
TYPE Original Research
PUBLISHED 09 August 2022
DOI 10.3389/fpsyt.2022.950328

OPEN ACCESS

EDITED BY

Takashi Nakano,
Fujita Health University, Japan

REVIEWED BY

Fengqin Wang,
Hubei Normal University, China
Carolina Torres,
Serviço de Neurologia, Hospital de
Clínicas de Porto Alegre, Brazil
Andrew Fukuda,
Brown University, United States

*CORRESPONDENCE

Yvonne Höller
yvonne@unak.is

SPECIALTY SECTION

This article was submitted to
Computational Psychiatry,
a section of the journal
Frontiers in Psychiatry

RECEIVED 22 May 2022
ACCEPTED 19 July 2022
PUBLISHED 09 August 2022

CITATION

Höller Y, Jónsdóttir ST,
Hannesdóttir AH and Ólafsson RP
(2022) EEG-responses to mood
induction interact with seasonality and
age. Front. Psychiatry 13:950328.
doi: 10.3389/fpsyt.2022.950328

COPYRIGHT

© 2022 Höller, Jónsdóttir,
Hannesdóttir and Ólafsson. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

EEG-responses to mood
induction interact with
seasonality and age

Yvonne Höller1*, Sara Teresa Jónsdóttir1,2,
Anna Hjálmveig Hannesdóttir1 and Ragnar Pétur Ólafsson2

1Faculty of Psychology, University of Akureyri, Akureyri, Iceland, 2Faculty of Psychology, University
of Iceland, Reykjavík, Iceland

The EEG is suggested as a potential diagnostic and prognostic biomarker for

seasonal a�ective disorder (SAD). As a pre-clinical form of SAD, seasonality

is operationalized as seasonal variation in mood, appetite, weight, sleep,

energy, and socializing. Importantly, both EEG biomarkers and seasonality

interact with age. Inducing sad mood to assess cognitive vulnerability was

suggested to improve the predictive value of summer assessments for winter

depression. However, no EEG studies have been conducted on induced sad

mood in relation to seasonality, and no studies so far have controlled for

age. We recorded EEG and calculated bandpower in 114 participants during

rest and during induced sad mood in summer. Participants were grouped by

age and based on a seasonality score as obtained with the seasonal pattern

assessment questionnaire (SPAQ). Participants with high seasonality scores

showed significantly larger changes in EEG power from rest to sad mood

induction, specifically in the alpha frequency range (p = 0.027), compared to

participants with low seasonality scores. Furthermore, seasonality interacted

significantly with age (p < 0.001), with lower activity in individuals with high

seasonality scores that were older than 50 years but the opposite pattern in

individuals up to 50 years. E�ects of sad mood induction on brain activity are

related to seasonality and can therefore be consider as potential predicting

biomarkers for SAD. Future studies should control for age as a confounding

factor, and more studies are needed to elaborate on the characteristics of EEG

biomarkers in participants above 50 years.
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1. Introduction

Rosenthal et al. (1) were the first to describe seasonal affective disorder (SAD) as

a mood disorder that is characterized by recurrent depressions that occur annually at

the same time of the year. Depressive symptoms in SAD are known to occur in both

summer and winter, but winter depression with remission in spring is its most common

representation (2).

Prevalence of SAD is estimated to be as high as 9.7% worldwide although it has

been found to vary substantially based on location (3). The condition is more common
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among adolescents or young adults compared to elderly

individuals (4, 5). The main distinctive feature of SAD as

compared to major depressive disorder is that it occurs

repeatedly at the same time of the year. Early screening

in summer or fall could be used to plan timely prevention

before first symptoms occur. It is partly possible to predict

SAD based on subjective reports about the annual seasonal

changes in mood, appetite, energy, sleep, and social interaction.

Given that subjectively experienced seasonal changes are an

important indicator for SAD, screening instruments for SAD

were developed in order to measure these changes in the

form of a score for an individual’s seasonality (1). The most

commonly used tool for assessing seasonality is the Seasonal

Pattern Assessment Questionnaire (SPAQ) developed by (1) for

the diagnosis of SAD. Presently, the SPAQ is administered as

a screening tool rather than a formal diagnosis (6) as SAD

requires a clinical diagnosis based on standardized criteria,

such as those found in the DSM-5 (7). The SPAQ allows to

calculate a global seasonality score (GSS) which is higher when

individuals indicate large fluctuations of sleep, social activity,

mood, weight, appetite, and energy. The SPAQ is the most

widely used questionnaire to assess seasonality; For example,

a systematic review yielded that 46 out of 55 samples were

examined with the SPAQ (8).

Seasonal and non-seasonal depression are supposed to share

the same cognitive vulnerabilities (9–11). The level of automatic

thoughts and dysfunctional assumptions in individuals with

SAD are comparable to the elevated scores of patients with non-

seasonal depression (9). Furthermore, patients with SAD and

those with non-seasonal depression might exhibit a similar style

in negative attributions (10).

People being vulnerable to the onset of depression

are distinguished from non-vulnerable people only if being

confronted with certain stressors (12, 13). Another study

confirmed the role of cognitive vulnerabilities in combination

with sad mood induction, and that dysfunctional attitudes were

more severe after mood induction (11). However, no prior

studies included mood induction when examining individuals

with SAD.

Electroencephalographic (EEG) studies have provided

promising results in identifying possible indicators of

psychological states and psychiatric disorders, such as

depression and the cognitive processes associated with the

condition (14–16). Individuals suffering from major depression

disorder were reported to show lower absolute power in the

electroencephalogram (EEG) in the frontal lobe compared to

healthy controls, in all frequency bands but mainly in the alpha

range (17). Alpha activity has been associated with emotional

experience (18), self-reflection (19), and has shown a negative

relationship with cognitive function and attention (20).

Asymmetrical alpha band activity between the frontal

hemispheres has been found to be a likely indicator of

depression, with depressed individuals having relatively higher

alpha power in the left hemisphere compared to healthy controls

(21–23). The frontal lobe was also reported to respond to

sad mood induction (24–26) or to predict responses to mood

induction (27), but it was argued that the dispositional state,

examined under resting conditions may be less conclusive than

the measurement under specific emotional contexts, which

allows capturing emotional responses (25).

Lowered alpha activity in the prefrontal cortex is

especially thought to predict higher tendency to ruminate

(28). The relevance of the frontal cortex as well as the

alpha frequency range for mood disorders points to the

role of cognitive control over negative thoughts. High alpha

power is acknowledged to reflect active inhibition (29).

Therefore, the relative enhancement of alpha power in the

left hemisphere can be interpreted as reduced cortical activity.

It was theorized that hypoactivation of the left frontal area

leads to ruminative tendencies and consequently to negative

emotional interpretation (30). The frontal cortex is also

relevant for cognitive flexibility (31), which has been reported

to be impaired in individuals with depression (32). It was

suggested that individuals with major depressive disorders

exhibit ruminative and negative automatic thoughts because

being cognitively inflexible in a negative emotional context

(33). Depressed individuals exhibit a tendency to pay greater

attention to adverse stimuli, and this tendency was linked to

an abnormal activation in the lower left frontal cortex (17, 34).

Abnormalities in the activation or structure of the emotion

circuit have been suggested to underlie depressive disorders,

including the prefrontal cortex, anterior cingulate cortex,

hippocampus, and amygdala (35).

In addition to alpha abnormalities, abnormal

synchronization of theta and beta oscillations was suggested

to reflect unstable states of cognitive processing, specifically of

working memory in individuals with depression (36). Lower

power in the alpha and theta range has been reported during

mind wandering (37). Moreover, increases in the delta band

are generally related to pathology such as mental slowing in

dementia (38), as well as psychopathology (39).

Frontal EEG asymmetry has also been studied during

induced mood states (40). The induction of sad mood is

related to asymmetry as compared to the induction of euphoria

(41), and the level of asymmetry is related to the level of

negative affect (27). A review summarized that it is likely

that the hypoactivation of the left frontal lobe in response to

negative stimuli reflects a predisposition to mood disorders (40).

However, several findings contradict this point of view (25, 42).

Frontal alpha asymmetry seems to be subject to seasonal

variation (43). Asymmetry of spectral EEG-power in frontal and

parieto-temporal networks was documented also in individuals

with SAD (44–47). Patients with SAD showed lower delta, theta,

and alpha activity than controls (46, 47). In contrast, in remitted

patients, an increase in theta power has been noted globally

compared to controls (46). A similar pattern with lower EEG
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power can be found in patients with depression (17). This

suggests that the brain activity changes in SAD and non-seasonal

depression reflecting a similar mechanism of a cognitive

instability. However, the rather small samples of previous studies

warrant rigorous replication of these findings. Studies in healthy

controls showed that there is seasonal variation of beta and alpha

power, with especially high amplitudes in summer (48, 49).

When discussing EEG studies on SAD one should critically

note that SAD is more common at young age (4, 5, 50), while

EEG bandpower changes with age in so far as the dominant

rhythm—usually alpha—shifts to a lower frequency range (51).

This shift consists typically of higher power in lower frequency

ranges (delta-theta) and lower power in higher frequency

ranges (alpha-beta). Since depressive states coincide with lower

power in the alpha range, as well, it is necessary to consider

a potential interaction between age and seasonality when

examining abnormalities in brain activity related to seasonality.

Frontal power asymmetry is stronger in young healthy controls

as compared to individuals with major depression, but the

difference diminishes and even reverses with age (52). Whether

or not differences in brain activity between individuals who are

vulnerable to experience SAD vs. those who don’t also depend on

age has not been investigated, yet. Furthermore, no EEG research

has been conducted on induced sad mood in individuals who

score high on seasonality indices in order to identify potential

neurophysiological biomarkers for SAD. Especially studies

comparing brain activity of individuals with high seasonality

during remission to controls with low seasonality are rather

rare. The differences found between people with and without

SAD in winter-time might be due to physiological changes

induced by the winter’s darkness that are evident only in

those individuals with high seasonality. However, it would be

more useful to detect differences between people with and

without high seasonality in a season with more daylight. In

other words, detecting neurophysiological differences between

patients with andwithout SAD already in summer could indicate

whether predispositions exist or not. Those cognitive processes

that induce sad mood might potentially distinguish between

individuals with high or low seasonality even during remission

and support the understanding of cognitive vulnerabilities

in SAD.

The novel contribution of the present study was, thus, (1)

that we examined a sample with a broad age range as compared

to young participants, only, (2) we examined them during late

summer/early fall instead of winter, and (3) we used a procedure

to induct sad mood. With this setup we aimed to answer the

following questions:

• How is a potential interaction of age and seasonality

reflected in EEG band power? Remission states of SAD

come along with higher theta power. Seasonality is more

common among younger individuals, and EEG band power

exhibits increase of power in slower compared to faster

rhythms with age. We expect a similar effect of high

seasonality and higher age on EEG band power, with higher

power in lower frequency ranges (delta-theta) and reduced

power in higher frequency ranges (alpha-beta).

• How does EEG band power change during induced

sad mood in people with high-seasonality? We expect

participants with high seasonality to show a larger change

during the induction of sad mood in the form of a stronger

broadband decrease in EEG absolute power, but especially

in frontal alpha.

2. Methods

This data was also analyzed in a previously published study

by the same authors (53), where more details on the study parts

that were not analyzed in the present report can be retrieved.

2.1. Ethics

This study was approved by The National Bioethics

Committee which confirmed our application on May 28th 2019

(study number 19-090-V1). All who worked on this study

signed a non-disclosure contract. We obtained written informed

consent for participation from all participants.

2.2. Recruitment

Recruitment was done between June and September 2019

via publication of a webform on the University website and

by posting the link to that webform on social media. The

biggest outreach was obtained by sending out invitation emails

to psychology students of the University of Akureyri. Psychology

students could use the participation certificate obtained after

completing the study as a compensation for physical attendance

at a hands-on session in a seminar. Overall, 23 psychology

students participated in the study. Inclusion criteria were a

minimum age of 18 along with a sound mind and enough

judgement to give informed consent. Proficiency in Icelandic

was a requirement for participation in the study as all materials

used were in Icelandic. Thus, we excluded all participants that

did not speak Icelandic fluently. The study at hand was part of

a more extensive project, where participants were required to

complete online-follow up surveys. For completing all phases of

the study, participants were offered a 4000 ISK gift certificate.

2.3. Questionnaires

For the purpose of assessing mood and behavioral change

according to the seasons participants completed the SPAQ (1).
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The version used in this study was validated in Iceland against

a diagnostic clinical interview with a resulting sensitivity of

94%, a specificity of 73% and a combined positive predictive

value of 45% for SAD and subsyndromal SAD (54). The

questionnaire has proven to be an effective screening tool for

SAD, is internal consistent (α = 0.74–0.81), reliable (with a

test-retest reliability of 0.76 at an interval of 2 months), and

widely used in SAD research compared to similar measures

to which it was compared, such as the inventory for seasonal

variation (55). However, a high seasonality score does not

equal a diagnosis of SAD according to the DSM-5 criteria

(56). To obtain participants’ global seasonality scores (GSS),

we calculated the sum of the global seasonality questions in

the SPAQ. As a non-clinical estimate for SAD, we grouped

participants into low- and high seasonality by means of the

Kasper criteria (57), according to which SAD is defined as a GSS

above 10. A larger score indicates that the individuals report to

be more likely to experience seasonal variation in mood, energy,

weight, appetite, sleep, and social activity. We did not further

distinguish between SAD and subsyndromal SAD, as the ability

of the SPAQ to differentiate between these two subsamples was

found to be rather poor (54).

In addition, participants completed the Depression Anxiety

Stress Scale (DASS, 88), Patient Health Questionnaire (PHQ,

87), and Bergen Insomnia Scale (BIS, 58). The BIS can be

used to measure insomnia according to the formal and clinical

diagnostic criteria (DSM- IV-TR) and consists of six items.

The first three items assess to sleep onset, sleep maintenance,

and early morning awakening. The last three items ask about

not feeling adequately rested, experiencing daytime impairment,

and dissatisfaction with sleep. The scale can be scored with

a total composite score ranging from 0 to 42. The original

scale was validated by (58) and the Icelandic version had been

translated and validated previously (50).

Participants were also asked about their age, gender,

education, handedness, and first language.

Mood was measured on a visual analog scale as relation

between the indicated position to the total length of the bar,

measured in millimeters. The total length was 150 mm with

arrows indicating increase strength of mood from the middle

of the scale with the left arrow indicating sad mood and

the right arrow indicating happy mood. This tool was used

previously in similar sad mood induction task studies (59, 60).

Cognitive flexibility was measured as reaction time difference

between congruent and incongruent conditions in the Stroop

task. For this purpose we subtracted the mean of reaction time in

congruent trials from the mean of reaction time in incongruent

trials, and we grouped participants by a median-split.

2.4. Procedure

Measurements were performed at the EEG-laboratory of the

University of Akureyri between end of July and beginning of

October 2019. Experimenters were present in the laboratory

throughout the whole procedure. After completion of informed

consent, participants answered all questionnaires mentioned in

Section 2.3 and the EEG-cap was mounted.

The first two conditions recorded were at rest for 3 min with

eyes open and 3 min with eyes closed, with the screen of the

stimulus computer turned off and dimmed light. Subsequently

participants performed an emotional pictures memory task,

which was not used for the present study.

The next condition was a Stroop task where participants

were asked to indicate the font color of words displayed on the

stimulus computer by pressing a correspondingly colored key on

a keyboard where the color of the font corresponded to the word.

There were 105 congruent trials and 210 incongruent trials

presented in a randomized order, with an inter-trial interval of

1 s + a jitter of 0-10 screen flip intervals during which a central

fixation cross was presented.

In the final condition participants first received a printed

three part form containing the questions about current mood

in the form of the visual analog scale and measurement

of induced rumination that was not used for the purpose

of the present study. Time spent on answering the written

questions on mood and rumination did not count toward the

indicated time-periods. All instructions were given verbally

through headphones or on the screen of the stimulus

computer. Firstly, participants rated their current mood on

the visual analog scale and state rumination via a short

state rumination inventory questionnaire. Next, participants

listened to an 8 min musical piece, thought to evoke

temporary sadness or dysphoria. Participants were asked to

freely experience any emotions they might feel. We used a

musical excerpt from Prokofiev’s “Russia Under the Mongolian

Yoke”, remastered at half speed. This has been used and

found to be effective in inducing a transient dysphoric mood

in previous research on cognitive vulnerability to depression

(60–62).

Immediately after the music had finished, participants rated

their current mood again on the visual analog scale. Then,

they were then instructed to wait for 5 min for a challenging

cognitive task. From this 5 min free thinking period we extracted

the first 3 min for EEG analysis. However, no cognitive task

followed but the waiting period served as a free contemplation

time in anticipation of a task. This instruction for the free

thinking period is a new procedure and was chosen in order

to try to keep participants focused on themselves and the

upcoming experiment and to counter that their mind starts to

wander about other issues such as their surrounding. Finally,

participants rated their current mood for a third time on

the visual analog scale and completed the rumination state

evaluation via the short state rumination questionnaire for a

second time. After this, participants were informed that no

difficult task would follow and that the study was completed.

To sum up, for the present study, we used the EEG data

recorded during 3 min rest with eyes open condition and during
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the first 3 min of the free-thinking period after listening to the

sad music, which was intended to induce sad mood. Due to

the emotional pictures memory task and Stroop task that were

conduced in between these two conditions, the free-thinking

period followed about half an hour after the resting condition.

We did not control for drowsiness/wakefulness but participants

were asked to keep their eyes open during both of these periods,

to keep the overall background condition comparable and to

prevent participants from falling asleep.

2.5. EEG recording and analysis

EEG data was gathered using BrainVision BrainAmp

Recorder and Amplifier (Brain Products GmbH, Gilching,

Germany) and digitized at a sampling rate of 256 Hz. Recording

was conducted using 32 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3,

P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, FC1, FC2, CP1,

CP2, FC5, FC6, CP5, CP6, FT9, FT10, TP9, TP10) referenced

to FCz and grounded at AFz. One additional electrode served

as lower vertical electrooculogram. Electrode positioning was

in accordance with the standardized international 10-20 system

by using an EasyCap. Electrodes were filled with electrolyte

containing a mild abrasive (OneStep Abrasive Plus) in order to

achieve low impedance of <10k� in all channels.

We analyzed EEG-data from 3 min rest with eyes open

condition and the first 3 min of the free-thinking period

after listening to the sad music. EEG-data was pre-processed

using BrainVision Analyzer (Brain Products GmbH, Gilching,

Germany). Data was filtered from 0.5 to 30 Hz with zero-phase

shift Butterworth filters. Then, re-referencing was performed

by averaging the activity of all electrodes and subtracting this

mean from all other channels. Next, an independent component

analysis (ICA, infomax restricted) was performed in order to

automatically remove eye-blink artifacts. The vertical lower

oculogram was used as a vertical activity channel. The whole

recording epochs per condition were fed into the algorithm,

i.e., at least 3 min per condition as the shortest condition was

3 min of rest with eyes open or closed. The ICA (63) is an

algorithm that separates the EEG signals into the same number

of temporally maximally independent component time courses.

The ocular component represents eye movements and blinks

and, thus, has a characteristic pattern in time and topography,

which is used for the automatic selection of the component.

To this end, the ocular correction ICA first performed a blink

marker placement by searching the oculogram channel for

blinks and marking them according to the mean slope algorithm

(64). For identification of components related to the vertical

electrooculogram only the time intervals that are identified

by this algorithm as blinks are used. Then, the share of each

ICA component in the variance of the selected ocular channel

activation was calculated, which was then excluded from back-

projection. As a last pre-processing step, a raw data inspection

was done by applying the standard thresholds as implemented

in Brain Vision Analyzer, in order to automatically identify

and exclude movement and muscle artifacts: check gradient:

the maximal allowed voltage step is 50 microvolt/ms; check

difference: the maximal allowed difference of values in intervals

of 200 ms: 200 microvolt; lowest activity allowed in 100 ms

intervals is 0.5 microvolts; bad events were marked ±20 0 m

around the identified artifacts. The two 3 min recordings were

divided into 2 s segments. For each segment, we calculated the

Fast Fourier Transform (FFT). The FFT of all segments that

were not marked as containing artifacts were averaged for each

participant, separately for the two conditions rest and sad mood

induction. From the average FFT we extracted average band

power in the delta (1–4Hz), theta (5–7Hz), alpha (8–13Hz), and

beta (14–30 Hz) range for statistical analysis. EEG channels were

grouped for lobes and hemisphere for the purpose of conducting

an analysis of variance with factors lobe and hemisphere, but

used individually for post-hoc illustrations of results. When

more than one electrode was recorded for one such region,

averaging was performed. These regions were frontal-left (Fp1,

F3, F7), frontal right (Fp2, F4, F8), central left (C3), central

right (C4), parietal left (P3, P7), parietal right (P4, P8), temporal

left (T7), temporal right (T8), occipital left (O1), and occipital

right (O2).

2.6. Statistical analysis

For comparing psychometric characteristics between the

group with low and high seasonality we used non-parametric

tests because all data was ordinal, and thus, no parametric tests

are allowed. Therefore, we calculated 7 non-parametric Mann–

WhitneyU-tests. The results were interpreted at the Bonferroni-

corrected level of significance, that is, p < 0.007.

We tested for behavioral effects of mood induction with

non-parametric repeated measures ANOVA with a parametric

bootstrap (65) for the change in mood. When testing

for interactions between seasonality and condition we also

controlled for age and cognitive flexibility (31–33). Cognitive

flexibility was added as a grouping variable according to a

median split of reaction time increase between the congruent

and incongruent color naming condition in a Stroop task.

Age was also used as a grouping variable with people being

up to 50 years vs. those who were older. Because there were

only 18 participants older than 50, the additional combination

with low vs. high seasonality and cognitive flexibility left too

few participants in the subcategories of older participants

with higher seasonality and low vs. high cognitive flexibility.

Therefore, two separate analyses of variance were conducted,

one with seasonality as a grouping factor and one with

age as a grouping factor. Therefore, results were interpreted

at the Bonferroni-corrected level of significance, that is

p < 0.025.

The EEG data was evaluated using a semi-parametric

repeated measures ANOVA with a parametric bootstrap (65)
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with between-subjects factor GSS (low vs. high seasonality),

and within subjects factors hemisphere (left vs. right), lobe

(frontal, central, temporal, parietal, and occipital), frequency

(delta, theta, alpha, and beta), and condition (rest vs. sad

mood induction). Additionally, we included factor age into the

analysis, since EEG changes with age. We divided the sample

into participants up to 50 years and participants older than

50 years, because prior EEG-research on SAD investigated

only subjects up to age 50 (46) and because prior research

indicates that 50 is a significant turning point in EEG signal

properties (66).

We chose a semi-parametric repeated measures ANOVA

that only requires metric data, but allows for non-normality

and variance heterogeneity (65). This method is implemented

in the function RM of the R-package MANOVA.RM (67). We

used it with the parametric bootstrap with 1000 iterations. The

parametric bootstrap showed the most favorable performance

in unbalanced designs like in our case where low seasonality is

much more frequent than high seasonality and, additionally, the

older subgroup shows fewer cases of high seasonality than the

younger subgroup (65). The method was shown to be robust

and advantageous in unbalanced designs and for a large number

of factors as well as EEG data previously because these data

typically violate assumptions of classical methods (65).

For post-hoc analyses of significant interactions and effects

we used z-values from Wilcoxon rank sum test or signed rank

test for creating topographic plots of the data.

3. Results

3.1. Sample

A total of 119 participants were recruited for this study.

For the statistical analysis, 3 participants were excluded due to

missing data in the EEG recording. Furthermore, 2 participants

(nr. 2 and nr. 76) did not complete the SPAQ and were therefore

excluded. The final sample consisted of 114 participants, 10

tested in second half of July, 28 in August, 72 in September, and

3 in the first week of October. It should be noted that the weather

in the Icelandic summer between end of July and beginning

of October is comparable to the central-European fall between

September and November.

Participants’ age ranged from 18 to 66 years with the average

age of 33.75 (SD=13.43) years. The sample consisted of 92

women and 22 men. The odds ratio for gender to suffer from

SAD is 1.8 according to (68) justifying an overrepresentation

of female participants. However, in our sample there were even

more women to men, due to the recruitment among psychology

students which are about 90% women, and also the increased

availability of female voluntary participants. Eight participants

were left handed, and three participants indicated to have no

preference for left or right.

In the sample, 9.91% had completed primary education,

only, 55.86% had higher education entrance qualification, 6.31%

had learned a trade, 18.92% had completed undergraduate

education at a University, and 9.01% had completed master or

doctoral level education at a University. The native language was

Icelandic in 95% of the sample, however, all participants were

fluent in Icelandic.

We found that 57.66% reported taking any kind of

medication regularly. However, this included also oral

contraceptives, which explained major part of this large

proportion. Furthermore, 25.44% consumed tobacco regularly.

It should be noted that this consumption includes not only

smoking, but also vapes, e-cigarettes, and chewing tobacco.

While 20.72% reported never drinking alcohol at all, 36.94%

reported drinking once a month or less, 36.94% reported

drinking two to four times a month and only 5.4% reported

drinking two to three times a week or more frequent drinking.

Participants reported drinking on average 2.83 cups of coffee or

caffeinated drinks per day (median = 2; SD = 2.54). The hours

of sleep in the night before the experiment were on average 7.10

h (median = 7; SD = 1.70).

3.2. Psychometric and grouping data

Participants were divided into two groups based on an

estimated likelihood of them experiencing mild to moderate

seasonal affective disorder, measured by the GSS obtained from

the SPAQ. According to (68) and (3), which used the same SPAQ

questionnaire in Icelandic as we did in our study and where SAD

was determined by means of the Kasper criteria (57) with a GSS

score of 11 or higher. Therefore, in our study a score of≤10 was

categorized as a low seasonality score and a score of >10 as a

high-seasonality score. Out of 114 participants that completed

the SPAQ, 37 had a high GSS and 77 had a low GSS.

Descriptive statistics for the psychometric scales, separately

for the two groups as well as results from Mann–Whitney

U-tests comparing the two samples are shown in Table 1.

3.3. Behavioral responses to mood
induction

The experiment involved a mood induction phase (listening

to sad music) and a free thinking period. We measured mood

before (t1) and after (t2) listening to sad music and after the

free thinking period (t3). Mood ratings and cognitive flexibility

measures in the form of reaction times for congruent and

incongruent conditions in the Stroop task are given in Table 2.

There were 17 participants who did show an absolute increase

of mood according to the visual analog scale. However, given

the inaccuracy of such a scale, we investigated how many

actually meant that their mood did not change. Out of these
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TABLE 1 Psychometric characteristics of the sample separately for the low and high-seasonality groups.

GSS≤10 GSS>10 U-Test

Scale Mean SD Mean SD z p

age 36.43 14.07 29.34 10.30 2.48 0.013

GSS 4.53 2.87 14.11 2.64 −8.64 <0.001

BIS 13.36 8.42 21.49 7.77 −4.68 <0.001

PHQ 4.97 3.67 10.80 4.46 −6.00 <0.001

DASS depression 2.97 3.68 5.72 4.05 −3.96 <0.001

DASS anxiety 2.18 2.60 6.49 4.65 −5.07 <0.001

DASS stress 5.40 4.15 9.59 4.20 −4.45 <0.001

GSS, global seasonality score; DASS, depression/anxiety/stress scale.

PHQ, patient health questionnaire; BIS, Bergen insomnia scale.

Bold p-values: significant at Bonferroni-corrected level p < 0.007.

TABLE 2 Mood induction reports and cognitive flexibility separately

for the low and high-seasonality groups.

GSS≤10 GSS>10

Scale Mean SD Mean SD

Mood t1 113.43 25.65 92.93 24.90

Mood t2 80.23 38.44 68.69 36.43

Mood t3 98.24 32.85 74.08 32.65

RT congruent 778 170 749 187

RT incongruent 847 193 811 220

t1, t2, t3: time points during experiment.

RT: reaction time in milliseconds.

17 participants, 6 had a change smaller than 5 mm, 5 had a

change between 5 and 10 mm, 2 had a change between 10 and

20 mm, and only 4 had a change larger than 20 mm. Thus, there

were 4 with an atypical change in mood during mood induction.

Among them, only 2 showed more positive mood also at t3.

According to the ANOVA, there was a significant effect

of time, i.e., an) induction of sad mood from t1 to t2 and t3

[F(1.90,Inf ) = 6.38; p = 0.006] as well as a significant group

effect, thus, lower mood in participants with higher seasonality

[F(1,364.85) = 13.30; p < 0.001]. Furthermore, an interaction

indicated that there was a significantly stronger effect of mood

induction in the group with higher seasonality [F(1.9,Inf ) = 8.83;

p = 0.001], but there was no three-way interaction with cognitive

flexibility. However, there was a significant interaction between

cognitive flexibility and mood induction [F(1.89,Inf ) = 4.85; p =

0.008], such that participants with a smaller increase in reaction

time in the Stroop task responded more intensely to mood

induction. Younger participants showed lower mood [F(1,115.87)
= 7.05; p = 0.022]. The interaction between age and cognitive

flexibility was not significant after Bonferroni-correction for

multiple comparisons.

3.4. Brain responses to mood induction

In order to test the interaction of effects between

seasonality (two groups by GSS, low and high) and age(<51

and older) on brain activity at rest and during mood

induction (factor condition) we performed a semi-parametric

ANOVA. Furthermore, the model included EEG-frequency

band, hemisphere, and brain lobe as factors. The results

of the semi-parametric ANOVA with p < 0.1 are shown

in Table 3.

There was a significant effect of seasonality, such that

high-seasonality participants had a higher overall average

power in EEG oscillations (mean = 0.51; SD = 0.13)

than low-seasonality participants (mean = 0.50; SD = 0.12).

This difference was calculated across all frequency ranges

and regions and is therefore rather small, as there were

frequency ranges with opposing differences and the difference

depended additionally on age (see Figure 1). The older

group had a lower overall average EEG activity (mean =

0.44; SD = 0.17) than younger participants (mean = 0.50;

SD = 0.12). There was a significant interaction between

age, seasonality, and frequency (Figure 1). In the younger

group, high-seasonality participants exhibited larger power

(average between rest and mood induction) in the delta,

theta and beta frequency band but lower power in the

alpha range, especially in the left temporo-parietal region.

In the older participant group, high-seasonality participants

exhibited lower power in all frequency ranges, especially in the

alpha range.

There was also a significant interaction between seasonality

and frequency, such that in all frequency bands the activity

was higher in high-seasonality participants except for the

alpha band, where the activity was lower in that group

(see Figure 1). The higher power in high-seasonality

participants was most pronounced in the delta band,

irrespective of condition, while higher power in low-seasonality
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TABLE 3 ANOVA-type semi-parametric analysis of variance with

parametric bootstrap on EEG measures for factors condition (within:

rest vs. after mood induction), seasonality (between: GSS low vs. high),

age (between: young vs. old), hemisphere (within: left vs. right), lobe

(within: frontal, central, temporal, parietal, occipital), frequency

(within: delta, theta, alpha, beta).

Factor ATS df1 df2 p-value

GSS 11.05 1 693.03 <0.001

Age 96.13 1 693.03 <0.001

GSS×age 30.02 1 693.03 <0.001

Lobe 87.42 3.24 693.03 <0.001

Age×lobe 4.14 3.24 693.03 .002

Frequency 1218.38 1.97 Inf <0.001

GSS×frequency 10.51 1.97 Inf <0.001

Age×frequency 29.79 1.97 Inf <0.001

GSS×age×frequency 6.72 1.97 Inf <0.001

Lobe×frequency 39.05 5.85 Inf <0.001

Age×lobe×frequency 1.40 5.85 Inf .018

Condition 185.17 1 Inf <0.001

GSS×condition 3.23 1 Inf .089

Age×condition 4.70 1 Inf .039

Lobe×condition 46.34 2.53 Inf <0.001

Frequency×condition 239.77 2.23 Inf <0.001

GSS×frequency×condition 3.08 2.23 Inf .027

Age×frequency×condition 4.73 2.23 Inf <0.001

Lobe×frequency×condition 18.73 5.54 Inf <0.001

Only effects with p < 0.1 are shown.

ATS, ANOVA-type statistic; df, degrees of freedom; GSS, grouping by global seasonality

score; condition, rest vs. mood induction.

participants in the alpha band was most pronounced during

mood induction.

The effect of mood induction was significant with a higher

activity after induced mood than during rest, especially in the

delta range and inferior frontal regions for low seasonality

participants, while the largest difference was found in the

alpha range for high-seasonality participants with lower activity

after mood induction than during rest (see Figures 2, 3). In

other words, the alpha band desynchronizes in response to

mood induction, which is stronger in participants with high-

seasonality. In the theta range the central region showed

a desynchronization during induced sad mood while higher

power was found in the frontal area.

4. Discussion

In this study, we examined brain activity in the delta, theta,

alpha, and beta frequency bands in low and high-seasonality

individuals during rest and mood induction. In addition, we

controlled for age effects. Table 4 summarizes the main findings.

FIGURE 1

Topographical maps of activity distribution: colors represent
di�erence between participants with low and high global
seasonality score, indicated by approximated z-values from a
Wilcoxon rank sum test, for frequency ranges from top to
bottom: delta, theta, alpha, beta; and for age groups <51 years
(left) and >50 years (right). Negative z-values indicate lower
activity in the low- compared to high-seasonality group,
positive z-values indicate higher activity in the low- compared
to high-seasonality group.

4.1. Brain activity, seasonality, and age

We found significant overall difference in brain activity

according to seasonality, but also significant effects of age. The

aging effect in the EEG was to be expected as with age, slowing

of the EEG occurs, and a relative increase of delta compared

to higher frequency ranges can be observed (69). Our results

showed opposing directions of effects in the younger compared

to the older sample. Our main interaction of age and seasonality

warrants an attempt of an interpretation, i.e., younger, high-

seasonality participants exhibited overall larger power, while

in the older participant group, high-seasonality participants

exhibited overall lower power, especially in the alpha range.

Such a reversal effect that appears to be caused by age was

previously documented also in patients with major depressive

disorder (52) where young healthy controls showed higher

frontal asymmetry in the delta, alpha, and beta frequency range,
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FIGURE 2

Topographical maps of activity distribution: colors represent
di�erence between participants with low and high global
seasonality score, indicated by approximated z-values from a
Wilcoxon rank sum test, for frequency ranges from top to
bottom: delta, theta, alpha, beta; and for conditions rest (left)
and after mood induction, during the free-thinking period
(right). Negative z-values indicate lower activity in the low-
compared to high-seasonality group, positive z-values indicate
higher activity in the low- compared to high-seasonality group.

while with age, major depressive disorder patients showed larger

frontal asymmetry. While the higher activity in the theta band

for young SAD patients in remission was reported previously

(46), nothing is known so far about effects of seasonality in the

EEG of older individuals. The increased activity in the younger

sample could be seen as an overcompensatory effect during

summer, as during depressed states, the amplitudes of brain

activity get lowered. Another possible view on this finding is

supported by previous reports on higher power in the alpha and

beta band in a general population in the summer (48, 49). Our

finding that even higher amplitudes are found in the subsample

with high seasonality score could reflect the special situation

of high-seasonality individuals overreacting to the bright light

conditions in the summer. Indeed, this finding was not reported

in an earlier study (49) where seasonality did not interact

with seasonal changes in EEG power. However, our study was

conducted in Iceland with abundant amounts of daylight in the

FIGURE 3

Topographical maps of activity distribution: Colors represent
di�erence between rest and after mood induction, indicated by
approximated z-values from a Wilcoxon signed rank test, for
frequency ranges from top to bottom: delta, theta, alpha, beta;
and for groups with low (left) and high (right) global seasonality
score. Negative z-values indicate lower activity during rest
compared to mood induction, positive z-values indicate higher
activity during rest compared to mood induction.

summer, whereas (49) examined participants in southern Italy

(Napels), where some hours of darkness are achieved during

the night. This reactivity might reverse with age because the

absolute power in the alpha range decreases naturally with age.

Another potential explanation for the interaction with age are

changes in sleep buildup that differs between younger and older

participants, as the need for sleep decreases with age. The two

groups differed also significantly by quality of sleep according to

BSI, which might confound these findings. Sleep disturbances

in summers with long photoperiods might be more common

in people who show high degrees of seasonality and might be

even more common in the elderly subgroup. This interpretation

is also supported by prior research which demonstrated a more

rapid buildup of subjective sleepiness and EEG theta-alpha

activity in patients with SAD compared to a control group (70).

Therefore, we strongly recommend controlling for age in

future studies. Previous research was conduced with participants

aged 30–50 years (46) or 28–55 years (47). Our study also
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TABLE 4 Summary of the main findings of the study.

Frequency

range

Seasonality Seasonality ×

age

Mood

induction

Delta ↑ ↓ ↑

Theta ↑ ↓ ↑↓

Alpha ↓ ↓ ↓

Beta ↑ ↓ ↑

↑, increased power; ↓, decreased power.

emphasizes that, although the condition is rather rare in

the elderly, further research is needed on the specific effects

seasonality might have in a senior population.

4.2. Brain activity and SAD vs. seasonality

In contrast to studies examining active SAD (46, 47), we

found increased power in all frequency bands except for the

alpha band in young high-seasonality participants. Thus, our

results are in line with prior reports on SAD during remission,

where young patients demonstrate higher band power in the

delta, theta, and alpha band compared to controls (46). EEG

studies on brain activity in major depressive disorder patients

have also indicated a brain-wide decrease in theta activation as

well as an increase in higher frequency beta activation (71).

It is noteworthy that although we included hemisphere as a

factor, there was no significant effect or interaction related to it,

which is unexpected. Prior research would have suggested that

our data could show an interaction between seasonality, lobe,

and hemisphere, as frontal EEG asymmetry has been a hallmark

of depression (21–23). But our sample was examined during

remission, which might explain the lack of such an effect.

4.3. Brain activity during mood induction

High-seasonality individuals showed a larger and more

widespread difference in the alpha range between rest and

sad mood induction compared to low-seasonality individuals.

Studies on rumination in major depressive disorder have

established that the frontal lobe is a critical area for cognitive

processes linked to depressive symptoms (14). Specifically, the

induction of sad mood is supposed to evoke frontal asymmetry

(40, 41). However, contrary to expectations we did not find any

interaction between hemisphere and condition in our study.

The relatively mild dysphoria induced by the procedure chosen

might explain the lack of a clear effect in our data.

An analysis of the change in brain activity from rest to

induced sad mood revealed larger frontal activity in the delta

and theta frequency range during sadmood induction compared

to rest.

Frontal EEG activity is greater when emotion regulation

is efficient, i.e., when the response to sad mood induction is

smaller (25).

In addition to enhanced delta and theta activity, we also

found enhanced frontal activity in the beta range during mood

induction. Beta oscillations play a crucial role in both positive

and negative emotional tasks, as well as cognitive tasks (72).

Increased activation of theta is thought to underlie top-down

cognitive control (73), evaluation of goal directed behavior (74),

and cognitive workload (75).

4.4. Limitations

As a result of the limited time frame of assessments during

summer and location of the study in a small town with limited

access to large numbers of potential participants an equal

distribution of seasonality, age, gender and other demographic

variables did not prove possible. Furthermore, substantial

percentage of the sample consisted of university students which

usually are a more homogeneous group than the general

population. Especially the gender distribution was heavily biased

toward women, as more women volunteered for participation.

The low number of participating men also hindered us from

taking gender into account as a factor in our statistical model.

Unequal group sizes were compensated by the choice of

statistical tests that are valid under conditions with unequal

sample sizes. Nevertheless, a limitation of generalization must

be considered, such as the results might be more representative

for women than men. So far, sex differences were examined

with respect to SAD and seasonality only in terms of the higher

prevalence of seasonal symptoms among women (50), while the

knowledge about interactions between sex, seasonality and EEG

activity is rather limited. According to our recently published

longitudinal study, sex has not predictive value when used

alone or in combination with the EEG for predicting winter-

time depression based on summer-time measurements (53).

However, sex is known to affect EEG band activity insofar as it is

possible to derive the subject’s sex from EEG biomarkers (76, 77).

Future studies with well-balanced samples should investigate

the potential role of sex in the moderation of EEG band power

interactions with seasonality.

When interpreting the results of this study, it is also

important to keep in mind that the measure of seasonality is

based on a screening and not a formal clinical diagnosis. SAD

is a type of seasonally recurrent major depression that requires

diagnosis based on clinical criteria, such as those found in

DSM-5 (6). In addition, the cut-off point of GSS scores used

to distinguish high and low seasonality individuals does not

necessarily serve as realistic categorization of SAD but rather an

indication of a possible problem (6).
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Furthermore, we did not apply clinical exclusion criteria,

such as prior personal history of depression, prescribed

medication that is active on the central nervous system, use

of stimulants, presence of psychopathology, substance abuse,

history of neurological diseases such as multiple sclerosis or

epilepsy, previous brain surgery or head trauma. Therefore, the

data of some participants might not be fully representative for

a healthy population, but could be biased. The non-clinical

nature of the study and, therefore, the lack of a diagnostic

interview prevented us from ruling out additional diagnoses

that may be not related to seasonality or depression. Therefore,

we must also consider a bias by such conditions. There are

other mental disorders that follow a seasonal pattern, such

as schizophrenia (78), anxiety (79), bulimia nervosa (80), and

posttraumatic stress disorder (81), which might interfere with

the results.

Another limitation is the choice of the mood induction

procedure, where we combined verbal instructions and

a sad musical piece. Although previous studies have

supported this procedure (60–62), the question remains

whether interindividual differences in music taste might

affect the result. On the other hand, there is evidence

for interindividual differences in EEG-responses to self-

selected music for different purposes (i.e., activating vs.

relaxing music) (82) such that letting participants choose

their favorite sad music might not have led to a more

homogeneous result.

Finally, this study was conducted in a cross-sectional

design, while longitudinal designs are needed to confirm the

relation between EEG correlates of induced sad mood in

one season, i.e., summer, and depressive symptoms in the

season when SAD typically occurs, i.e., winter. Such data

was published recently, showing that cognitive vulnerabilities

are better suited to predict winter depression, but the

combination of those markers with EEG features can be

advantageous (53).

4.5. Future directions

Recent technological developments go beyond the simple

documentation of regional and frequency differences and

provide automatic means for classification of brain diseases

(83), for example by the use of convolutional neural networks

(CNN) as a means of artificial intelligence for the classification

of patients with major depressive disorder (84), which allow to

determine the most information bearing regions and frequency

bands (85). These methods are most useful when higher-

dimensional features are chosen, such as functional connectivity

measures (86). The disadvantage of CNNs is the need for a

large sample size as their learning ability and generalizability

depends highly on the size of the ground truth. In seasonal

affective disorder, a simple support vector machine classification

can be used to predict winter-time depression based on summer-

time psychological vulnerabilities and EEG-features (53). The

present results might add to the selection of prior knowledge

for future artificial intelligence models, i.e., by adding age to the

feature vector.

5. Conclusions

With respect to the initially posed research questions, we can

draw the following conclusions:

• How is a potential interaction of age and seasonality reflected

in EEG band power? Younger participants with high

seasonality showed increased EEG power in all bands but

the alpha range, while the older group with high seasonality

exhibited decreased EEG power in all frequency bands.

This finding emphasizes that it is important to control for

age in future studies on brain activity in seasonal affective

disorder.

• How does EEG band power change during induced sad

mood in people with high-seasonality? Participants with

high seasonality showed a larger difference in the alpha

band with higher activity during rest compared to

activity during sad mood induction possibly reflecting a

breakdown of inhibition, while low seasonality participants

showed a stronger frontal activity during sad mood

induction across frequency ranges, possibly reflecting

effective inhibition of ruminative thoughts that lead to

sad mood.

Future research can make use of our results and estimate

whether EEG biomarkers during induced sad mood in

combination with the seasonality score in summer could serve

as a predictor for SAD in winter. It is furthermore of interest

whether brain activity during sad mood induction among SAD

patients changes with seasons.
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