-

ity to compare across dam removals, but vagaries among studies required a level of generaliza-

tion to assemble data coherently.

Based on the clusters determined in our SIMPROF analysis, we examined biophysical

responses to dam removal within each geographic cluster having more than three dams and

qualitatively compared the responses across geographic clusters. We could not conduct robust

quantitative analyses on landscape context and biophysical responses because we were limited

by the number of removals within each cluster, as well as by the overlap of data types among

studies (S1 Table). We used PRIMER (v. 7, Primer Ltd.) and QGIS (v. 2.8.1) for all our analyses

[34, 35].

Results

The densities of existing and removed dams, and studied dam removals varied greatly across

the U.S. (Fig 1) [2]. The highest concentrations of existing dams were in the Southeastern

Plains, Central Great Plains, Piedmont, and Northwestern Great Plains EPA Level III Ecore-

gions (Fig 2, S2 Table), predominantly on headwater streams (stream order = 1) that had small

upstream watershed areas (< 10 km2) and low mean catchment slope (< 5 degrees) (Fig 3A–

3C). Many were also located in areas where the HCI of the upstream catchment was very high,

indicating an anthropogenic stressor(s) causes significant fish habitat degradation in those

areas (Fig 3D). In contrast, the highest concentrations of dam removals have occurred in the

Ridge and Valley, Northern Piedmont, Northeastern Highlands, and Northeastern Coastal

Zone Ecoregions (Fig 2, S2 Table). Unlike existing dams, dam removals have occurred in a

range of stream sizes, with a nearly equal number coming out of stream orders 1–4; and in

river systems where the upstream catchment area is large, up to two orders of magnitude

Landscape context of dam removal and river response
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a.

b.

c.

Fig 1. Geography of dams. U.S. distribution of (a) existing dams listed in the National Anthropogenic Barrier

Dataset (n = 50,772); (b) removed dams from the Dam Removal Inventory Project (n = 874); (c) removed

dams with before-after studies (n = 63).

https://doi.org/10.1371/journal.pone.0180107.g001
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greater than that of existing dams (Fig 3B). Similar to existing dams, removed dams were

located in watersheds with a low mean catchment slope (Fig 3C). Nearly 40% of removed

dams were in watersheds with a low or very low risk of upstream habitat degradation (i.e., very

low or low HCI score), and just over 30% of existing dams that were located in areas with a

very high risk of habitat degradation (Fig 3D).

The landscape context of dam removals with BAR studies also differed in many respects

from that of existing or removed dams (Figs 2 and 3). BAR studies were most numerous in the

Eastern Corn Belt Plains (Ohio), Driftless Area (southern Wisconsin), Cascades (western U.

S.), Southeastern Wisconsin Till Plains, and Piedmont Ecoregions (Fig 2, S2 Table). Except for

the studies from the Eastern Corn Belt Plains and Cascades Ecoregions, these studies repre-

sented fewer than 13% of the removals in those areas (S2 Table). Studied dam removals have

occurred predominantly on larger streams and in watersheds with low mean catchment slope

and moderate to low risk of habitat degradation (HCI > 3) (Fig 3D).

We identified several notable spatial patterns in the landscape context of dam removals

with respect to their distribution throughout the U.S. (Fig 4). The clusters of removals in the

upper Midwest and upper New England generally occurred in large, low elevation, low slope

watersheds, many with degraded fish habitat (Fig 4A–4D). In contrast, removals in the western

U.S. were in high elevation, steep, small watersheds with predominantly moderate- to low-risk

of habitat degradation (Fig 4A–4D). We identified a dearth of dam removals in central and

south-central areas of the continental U.S., despite this area having one of the highest concen-

trations of existing dams (i.e., Central Great Plains).

For the seven variables we analyzed for all dam removals, the cluster analysis revealed 57

unique clusters of dam removals based on their landscape characteristics (Fig 5A). Although

many of these clusters were concentrated in specific geographic regions, some removals that
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had similar landscape characteristics were widely distributed across the U.S. (Fig 6A). The

PCA suggested the main factors differentiating the dam removal clusters were watershed eleva-

tion, groundwater input, and air temperature on principal component axis 1 (PC1); watershed

area, watershed slope, and precipitation on PC2; and groundwater input, watershed elevation,

and watershed slope on PC3 (Table 2); these three PCA axes explained 66% of the variation in

landscape characteristics. Studied dam removals were represented in 36 of the 57 geographic

clusters (Fig 5B); and BAR studies were conducted in 32 of the 57 geographic clusters (Fig 5C).

Although over half of the geographic clusters had at least one BAR study, clusters in the lower

right quadrant of the PCA axes had the greatest number of studies, representing large, low-
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https://doi.org/10.1371/journal.pone.0180107.g003
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elevation, and low-slope watersheds. Few BAR studies were conducted in small, high-eleva-

tion, high-slope watersheds (Fig 5C).

We conducted a separate cluster analysis based only on the landscape variables for BAR

studies. This reduced analysis revealed eight significantly distinct clusters of removals, some

b.
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Fig 4. Spatial distribution of landscape characteristics. Spatial distribution of landscape characteristics for all removed dams: (a) upstream watershed

elevation (m), (b) upstream watershed area (km2), (c) upstream watershed slope (degrees), and (d) habitat condition index (risk of habitat degradation).

https://doi.org/10.1371/journal.pone.0180107.g004
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with a wide geographic distribution (Fig 6B). Seven removals could not be categorized because

data were not available for all landscape variables (Table 3). We used these new clusters to look

at patterns of biophysical responses to dam removal.

Parameters reported most frequently across all BAR studies included sediment grain size,

water temperature, aquatic invertebrates, and fish (Table 4). However, not all of these parame-

ters were reported above the dam, within the reservoir, or downstream of the dam. For nearly

all of the biophysical parameters we characterized, measurements were most frequently
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Fig 5. Principal Components Analysis results. Principal Components Analysis results for (a) all dam removals (57 clusters); (b) all studied dam removals

(36 clusters); and (c) before-after studied dam removals (32 clusters). The number of clusters in (a) was determined from a cluster analysis; clusters in (b)

and (c) show how many original clusters were represented in those subsets.

https://doi.org/10.1371/journal.pone.0180107.g005
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Fig 6. Spatial distribution of landscape clusters. (a) Spatial distribution of clusters based on landscape

characteristics for all dam removals. Upper Midwest and Northeast sections magnified to show details. (b)

Spatial distribution of clusters based on landscape characteristics of before-after studied dam removals.

https://doi.org/10.1371/journal.pone.0180107.g006
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reported downstream of the removed dam (Fig 7). For example, approximately half of the

BAR studies reported grain size measurements downstream of the former dam, while only

33% reported measurements within reservoir reaches and 25% in upstream reaches. Biotic var-

iables were more consistently reported for all three river reaches than physical variables. Some

variables were quantified using different metrics, particularly nutrients, aquatic invertebrates,

and fish (Table 5).

We could not formally test for differences in biophysical responses to dam removal because

variables were not consistently reported across all dam removals in the eight geographic clus-

ters (Fig 8). Water quality variables, including phosphate, nitrate, water temperature, and dis-

solved oxygen, were measured in only three of eight geographic clusters. In contrast, sediment

Table 2. Principal component loadings.

PC 1 PC 2 PC 3 PC 4 PC 5

Eigenvalue 2.12 1.50 1.01 0.87 0.69

% Variation 30.3 21.4 14.4 12.5 9.9

Variables:

Area -0.55 -0.491 0.062 -0.787 -0.351

Slope -0.339 0.473 0.461 -0.335 0.103

Elevation -0.547 0.006 0.458 0.106 0.096

Groundwater -0.436 -0.084 -0.568 -0.053 0.275

Temperature 0.493 0.280 0.218 -0.002 -0.275

Precipitation 0.146 0.579 -0.343 -0.484 0.260

Habitat condition -0.358 0.340 -0.294 0.140 -0.799

Principal component loadings for the full PCA on all removed dams.

https://doi.org/10.1371/journal.pone.0180107.t002

Table 3. Landscape clusters for before and after-removal studies.

Cluster membership Dam name and location

a (Mountain West) Chiloquin, OR; Mystic, MT

b (West) Edwards, ME; Gold Ray, OR; Milltown, MT; Savage Rapids, OR

c (Pacific Northwest) Condit, WA; Dinner Creek, OR; Elwha, WA; Hemlock, WA; Marmot,

OR

d (Arizona) Fossil Creek, AZ

e (Upper Midwest) Big Spring, WI; Boulder Creek (Lower & Upper), WI; Dexter, MI; Fort

Covington, NY; Hinkletown, PA; LaValle, WI; Nashville, MI; Oak

Street, WI; Rockdale, WI; Sandstone, MN; Shopiere, WI; Stronach,

MI; Waterworks, WI; Woolen Mills, WI

f (New England) Brownsville, OR; Franklin Mills, PA; Good Hope, PA; Hellberg’s, PA;

Manatawny Creek, PA; McCormick-Saeltzer, CA; Merrimack Village,

NH; Mill, NH; Pawtuxet Falls, RI; Shearer, OR; Simkins, MD; Sodom,

OR; Woodside (I & II), SC; Woolen Mills, VA; Zemko, CT

g (Midwest) Appleton, MN; Brewster Creek, IL; Embrey, VA; Fifth Avenue, OH;

Main Street, OH; Munroe Falls, OH; North Avenue, WI; South

Batavia, IL; St. John, OH

h (Southeast) Carbonton, NC; Dead Lake, FL; Lowell, NC; Murphy Creek, CA

No cluster assigned due to missing

landscape data

Central Avenue, OH; Homestead, NH; Off Billington Street, MA;

Pelham, MA; Quaker Neck, NC; River Street, OH; Secor, OH

Significant clusters for before- and after-removal studies. Locations are indicated with abbreviations for

states in the U.S. The cluster names in parentheses denote the region where a majority of the removals in

each cluster were located.

https://doi.org/10.1371/journal.pone.0180107.t003
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grain size and fish species data were reported in all clusters (Fig 8). Physical responses to dam

removal tended to be more consistent across geographic clusters than either water quality or

ecological parameters. Sediment grain size tended to remain mostly unchanged in upstream

reaches, coarsened in reservoir reaches, and fined downstream after dam removal; turbidity

Grain size Turbidity Suspended
sediment

Phosphorus Nitrogen Temperature Dissolved
oxygen

Benthic
invertebrates

Fish 
species

Fish
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Fig 7. Before- and after-removal biophysical study parameters. Number of dam removals with upstream, reservoir, and downstream studies that

reported the before- and after-removal responses of physical, water quality, and biological parameters.

https://doi.org/10.1371/journal.pone.0180107.g007

Table 5. Measurement metrics.

Phosphate Nitrate Aquatic Invertebrates Target Fish Fish Assemblage

Total = 5 Total = 2 Abundance = 7 Abundance = 22 Abundance = 2

Dissolved = 4 Dissolved = 7 EPT abundance = 6 CPUE = 2 Biomass = 1

Particulate = 1 Particulate = 1 % EPT = 2 # of redds = 1 Composition = 7

SRP = 2 Diversity = 4 Size = 1 Diversity = 9

MRP = 1 Richness = 7 Richness = 6

HBI score = 2 IBI = 2

Multiple metrics were used to measure the same parameter in before-after dam-removal studies. For each

metric, the type of measurement reported is listed, followed by the number of dam removals using each

metric. SRP–soluble reactive phosphorus; MRP–Molybdate reactive phosphorus; EPT–Ephemeroptera,

Plecoptera, Trichoptera assemblage; HBI–Hilsenhoff biotic index; IBI–Index of biotic integrity.

https://doi.org/10.1371/journal.pone.0180107.t005
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Fig 8. Biophysical responses to dam removal. Biophysical response for all before- and after-removal

studies (top row) and within each distinct geographic cluster.

https://doi.org/10.1371/journal.pone.0180107.g008
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did not change upstream or in the reservoir reach but increased downstream; and suspended-

sediment concentration increased downstream after dam removal. On the basis of limited

measurements, water quality responses varied by geographic cluster, but many locations

showed no change in water quality parameters in any of the three river reaches. In the Upper

Midwest and New England clusters, however, phosphorus concentration (inclusive of all

reported phosphate metrics listed in Table 5) increased downstream after dam removal, while

nitrate concentration increased in the reservoir reach and downstream after dam removal in

the Southeast cluster. Water temperature did not change in any river section after dam re-

moval in a majority of studies, but after three removals—including two large removals in the

Pacific Northwest—water temperature decreased downstream of the removed dams. A de-

crease in water temperature in the reservoir reach after dam removal was observed in only two

of ten studies (Fig 8), yet a decrease in water temperature in the reservoir reach is assumed to

be a typical response following dam removal [36].

Biological responses to dam removal were more variable than physical and water quality

responses, particularly downstream of the dam. Aquatic invertebrate and fish (single species or

Table 6. Anthropogenic landscape context.

Cluster (HCI

score)

Urban

(%)

Forested

(%)

Agriculture

(%)

Population

density (#/km2)

Road

crossings

(#/km2)

Water

withdrawal

(MGY)

Phosphorus

input (kg/km/yr)

Nitrogen

input (kg/km/

yr)

Sediment

input (kg/km/

yr)

a–Mountain

West

(2.9 –

moderate

risk)

0.02 72.9 1.0 34.3 0.14 30.7 9.0 39.0 2292

b–West

(2.1 –high

risk)

1.5 63.0 5.2 9.3 0.31 16.6 16.7 58.0 6814

c–Pacific

Northwest

(2.9 –

moderate

risk)

1.0 82.1 0.8 10.1 0.17 3.6 7.1 68.1 17738

d–Arizona

(3.3 –low

risk)

0.1 60.3 0 5.2 0.17 3.6 2.1 8.5 4610

e–Upper

Midwest

(3.0 –

moderate/low

risk)

3.2 30.2 48.0 15.9 0.43 13.2 77.8 723 57149

f–New

England

(2.9 –

moderate

risk)

5.1 53.8 20.5 44.7 0.57 25.9 97.2 697 85414

g–Midwest

(1.1 –high

risk)

9.7 19.6 54.1 25.1 0.49 57.6 92.9 1288 71285

h–Southeast

(3.0 –

moderate/low

risk)

2.6 30.7 20.4 77.9 0.44 108.4 49.0 321 51079

Anthropogenic landscape context for before- and after-removal studies clusters.

https://doi.org/10.1371/journal.pone.0180107.t006
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community) responses varied among geographic clusters, and were also highly variable within

a single geographic cluster (Fig 8). This variability was particularly evident at sites downstream

of the dam in the two geographic clusters with the highest number of biological BAR studies,

the Upper Midwest and New England, where there were nearly equal numbers of studies

showing an increase, decrease, or no change in aquatic invertebrate and fish responses (Fig 8).

In contrast, a majority of the BAR studies from reservoir and upstream reaches reported an

increase in aquatic invertebrates or fish. BAR studies reporting the response of fish community

composition were entirely absent from dam removals in the West and Pacific Northwest clus-

ters—the clusters containing some of the largest dam removals.

Discussion

Dam removals have occurred throughout the United States but have been concentrated in

watersheds that represent a relatively narrow range of landscape characteristics compared to

the characteristics of the existing dams throughout the U.S. Most dam removals have occurred

in low-elevation watersheds with low catchment slope and large upstream areas, and most

BAR studies were conducted in watersheds with similar characteristics. Watersheds in wet

climates (high precipitation) with steep slopes, high mean elevations, and good fish habitat

conditions (low chance of degradation) were poorly represented in BAR studies. Apparent

geographic discrepancies between existing-dam density and removed dams may be due to fac-

tors related to economics, historical context, and dam function (e.g., irrigation, flood control,

hydropower), but that information is rarely reported, and the discussion of those factors is

beyond the scope of our analyses.

Biophysical responses to dam removal varied by geographic region, and not all biophysical

variables were consistently reported after dam removals. Inconsistencies in the metrics

reported, measurement timing, and study duration made it difficult to quantitatively assess

biophysical responses in geographic regions with different landscape characteristics and pre-

dict how a system might respond to a dam removal based on its landscape context. We identi-

fied distinct differences in landscape context among existing and removed dams, and BAR

studies. Our analysis comparing existing and removed dams, however, was limited to dams

that were either� 8 m tall with an 18,500-m3 or larger impoundment or� 2 m tall with an

impoundment at least 62,000 m3. Many removed dams did not meet those height or impound-

ment size requirements; of the 874 removed dams included in our analysis, only 165 of them

met the criteria for being listed in the NID. Some states have more comprehensive inventories

of existing dams, including small dams, but the NABD—which draws data from the NID—is

the only publicly available list of existing dams throughout the country that is spatially linked

to the NHDPlusV1.

Fish habitat condition index scores for existing dams were nearly the opposite of HCI

scores for removed dams. Very low-quality fish habitat with high risk of degradation charac-

terized many landscapes around existing dams, but dam removals have occurred in landscapes

with moderate to high quality fish habitat with moderate to low risk of degradation. Dam

removals may have been more common in areas with high quality fish habitat to enhance the

probability of a successful outcome, particularly if ecosystem restoration was a goal of the dam

removal. The HCI was calculated based on landscape characteristics of the watershed above a

dam, and is an important metric to consider when planning dam removals because habitat

quality within the watershed influences the biophysical responses to dam removal and the

potential for habitat condition improvements [37]. River ecosystems may be more likely to

recover to pre-dam conditions if dam emplacement is a main source of anthropogenic stress-

ors on the landscape, contributing to an increased risk of habitat degradation (Table 6).
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Watershed area, elevation, and precipitation were the dominant landscape variables sepa-

rating the geographical clusters of removed dams. Of the 57 unique clusters identified in the

cluster analysis, 43 were concentrated in the lower-right quadrant of the PC plot, representing

large-area, low-elevation, and low-precipitation watersheds (Fig 5A). This pattern held for all

studied dam removals (Fig 5B) and BAR studies (Fig 5C). This predominant clustering of

removals suggests that our frame of reference for understanding the biophysical response to

dam removal is quite limited. This was especially true for BAR studies, which rarely examined

physical and biological responses.

For the eight clusters of dam removals with BAR data, we were unable to quantitatively

compare the biophysical responses with respect to landscape context because reported vari-

ables were neither consistent nor standardized. With the exception of BAR studies in the New

England cluster, each cluster had missing data for at least one of the ten metrics examined, and

many variables were only reported in one dam removal in the cluster. For dam removals with

landscape characteristics outside the main groupings, whole classes of response variables were

missing, including water quality and fish response data (Fig 8).

A number of factors likely contributed to the variation in biophysical response among geo-

graphic clusters. Firstly, the metrics used to measure responses varied among dam removals.

For example, in the papers we reviewed, investigators used five different metrics to measure

changes in phosphorous concentration and six metrics to measure changes in aquatic inverte-

brates (Table 5). Secondly, metrics were reported over different temporal scales [2], thus

potentially obscuring differences between short-term and long-term changes after dam

removal. For instance, after the removal of the Boulder Creek dams in South Carolina, soluble

reactive phosphorus concentration increased within hours [38], but concentrations decreased

after two weeks. As a result, there was no significant long-term change in phosphate concen-

tration before and after dam removal. Similarly, dissolved phosphate concentration increased

when the Good Hope Mill Dam in Pennsylvania was breached, but it returned to pre-removal

levels within hours [39]. Aquatic invertebrate and fish responses to dam removal, particularly

downstream, were strongly dependent on study timing [40]. Studies conducted immediately

after dam removal commonly showed a decrease in invertebrate and fish metrics downstream

of a dam removal, especially if sediment grain size changed [41, 42]. In contrast, studies that

were conducted after the initial pulse of sediment moved through the system following dam

removal showed either no change or a positive effect of dam removal [43, 44]. Finally, the

reported biological response to dam removal can be influenced by the species monitored. For

instance, in our analysis, some aquatic invertebrate studies reported responses of species that

were present before dam removal [45, 46] and others reported the responses of species that

were expected to colonize after dam removal (i.e., EPT taxa) [47–49]. In the first case, species

tended to decrease after dam removal, while in the latter case they tended to increase. Other

studies reported species diversity or richness [40, 50–53], which can be difficult to interpret

without species-specific information because those metrics may not change if an equal number

of pre-removal species are replaced with post-removal species.

Some of the biophysical responses we found in the literature were unexpected. For instance,

water temperature decreased in reservoir and downstream reaches in only 10% of studies we

examined [47, 54, 55] and nutrients increased downstream in only 30% of studies [39, 45, 46,

48, 56–58]. We expected these percentages to be much higher based on assumptions of bio-

physical response to dam removal [15, 17, 59, 60]. Individual fish species and fish communities

upstream of a dam removal did not change in 40% of dam removals examined, nor did they

change in more than 25% of downstream sites examined. The scientific community needs

more data to understand ecosystem response in order to inform management decisions and

create realistic expectations for post-removal recovery.
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Our analysis did not consider all of the possible variables that could contribute to biophysi-

cal response to dam removal, and we recognize that landscape context does not affect all

responses. For example, at Fossil Creek Dam, Arizona, native fish density increased after flow

was restored to the downstream system, but only in stream segments where invasive species

had been removed [61].

To date, most dams have been removed for economic, safety, or liability reasons rather

than to restore ecosystem function [62]. As with many restoration efforts, removal rationales

are not always available, nor is there a singularly agreed upon reason for removing a dam.

Therefore, the objectives (or lack thereof) for removing dams may affect the types of variables

monitored before and after dam removal. However, every dam removal, no matter the ratio-

nale, is an opportunity to gain further insight into how ecosystems respond and how physical

and biological responses are connected. Recognizing the need for studies to remain focused on

their objectives, we suggest that variables sampled before and after dam removal be prioritized

and protocols developed in an attempt to coordinate and standardize the type of data that are

collected. Many studies on dam removals were not comparable because of differences in met-

rics measured, methodologies employed, and study interval, including whether or not pre-

and post-removal data were collected. Standardization of the type, frequency, and duration of

data collection can help the scientific community better understand how the responses of river

ecosystems vary as a function of landscape context. The following approaches provide exam-

ples of potential standardized procedures for evaluating biophysical responses of river systems

to dam removal:

1. Sample before and after dam removal and at temporal and spatial scales that are meaningful

for the metrics sampled and the magnitude of anticipated change.

2. Sample upstream, within the reservoir, and downstream of the proposed dam removal site.

Studies that focus solely on the downstream response to dam removal do not provide a

comprehensive view of biophysical response.

3. Sample a broad range of metrics for comparative purposes. If that is not possible, prioritize

response measurements for indicator species that have known relationships to other

variables.

4. Use technology and citizen science to expand the duration of the sampling or monitoring

program. Satellite images are becoming increasingly available (e.g., Digital Globe) and can

be used to assess landform and vegetation changes. Enlist citizen scientists to take spatially

aligned repeat photographs, measure stream temperature, or record other parameters from

fixed locations.

5. Compile, preserve and publically release data. Add data to public databases, including the

Dam Removal Information Portal (https://www.sciencebase.gov/drip/).

Conclusion

Dam removal has become an increasingly common restoration strategy, and new efforts are

underway to help prioritize removals and guide removal decision-making [63]. Management

decisions to remove dams are beginning to adopt a range of strategies, from a “hot spot”

approach [64] to more overt economic strategies for prioritizing barrier removal [65, 66], to

those aimed at achieving broader ecological gains [67, 68]. Our results indicate that landscape

context may inform possible biophysical responses to removal, but a broader geographic range

of removals is required. Thus, along with other management priorities, decisions about dam
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removal might consider where the proposed removal is located and how its removal can help

advance our understanding of biophysical responses of river systems. Dam removals are large-

scale experiments that offer tremendous opportunities to understand fluvial systems and the

influence of humans on watershed processes and ecosystem dynamics. Knowledge of biophysi-

cal responses to dam removal in a regional context can be leveraged to anticipate the effects of

pending dam removals and to help coordinate management efforts to meet conservation and

restoration goals.
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