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The rapid development of single-cell technologies allows for dissecting cellular
heterogeneity at different omics layers with an unprecedented resolution. In-dep analysis
of cellular heterogeneity will boost our understanding of complex biological systems or
processes, including cancer, immune system and chronic diseases, thereby providing
valuable insights for clinical and translational research. In this review, we will focus on
the application of machine learning methods in single-cell multi-omics data analysis.
We will start with the pre-processing of single-cell RNA sequencing (scRNA-seq) data,
including data imputation, cross-platform batch effect removal, and cell cycle and cell-
type identification. Next, we will introduce advanced data analysis tools and methods
used for copy number variance estimate, single-cell pseudo-time trajectory analysis,
phylogenetic tree inference, cell–cell interaction, regulatory network inference, and
integrated analysis of scRNA-seq and spatial transcriptome data. Finally, we will present
the latest analyzing challenges, such as multi-omics integration and integrated analysis
of scRNA-seq data.

Keywords: data imputation, batch effects removal, cell cycle identification, cell type identification, CNV
estimation, trajectory inference, cell–cell interaction, regulatory network inference

INTRODUCTION

The rapid development of single-cell sequencing technologies makes it possible to explore cell
heterogeneity of genome, epigenome, and transcriptome, and cell–cell interaction/communication
in the context of a specific environment in a tissue. Due to various technical noise such as dropout
rate, it is pretty challenging to measure the expression level in a single cell accurately. Therefore,
model-based imputation methods are needed for data imputation to clean the technical noise and
correct false expression and dropout events. In addition, most of the downstream analyses of the
single-cell sequencing data, such as the reconstruction of differentiation trajectory, analysis of cell–
cell interaction, etc., require computational tools and models. In this review, we will summarize
the latest progress of single-cell sequencing data analysis from a machine learning viewpoint,
including scRNA-seq data imputation, batch effect removal, cell cycle and cell type identification,
copy number estimate, trajectory inference, cell–cell interaction, and regulatory network inference.
These applications are briefly summarized in Figure 1.
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FIGURE 1 | Brief summary of computational methods for single cell data analysis.

SINGLE-CELL SEQUENCING DATA
IMPUTATION AND COMPOSITIONAL
DATA ANALYSIS

Accurate Quantification of Transcript for
scRNA-seq With Reads Imputation
As a new generation of high-throughput sequencing technology,
RNA sequencing makes it possible to provide insight into the
transcriptome of a population of cells or a single cell (Xu and
Zhou, 2018). RNA-seq technology can generate short reads from
a set of fragments of transcribed molecules in a sample. The
basic assumption of RNA-seq for transcript quantitation is that
the number of RNA molecules in a given transcript can be
proportionally represented as reads generated from randomly
sampled fragments, either from the single end or paired ends.
Therefore, RNA-seq is basically a sub-sampling process, through
which it is expected that the reads will compatibly distribute
along with the transcripts and the counts will represent the
true expression distribution of all transcripts in a given sample
(Figure 2A). However, each step of RNA-seq introduces bias
(uneven reads distribution), leading to exons not evenly covered
by reads. We call these reads notches (Figures 2B,C). Obtaining
accurate gene expression requires filling up the read notches
along the gene to make sure the compatible coverages within and
among exons and transcripts (Figure 2A), especially, for reads-
based metrics (such as RPKM, FPKM, and also TPM). Since these
metrics are just arithmetically average the reads of the entire
transcript, if the read notches are not filled, the expression level
will be underestimated. Recovery of the missing reads from these
data will largely enhance the detection and quantification power
of scRNA-seq data.

ReadsImpute (Xu, 2018) is the first tool that imputes
the missing reads and gives a more accurate transcript and
gene quantifications. It implements capacity expansion on
the residual flow network derived from the standard max-
flow optimization on the initial flow network, and maximizes
transcript quantification by imputing missing reads. Comparing
with many popular approaches, such as Stringtie (Pertea et al.,
2015), Salmon (Patro et al., 2017), and Kallisto (Bray et al.,
2016), ReadsImpute appears to be a better method in achieving
consistent quantifications between the subsamples and entire
samples after reads imputation. StringTie applies a traditional
network flow algorithm to assemble complex datasets into
transcripts (Pertea et al., 2015). Salmon combines a new dual-
phase parallel inference algorithm and feature-rich bias models
for quantifying transcript abundance from RNA-seq reads (Patro
et al., 2017). Salmon is an ultra-fast method since it takes
advantage of multiple CPU cores. Kallisto is designed based
on pseudo alignment to assemble transcripts both from bulk
and single-cell RNA-Seq data (Bray et al., 2016). More reads
imputation methods are needed to be developed.

Recover Dropout Events in Single-Cell
Transcriptome Profiles
“Dropout” is another most important imperfect that hinders the
power of scRNA-seq, where a lot of low-abundant information
will be lost at expression level (Kharchenko et al., 2014).
Usually, these dropouts occur due to a variety of reasons, for
example, RNA cannot be reversely transcribed into DNA or PCR
amplification of cDNA is failed during the scRNA-seq process,
causing a truly expressed transcript cannot be detected during
sequencing. Thus, it is necessary to correct the false zero or
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FIGURE 2 | Conceptual view of reads imputation. (A) Expected distribution of
transcripts. (B) Reads notches in bulk RNA-seq. (C) Reads notches in
scRNA-seq. For concise, the junction reads are not indicated.

missing expression due to dropout events in scRNA-seq data
using computational imputation methods.

Many methods and tools are currently available for solving
the dropout issues of scRNA-seq data (Pierson and Yau, 2015;
Azizi et al., 2017; Lin et al., 2017; Chen and Zhou, 2018;
Gong et al., 2018; Huang et al., 2018; Li and Li, 2018; Ronen
and Akalin, 2018; van Dijk et al., 2018; Amodio et al., 2019;
Arisdakessian et al., 2019; Eraslan et al., 2019; Gunady et al.,
2019; Peng et al., 2019; Tracy et al., 2019; Wagner et al.,
2019; Badsha et al., 2020; Marouf et al., 2020; Xu et al.,
2020). MAGIC recovers dropout events by using diffusion
geometry to share similarities across cells (van Dijk et al.,
2018). VIPER borrows information from a sparse set of local
neighborhood cells of similar expression patterns to impute
the expression measurements in the cells of interest based on
non-negative sparse regression models (Chen and Zhou, 2018).
DeepImpute and SAUCIE (Amodio et al., 2019; Arisdakessian
et al., 2019) were developed for scRNA-seq data imputation with
deep learning methods. These approaches adopted node/gene
interaction structure, which could be seriously overfitted due
to the limited single cell numbers. Generative Adversarial
Network (GAN), widely used in the field of image processing,
is also a powerful tool for single-cell analysis (Bonn et al.,
2018; DePasquale et al., 2018; Ghahramani et al., 2018; Marouf
et al., 2020). Marouf et al. designed a conditional single-cell
generative adversarial neural network (cscGAN) to generate
realistic single-cell RNA-seq data based on fully connected
neural networks. Gene-to-gene associations from cell types
are captured to generate specific types of cells. WGANs were
applied to optimize object function. However, the fully connected
network in cscGAN can not guarantee the performance in data
imputation for specific dropouts. Ghahramani et al. applied
GAN to simulate scRNA-seq data to cover the diversity of
different cell types (Pierson and Yau, 2015; Lin et al., 2017;
Huang et al., 2018; Li and Li, 2018; Ronen and Akalin, 2018;
Badsha et al., 2020; Xu et al., 2020). We developed a novel
GANs approach, named scIGANs for scRNA-seq imputation
(Xu, 2018). Unlike common imputation algorithms, scIGANs
uses generated cells rather than observed cells to maintain a

balance between major and rare cell populations. scIGANs learns
the distribution of gene expression data under a conditional
GANs framework and imputes the dropout events from the
expression matrix. Using either simulated or real scRNA-
seq data, our analysis indicated that scIGANs significantly
enhanced various downstream analyses compared to existing
imputation algorithms.

Compositional Analysis of Single-Cell
RNA-seq Data
So far, compositional analysis has been an active and ongoing
area in metagenomic data (Norouzi-Beirami et al., 2021)
and microbiome research (Chen and Li, 2013; Bian et al.,
2017; Rivera-Pinto et al., 2018), due to the compositional
nature of metagenomic and microbiome data. This is also
opens a new perspective on the analysis of single cell RNA-
seq data. RNA-seq data are compositional in nature since
the abundances for each sample are limited by the library
size (Wu et al., 2021), this is also true for single cell
RNA-seq data. The estimated transcript abundance relies
on several factors and the count data are not actually
counts, but rather components of a whole in scRNA-seq
data (Quinn et al., 2018). scRNA-seq data can be regarded
as compositional data, which measure each sample as a
composition with non-zero positive values carrying relative
information (Aitchison, 1982). Thus, an additional normalization
step that corrects for the arbitrary library sizes need to
be taken into account when analysis compositional counts
of scRNA-seq data. Several effective normalization methods
have been applied to single cell compositional data analysis,
such as normalization to effective library size, log-ratio
transformation and “normalization,” etc., for compositional data
(Quinn et al., 2018).

BATCH EFFECTS REMOVAL AND DATA
INTEGRATION FOR SINGLE-CELL
MULTI-OMICS

Datasets produced in different laboratories at different
times and handled by different protocols and technologies
contain batch processing effects, affecting data integration
and interpretation, and deriving misleading outcomes.
Therefore, removing batch effects is a critical step
before conducting further data analyses. Here, we will
introduce some batch effects removal and data integration
algorithms for multi-omics and cross-platform single-cell
sequencing data.

Computational Methods for Single-Cell
Multi-Omics Integration
Different omics platforms have different types of attributes
and distributions, which makes it challenging to integrate
them. They can be continuous variables such as RNA-seq,
microRNA-seq, and ATAC-seq, binary variables such as SNPs,
discretized variables such as CNVs, graphs such as pathway
networks and metabolic pathways, and characters such as binding
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sites. Individual omics data can only provide limited insights
into the biological mechanisms of disease. A comprehensive
understanding of the key mechanisms underlying biological
processes relies on an integrative analysis from multi-omics data.

Many machine learning methods are developed so far
to integrate multi-omics data, such as Bayesian approach,
heterogeneous graph approaches such as matrix factorization-
based algorithms, deep learning approaches, and other machine
learning approaches. LIGER (Welch et al., 2019), an algorithm
for delineating shared and dataset-specific features of cell
identity, was developed to integrate scRNA-seq and DNA
methylation profiles to reveal the putative mechanisms of
cell-type-specific epigenomic regulation within their defined
mouse cortical cell types. Nativio et al. (2020) identified
molecular pathways and epigenetic alterations underlying
late-onset Alzheimer’s disease by integrating transcriptomic,
proteomic, and epigenomic profiling of human brains. Bian
et al. (2018) reconstructed genetic lineages and traced the
epigenomic and transcriptomic dynamics through single-cell
multi-omics. Granja et al. (2019) identified both patient-shared
malignant signatures and patient-specific regulatory features
such as RUNX1-linked regulatory elements via integrating single-
cell transcriptomic and chromatin-accessibility profiles in acute
leukemia analysis. Transfer learning is a field of machine learning
and is currently widely used for batch effect removal of single-
cell data. Wang C. et al. (2020) developed a Model-based
Analyses of Transcriptome and Regulome (MAESTRO) for
integrative analyses of scRNA-seq and scATAC-seq data from
multiple platforms. MAESTRO aims at integration based on
cell clusters of datasets from different platforms. Song et al.
(2020) applied semi-supervised graph convolutional networks,
termed single-cell Graph Convolutional Network (scGCN), to
implement transfer learning. scGCN captures topological cell
relations to learn the order and topological structure of cells
in high resolution to improve integration performance. scGCN
can reliably integrate single-cell datasets and transferring labels
across studies by considering knowledge graphs. Thus, the
information learned from previous datasets can be transferred
into the new datasets.

Other algorithms such as Autoencoder can also implement
transfer learning well. Li et al. (2020) couple a deep autoencoder
with a soft cluster algorithm to embed scRNA-seq data by
gradually removing batch effects. Recently, Batch Effect Removal
Using Deep Autoencoders (BERMUDA) was proposed for batch
effect correction of scRNA-seq data (Wang T. et al., 2019).
BERMUDA treats scRNA-seq data from different batches as
different domains and uses domain adaptation methods in
transfer learning to reduce different scRNA-seq datasets to the
same low-dimensional space and then remove batch effects in
the low dimension.

Integration of Cross-Platform Single-Cell
Sequencing Data
As the first wave of single-cell multi-omics technology,
scRNA-seq allows the transcriptomic measurement in thousands
of single cells from different biological samples under varieties

of sequencing technologies and platforms (Muraro et al., 2016;
Azizi et al., 2018; Buenrostro et al., 2018; Cusanovich et al.,
2018; Tabula Muris Consortium et al., 2018). Multiple single-
cell sequencing data have been obtained in recent years,
such as scRNA-seq, single-cell DNA sequencing (scDNA-seq),
single-cell DNA methylation sequencing (scMethylation-seq),
and single-cell transposase-accessible chromatin (scATAC-Seq).
For scRNA-seq, different protocols have been developed to
quantify single-cell transcriptomes, such as Smart-seq2 and
10X Chromium, Drop-seq, etc. Since the general batch effect
removal algorithms may not be simply applied to single-
cell sequencing data, some computational methods have been
developed to address the challenges of cross-platform/protocol
single-cell sequencing data integration (Butler et al., 2018;
Kiselev et al., 2018; Barkas et al., 2019; de Kanter et al.,
2019; Stuart et al., 2019; Song et al., 2020). These methods
extract shared information from individual cells across different
datasets, but ignore the differences between datasets. Tools
developed for the batch correction of microarray data such
as ComBat and Limma have been applied to eliminate the
influences of batches on scRNA-seq data (Jaakkola et al.,
2017; Risso et al., 2018). Limma package contains strong
tools for reading and normalizing data and can be applied
to several kinds of analysis of scRNA-seq data, such as
differential expression and differential splicing analysis (Ritchie
et al., 2015). SAVER-X, combined a deep autoencoder with a
Bayesian model, extracts transferable gene–gene relationships
across datasets generated from different laboratories. The trained
network can be applied to new data, thereby improving
data quality (Wang J. et al., 2019). Tran et al. (2020)
compared 14 batch-effect correction methods based on time-
consuming computing ability, large datasets handling ability,
and batch-effect correction accuracy for scRNA-seq data
generated by different sequencing technologies, such as smart-
seq2, inDrop, 10X, and CEL-seq, etc. They found that
Harmony (Korsunsky et al., 2019), LIGER (Welch et al.,
2019), and Seurat (Butler et al., 2018; Stuart et al., 2019)
had better performance for batch integration, and Harmony
was recommended as the first method to apply considering
its significantly shorter runtime. Harmony adopts a simple
clustering strategy by iteratively removing batch effects. The
cells with similar expression signatures but from different
batches were clustered together while trying to maximize
batch diversity within each cluster, and then the dataset
correction factor is calculated during each iteration. Harmony
also performs well on data integration in terms of short
runtime and less memory consumption. The only drawback
is that it cannot integrate datasets with different number of
cells. However, LIGER, Seurat, and harmony can only handle
current data, but the trained model/parameters cannot be
applied to new data. The methods used transfer learning
can solve this problem, such as SAVER-X, BERMUDA, and
scGCN, etc. The network/model trained on the current data
can be used for new data, thereby diluting the differences
between datasets. The performances of the above methods
are all evaluated on different datasets generated by different
protocols/platforms.
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CELL CYCLE IDENTIFICATION

The cell cycle is a key component in the biological processes,
which drivers the transcriptional heterogeneity in cell
differentiation (Pauklin and Vallier, 2013), cell state and
oncogenesis (Kastan and Bartek, 2004; Bar-Joseph et al., 2008).
Studying the assignment of cell cycle phases is also of great
significance to the occurrence, development and treatment
of tumors. Consequently, accurately identifying the cell cycle
phases is the key to understand different biological processes
(Scialdone et al., 2015).

At present, most researches use cell cycle information
obtained from experiments, such as utilizing chemical induction
(Vassilev, 2006), counterflow centrifugation elutriation (Ly et al.,
2014), and DNA content (Sasagawa et al., 2013) to investigate
the enrichment of cells in different cell cycle phases. However,
these methods have the disadvantages of complicated operation,
low sensitivity, long experiment period, and may introduce
biological batch effects. Therefore, computational tools have been
developed to allocate cells to their cell cycle stages based on their
transcriptional profiles.

Computational Methods to Predict Cell
Cycle Phases
Several machine learning methods have been developed to
analyze cyclic or circadian processes on the single-cell resolution,
including continuous and discrete predictions of cell cycle phases.
Continuous prediction gives the order of cells continuously
distributed within each phase (Sakaue-Sawano et al., 2008). The
order could be used to locate single cells along the circular
cell cycle trajectory, which we called pseudo time in the cell
cycle. Continuous assignment methods includes cyclum (Liang
et al., 2020), cyclops (Anafi et al., 2017), peco (Hsiao et al.,
2020), and Oscope (Leng et al., 2015). Cyclum and cyclops
use an unsupervised learning technique autoencoder to analyze
the cell-gene expression matrix. To identify cell cycle phases
in the scRNA-seq data, Cyclum projects high-resolution single
cells onto a low-dimensional cyclic periodic trajectory, where
the pseudo times are represented by radians in the range [0,
2π] (Liang et al., 2020). Unlike cyclum, cyclops uses linear
projection to project data onto a closed elliptical curve in low-
dimensional space (Anafi et al., 2017). It employs square root and
division in the autoencoder model, which makes optimization
more complex. Peco is a supervised approach that uses the
data generated from FUCCI fluorescence images and scRNA-
seq to train the “naive Bayes” predictor for predicting the
continuous cell cycle phase (Hsiao et al., 2020). The supervised
approach can ensure the accuracy of cell cycle prediction, while
cannot be applied to scRNA-seq data without knowing cell
cycle label. Oscope identifies oscillating genes and uses them
to order single cells at different cell cycle phases (Leng et al.,
2015). Each pair of genes needs to be tested for compliance
with the circular patterns, resulting in computational complexity.
Beyond the continuously quantitative description of cell cycle
progress, classification of cells into discrete states is also applied
in the study of cell cycle identification. Cyclone classifies single

cells into different cell cycle stages according to the selected
marker gene pairs (Scialdone et al., 2015). As more and more
cell cycle marker genes are discovered, the library of cell cycle
marker genes can be expanded and updated. Thus, cyclone can
be applied to cell cycle estimation of more species and the
prediction accuracy of cell cycle expects to be improved. Liu
et al. introduced cell cycle time-series as a consensus traveling
salesman problem (TSP) to recover cell cycle pseudo time
(reCAT) from single-cell transcriptome data. In their study,
a hidden Markov model (HMM) based on Bayes-scores and
mean-scores was designed to segment the pseudo times into
G1, S, and G2/M (Liu et al., 2017). Due to the complexity of
the reCAT model, there are many parameters that need to be
set manually in advance, which brings a great challenge to the
accuracy of the model.

Strategy Development to Remove Cell
Cycle Effects From scRNA-seq Data
Single-cell RNA sequencing made it possible to study
heterogeneity in gene expression in high resolution. Such
heterogeneity exists due to technical noise and different
biological factors (Buettner et al., 2017). The cell cycle is a
major source of bias, which introduces greater within-cell-type
heterogeneity, causing quite different expression profiles between
cell types (Barron and Li, 2016). For example, in the study of
the differentiation of TH cells, the cell cycle is a factor affecting
cell heterogeneity. If the cell cycle effect is not considered to
remove, genes associated with cell cycle can lead to bias in cell
clustering, thus affecting the accuracy of cell differentiation
studies (Barron and Li, 2016). This problem also exists in
studies of cell type identification, tumor development, etc.
Three major methods have been developed to remove the cell
cycle effect based on gene expression profiles, including Seurat
(Butler et al., 2018), ccRemover (Barron and Li, 2016), and
Cyclum (Liang et al., 2020). Seurat and ccRemover are the
most popular ones. Both of them rely on the known cell-cycle
genes. Seurat calculated cell cycle phase scores based on S
and G2M cell cycle markers. Cells that do not express these
markers may be in the G1 phase. Cell cycle effects are removed
during data normalization (Butler et al., 2018). ccRemover is
a PCA-based method that identifies components related to
the cell cycle with a larger component score by comparing
with the control group. Thus, it can retain other factors while
thoroughly removing the cell cycle effect (Barron and Li,
2016). Cyclum removes the cell cycle effect by subtracting the
reconstructed matrix of non-linear components in the hidden
layer from the expression level. Application to virtual tumor
data shows that cyclum can more accurately eliminate cell
cycle effects on cell clusters than Seurat and ccRemover. It can
accurately distinguish two subclones in the virtual tumor data
(Liang et al., 2020).

Considering various aspects, Cyclum is a competent method
both in predicting cell cycle phases and removing cell cycle
factors in cell clustering analysis. Also, this is an unsupervised
method that can be used in cell cycle estimation of single-
cell data without label information, and it does not suffer
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from computational complexity and the need to set multiple
parameters manually.

CELL TYPE IDENTIFICATION

Identifying cell types from single-cell transcriptomic data is a
basic goal of scRNA-seq data analysis. Classifying cells is crucial
to learn more about tissue functions and to reveal mechanisms
underlying pathological states. Knowledge of known cell types
allows us to cluster biomarkers for specific cell types, and provides
insight into novel cell discovery and obtain cellular profiles of cell
lineages, organs, and even whole tissue (Cao et al., 2017, 2019;
Fincher et al., 2018; Han et al., 2018; Plass et al., 2018; Tabula
Muris Consortium et al., 2018). However, manual annotation
of cell types is so cumbersome and time-consuming. Therefore,
the numbers of computational classification methods are rapidly
growing to identify cell types of scRNA-seq data. Unsupervised
algorithms are typically used to cluster cells into different clusters
based on the similarity between cells, followed by cell type
identification by assigning discrete cell-type labels to each cluster.
So far, more than 20 methods have been proposed to identify
cell types from scRNA-seq data (Abdelaal et al., 2019). Clustering
algorithms such as k-means and DBSCAN (Ester et al., 1996)
are commonly used to group cells into different cell types.
RaceID (Grun et al., 2015) is a typical example of applying
k-means clustering algorithm to give the cell-type annotation
for individual cells. SNN-Cliq (Xu and Su, 2015) takes the
effect of nearest neighbors into account and cluster cells on
the high-dimensional scRNA-seq data. SINCERA (Guo et al.,
2015) performs a hierarchical clustering on the similarity matrix
computed by Pearson correlation. However, such algorithms may
require non-intuitive parameters, such as the number of clusters
and the initial centroids.

The high resolution of scRNA-seq data is another challenge
in the identification of cell types. To solve this challenge,
several methods have taken dimension reduction into account.
Single-cell consensus clustering (SC3) (Kiselev et al., 2017) and
Seurat (Butler et al., 2018) are applied to identify cell types
by using different combinations of the clustering algorithm,
dimensionality reduction, and feature selection. SC3 combines
k-means and spectral clustering algorithms to identify subclones
from the transcriptomic data of neoplastic cells. Seurat (Butler
et al., 2018) utilizes t-distributed stochastic neighbor embedding
(t-SNE) technology (Maaten and Hinton, 2008) for dimension
reduction and DBSCAN (Ester et al., 1996) is applied to cluster
cells in the reduced dimension. In addition to identifying cell
types, Seurat has evolved into a versatile single-cell analysis tool
that facilitates users in data pre-processing, cell cycle removal,
differential gene analysis, etc.

Neural networks have also proven to be effective in identifying
cell types from scRNA-seq. Ma and Pellegrini (2020) proposed
ACTINN for automated identification of cell types from scRNA-
seq data. ACTINN employs a neural network with three hidden
layers and is trained by a set of scRNA-seq data with predefined
cell types. The trained parameters make it convenient for

ACTINN to be applied to other datasets. Lopez et al. (2018)
proposed scVI, a hierarchical Bayesian model based on deep
neural networks, for the probabilistic representation and analysis
of gene expression in single cells. It also considers both library
size and batch effect, which are two major issues in scRNA-
seq data analysis.

In short, when analyzing cell types from a single cell dataset,
if the number of cell types is known, the easiest and fastest
way is to directly use clustering algorithms, such as k-means
and DBSCAN. Otherwise, a dimensionality reduction algorithm
is required. If several analyses on the same single-cell data
are needed besides cell-type identification, Seurat software is
highly recommended. When studying cell types in more detail,
such as subtype analysis, ADMM appears to be more accurate
than other traditional unsupervised algorithms in predicting cell
types and subtypes.

OTHER APPLICATIONS OF MACHINE
LEARNING IN DOWNSTREAM
ANALYSES OF SINGLE-CELL
SEQUENCING DATA

Copy Number Variance Estimation and
Subclone Analysis
Copy number variance (CNV) is a major class of genetic
drivers of cancer, so it is very important in cancer research.
Single-cell DNA sequencing technologies allow the detection
of genomic variants such as CNVs. Several methods have
been developed for CNV detection from single-cell DNA data,
such as Ginkgo (Garvin et al., 2015), HMMcopy (Lai and Ha,
2013), CopyNumber (Nilsen et al., 2012), and SCOPE (Wang
R. et al., 2020). Ginkgo can automatically construct copy-
number profiles and phylogenetic trees of related cells from
scDNA-seq data. One of the advantages of HMMcopy is its
ability to infer both segmentation and absolute copy numbers
(Lai and Ha, 2013). SCOPE is another method for copy-
number estimation from scDNA-seq data, which has successfully
reconstructed cancer subclones. Since there are technological
challenges in performing simultaneous scRNA-Seq and scDNA-
Seq analysis experimentally from a single cell, several methods
have been proposed to detect genomic heterogeneity from
scRNA-Seq data. However, identification of CNVs from RNA-
Seq data is very challenging because it is difficult to capture
deletion/amplification and dynamic changes in gene expression
in RNA-Seq data, even more difficult for scRNA-seq data.
Fan et al. (2018) proposed a computational approach called
HoneyBADGER that implements an allele-based HMM and a
hierarchical Bayesian model to identify copy number variation
and loss of genomic heterozygosity of single cells from scRNA-
seq data. We recently developed CaSpER (Serin Harmanci
et al., 2020) for single-cell CNV inference from single-cell RNA
sequencing data. CaSpER applies a novel and efficient method to
generate allele shift signal profile, which quantifies genome-wide
heterozygosity loss (Serin Harmanci et al., 2020). The outstanding
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contribution of CaSpER is that it does not require heterozygous
variant calling to generate allelic shift profiles (Serin Harmanci
et al., 2020). CaSpER is a highly recommended method since
it can be used to not only identify gene expression signatures
of mutually exclusive CNV sub-clones, but also analyze gene
ontology enrichment.

Phylogenetic Tree Inference
The rapid development of single-cell genomic and transcriptomic
technologies has paved the way for the emergence of studying the
evolutionary process of cells in cancer or an organism, which is
known as cell phylogenetic tree or lineage tree inference. There
is a strong need to infer the tree structure of cell lineages with
single-cell sequencing data to classify evolutionary trajectory of
the organisms or cancer progression. With the growth of research
fervor in cell lineage tree inference, several machine learning
methods have been proposed. Most of the existing methods such
as SCITE (Jahn et al., 2016) and SiFit (Zafar et al., 2017) are
designed on the basis of Markov chain Monte Carlo (MCMC)
approach. SCITE and SiFit have the disadvantage that they cannot
handle massive single-cell data and their ideas are based on
the assumption of uniformly distributed errors in genotypes.
However, genotypes derived from single-cell sequencing data
tend to have non-uniform uncertainty (Singer et al., 2018).
Monovar quantifies the genotype likelihood values for each
cell based on the assumption that sequence data at different
sites are completely independent (Wu, 2020). ScisTree, a newly
developed method, adopts the statistical learning approach to
find the maximum likelihood to infer cell phylogenetic tree and
call genotypes from noisy single-cell genotype data with its own
individualized probability (Wu, 2020). This allows ScisTree to
deal with uncertain genotypes, where the content of single-cell
sequencing data may vary at different cells and sites.

Sadeqi Azer et al. (2020) inferred the most likely tumor
phylogeny via deep learning and eliminate noises such as dropout
events in alleles and low sequence coverage issues with a
maximum likelihood/parsimony approach . The noise reduction
processes target the possible set of false negative/false-positive
variant calls to ensure constructing a reliable phylogenetic tree.
Satas et al. (2020) developed an algorithm called SCARLET to
infer tumor phylogenies from single-cell DNA sequencing data
while taking into account both CNA-driven loss of SNV and
sequencing errors. Campbell et al. (2019) developed a statistical
learning tool called Clonealign that uses single-cell RNA and
DNA sequencing data to assign gene expression states to cancer
clones. Simultaneously applying DNA and RNA sequencing data
to infer the phylogenetic tree is still a challenging issue. Novel
computational tools are needed to map parallel single-cell DNA
and RNA sequencing data from independent cell populations for
exploring genome-transcriptome association.

Lineage Trajectory Inference
Inferring the position of each individual cell on the lineage
trajectory based on the scRNA-seq profiles is one of the promising
applications of scRNA-seq. Dynamic processes such as cell cycle,
cell differentiation, and cell activation (Etzrodt et al., 2014;
Tanay and Regev, 2017) can be modeled computationally using

trajectory inference methods. The inferred trajectories can be
cyclic, linear, bifurcating, tree-structured or disconnected graphs.

Numbers of trajectory inference methods have come out
over the past few years. Most of them focus on estimating the
trajectory and correctly ordering the cells along the trajectory.
The well-known tool Monocle 2 (Qiu et al., 2017)developed
by Trapnell et al. uses DDRTree (Mao et al., 2015), a scalable
reversed graph embedding algorithm, for finding the projections
between gene expression profiles and lower-dimensional spaces
and learning a principal tree on a population of single cells
in this reduced space. Chen et al. proposed a new method
named Landmark Isomap for Single-cell Analysis (LISA). The
performance of LISA is more applicable to large single-cell
datasets. LISA applied Isomap to construct the low feature
dimension and built Minimum spanning tree (MST) on the
cluster centers similar to monocle2. Comparing to monocle2,
LISA is faster and uses less memory (Chen Y. et al., 2019). Single-
cell Trajectories Reconstruction, Exploration and Mapping
(STREAM) is an interactive pipeline capable of reconstruct
complex branch trajectories from single-cell transcriptomics
and epigenome data, providing a new concept of transition
genes, whose expressions across cells have a high correlation
with the predicted pseudotime (Chen H. et al., 2019). New
cells can be mapped to the STREAM-inferred trajectories
without reconstruction.

Several other methods have also been proposed to infer
topology of scRNA-seq data (Street et al., 2018; Cao et al.,
2019; Wolf et al., 2019). These methods identify the order of
cells along branches and obtain topological connection between
these branches. Partitioned approximate graph abstraction
(PAGA) was proposed to construct a KNN graph on cells
and then perform Louvain clustering algorithm to identify
the membership of cells. Both continuous and disconnected
structures are preserved in data at multiple resolutions (Wolf
et al., 2019). One of the major updates in Monocle3 (Cao
et al., 2019) than Monocle2 is the use of PAGA to automatically
partition cells to learn disjoint or parallel trajectories. As a
result, Monocle3 can reconstruct trajectories for complex and
massive single-cell datasets. Monocle 3 was applied to depict
mouse organogenesis cell atlas using ∼2 million cells generated
from 61 embryos staged in E9.5–E13.5 and established a global
trajectory from E9.5 to E13.5 and subtrajectories for all major
developmental systems. RNA velocity (La Manno et al., 2018)
is a novel concept and has been developed to infer cell RNA
dynamics based on the deviation of the observed ratio of spliced
and unspliced mRNA from an inferred steady state. A recently
introduced method, scVelo, breaks the central assumptions of
a common splicing rate in RNA velocity. scVelo generalizes
RNA velocity to transient cell states through a likelihood-based
dynamical model (Bergen et al., 2020).

In general, there is no single method that predicts all structures
of the trajectory, and no single method that works for all
the datasets. Two important factors need to be considered
when inferring the cell trajectories. One is the structure of the
trajectory. PAGA can be used to predict the most cell trajectory
types (Saelens et al., 2019). The other one is the sample size of the
dataset. Monocle3 is recommended to infer complex trajectories
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and sub-trajectories for massive scRNA-seq data. While RNA
velocity and scVelo are designed specifically for spliced and
unspliced mRNA matrices.

Cell–Cell Interaction
Cell–cell interaction (CCI), also known as cell–cell
communication, governs the functional activities of cells and
coordinates multiple-cell actions (Singer, 1992). The dynamic
network constructed through interaction and connections
between cells with adjacent or remote partners is significant
important in numerous biological activities (Camp et al., 2017).
Gene expression data in many tissues and organs, such as the
brain (Yuzwa et al., 2016; Sheikh et al., 2019), heart (Skelly et al.,
2018), and lungs (Zepp et al., 2017; Cohen et al., 2018), has
revealed that CCI plays an important role in organ function.
Studying CCI within disease/tumors and their surrounding
microenvironments can bring to light how cells communicate
with their surroundings and help guide the development of
effective treatment strategies (Kumar et al., 2018). CCI leverages
diverse molecules, including ions fluxes, metabolites, secreted
vesicles, etc. A majority part of the interaction is mediated by
secreted ligands and receptors (Armingol et al., 2020). The
fast development of scRNA sequencing technologies provides
an unparalleled opportunity to infer the ligand–receptor (LR)
interactions at a high-resolution cell state map.

Many statistics tools have been developed to perform such
inferences (Wang Y. et al., 2019; Cabello-Aguilar et al., 2020;
Efremova et al., 2020; Hou et al., 2020; Jin et al., 2020). iTALK
(Wang Y. et al., 2019) adopts a product score to deduce ligand-
receptor (LR) pairs within the highly expressed genes using
public LR databases. The input of iTALK is a count expression
matrix with known cell type information. It has the ability to
process multiple datasets, and can handle with batch effects
and variability in LR expression. CellPhoneDB (Efremova et al.,
2020) predicts LR interactions between cell types according to
the degree of their expression, taking subunit architecture of
the ligands and receptors into consideration at the same time.
The author generated null distribution for each LR pair between
cell types, and obtained the probability of cell-type pattern of
each LR to predict enriched signaling interactions. NATMI (Hou
et al., 2020) also uses the transcriptome profiling of each LR in
scRNA-seq dataset with labeled cell types, and then predicts the
connections from a ligand sending cell to a receptor cell among
all cell types, and finally generates a cell connectivity summary
network matrix. SingleSignalR (Cabello-Aguilar et al., 2020) is
an R package designed to infer and visualize LR interaction.
This tool first integrates the existing LR pairs databases as LRdb,
and computes the mean expression of marker genes among all
the cells to obtain a regularized score for each LR pair with
additional cell-types specific information. CellChat, an R package,
was developed to infer, visualize and analyze CCI for scRNA-
seq data (Jin et al., 2020). It also provides a more extensive
database, which contains multi-subunit structure of LR complex
and stimulatory and inhibitory cofactors. CellChat applied a mass
action-based model to infer the probability of cell-state related
signaling interactions between LR pairs.

Each method has its own advantage over others. iTALK
can be applied to time series data and different platform
data, but it does not propose any cutoff for the scores of
the LR interactions. CellPhoneDB provides online analysis and
considers the heteromeric composition of the ligands and
receptors. NATMI is a network-based tool used to estimate which
cell type pairs are most likely to communicate. The regularized
score of SingleSignalR has better performance on control false
positives over other tools. Beyond the purely fundamental
research enterprise of interpreting the cell–cell biological
messages, CellChat can be used to compare communication
networks in different cell-states of an organ.

Gene Regulatory Network
Studies have revealed that genes cannot work alone (Cordell,
2009). Instead, they constantly influence one another, which
can be called epistasis (Phillips, 2008), involving the interaction
between two or more genes. These interplays are important for
molecular regulation, signal transduction, biological networks,
and lots of functional pathways (Harvey et al., 2013). Therefore,
network modeling of genes is significantly helpful for our
understanding of key regulators related to biochemical pathways.
Gene regulatory network (GRN) (Fiers et al., 2018) describes a
set of interacting regulatory genes with specific cellular function.
GRN has been extensively utilized based on graph model for
functional analysis in recent years. GRN is essential to revealing
questions of cellular identity (Han et al., 2020) and has been
demonstrated to play important roles in searching for disease-
related biomarkers and drug position targets (Cha and Lee,
2020) and extensively utilized as an important tool for analyzing
genomics data. Network modeling has long been employed as
a powerful tool to understand and interpret complex biological
systems (Huynh-Thu et al., 2010; Lim et al., 2016; Matsumoto
et al., 2017; Woodhouse et al., 2018; Moerman et al., 2019;
Mohammadi et al., 2019). Boolean models, including Single-Cell
Network Synthesis (SCNS) toolkit (Woodhouse et al., 2018) and
BoolTraineR (Lim et al., 2016), focus on discovering potential
combinations of transcription factors (TFs) which could be taken
as connected nodes in the network. SCODE (Matsumoto et al.,
2017) is a regulatory network inference algorithm and relies on an
ordinary differential equation (ODE) model to predict regulatory
networks using differentiating cells in scRNA-seq data. This
method provides a command-line interface which can facilitate
analysis. Regression-based network modeling algorithms, such
as GENIE3 and GRNBoost2 assume that gene expression can
be represented as a linear combination. GENIE3 (Huynh-Thu
et al., 2010) was designed for bulk RNA-seq data analysis and
also applied to scRNA-seq data. GENIE3 uses Random Forests
algorithm to construct a regulatory network by decomposing
selected genes into the same number of regression problems.
In each regression problem, one gene is used as a response
variable to be predicted based on all the other genes. GRNBoost2
(Moerman et al., 2019) is a self-tuning algorithm which uses
gradient boosting instead of estimating the decision trees from
a global perspective based on GENIE3 architecture. SCINET
(Mohammadi et al., 2019) implements co-expression and motif
enrichment analysis to directly predict the interactions between
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TFs and their targeting genes. SCENIC (Aibar et al., 2017) is a
correlation-based method which combines gene co-expression
with TF-binding motif analyses to identify GRN modules
and predict TF regulators from scRNA-seq data. SINGE is a
computational tool which adopts kernel-based Granger Causality
regression to smooth irregular pseudotimes and dropout values
to reconstruct gene regulatory network (Deshpande et al., 2021).
SINGE has a better performance over other GRN inference
methods in evaluating ChIP-seq and ChIP-chip data.

INTEGRATED ANALYSIS OF SCRNA-SEQ
AND SPATIAL TRANSCRIPTOME

Considerable technological advances in sequencing technologies
have made it possible for researchers to study the transcriptomic
landscape at spatial resolution recently (Lubeck et al., 2014; Chen
et al., 2015; Patrik et al., 2016; Svensson et al., 2018; Eng et al.,
2019; Sun et al., 2020). Spatial transcriptomics (ST) technologies
attracted lots of attention in the year 2020 (No authors listed,
2021) and have changed the way we understand the architecture
of complex tissues. ST technologies have the potential to describe
cellular organization and functioning in intact multicellular
environments and elucidate interactions between gene expression
and cellular environment. Several methods have been proposed
to integrate scRNA-seq with spatial transcriptomics to study
the heterogeneity of intact tissue (Asp et al., 2019; Cable et al.,
2020; Hunter et al., 2020; Ji et al., 2020; Moncada et al., 2020;
Su and Song, 2020). The common way is to estimate reference
cell type/cluster signatures from scRNA-seq profile, and then
map the signatures onto spots to decompose ST at single-cell
resolution. By adding spatial information to scRNA-seq data,
spatial transcriptomics has transformed our understanding of
tissue functional organization and CCI in situ. Ji et al. (2020)
identified a heterogeneous tumor leading edge composed of
tumor-specific keratinocyte (TSK) and basal tumor cells and a
TSK-proximal fibrovascular niche using spatial transcriptomics
data. Coincidentally, Hunter et al. (2020) integrated scRNA-
seq data with ST to construct an atlas architecture within the
tumor and their neighboring surrounding, and identified a
unique transcriptomics interface region. These findings have the
potential to disclosure the mechanism of tumor invasion and
development. Due to the limitation in terms of sequence coverage
and overall throughput, it is difficult to get the true single-cell
resolution for the whole intact tissue sample, such as exactly
numbers of cells and cell types from each spot. However, with
the increasing development of technology, we believe these will
not big problems. Coupling single-cell sequencing approaches
with ST has enormous potential to improve current modeling at
single-cell resolution, such as CCI and GRN analysis.

NEW CHALLENGES OF FURTHER
SINGLE CELL DATA ANALYSIS

The machine intelligence for single cell sequencing data analysis
is still growing at a fast pace. We still face more challenges in

processing and analyzing such data. Here we summarize several
aspects of the challenges.

Data Imputation
Although there have been many imputation algorithms
for single-cell expression data, imputing single cell data at
reads level still lacks. It’s challenging to determine the true
abundance of the transcripts even if the transcript structures
are known (Roberts et al., 2011). The extremely low reads
coverage with the much higher bias of scRNA-seq experiments
makes transcript quantification more challenging. Specifically,
if the missing reads are not imputed, metrics of transcript
quantification lead to underestimation of gene expressions.
Therefore, accurate transcript quantification requires recovery
of the missing reads throughout the gene to assure the
even and compatible coverages within and across the exons
and transcripts.

Single-Cell Multi-Omics Integration
The purpose of the integrated analysis is to solve important
biological problems using proper methods. Therefore, the
inherent biological differences related to different tissues, species,
and molecular layers (such as RNA-seq and ATAC-seq) need
to be considered.

Trajectory Inference
There are several future challenges in trajectory inference need
to be taken into account. First, compared with the actual cell
number of transcriptome analysis, many existing methods only
allow the measurement of a very limited number of cells.
Second, it is necessary to define the features to be used in
constructing trajectories. Features with the same expression
patterns usually retain important information of cells that
belong to the same lineage. Third, there should be a definite
evaluation method to compare the performance of different
trajectory inference algorithms as previously described by
Saelens et al. (2019).

In addition, technical noise and data parallel processing
are problems faced by all single-cell data analysis. Technical
noise can affect the accuracy of downstream analysis of
single-cell data. Since single-cell data usually contains more
than thousands of features, it is important to speed up
the single analysis with parallel processing. In summary,
we reviewed the application of machine learning methods
and tools in single-cell sequencing data imputation and
downstream data analysis, as well as existing potential
challenges. Spatial distribution and building structure
are very important for understanding the development of
human diseases. Therefore, single-cell data analysis of spatial
transcriptomics will become the next wave of computational
tool development.
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