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Predictability of Precipitation Over 
the Conterminous U.S. Based on 
the CMIP5 Multi-Model Ensemble
Mingkai Jiang, Benjamin S. Felzer & Dork Sahagian

Characterizing precipitation seasonality and variability in the face of future uncertainty is important 
for a well-informed climate change adaptation strategy. Using the Colwell index of predictability 
and monthly normalized precipitation data from the Coupled Model Intercomparison Project Phase 
5 (CMIP5) multi-model ensembles, this study identifies spatial hotspots of changes in precipitation 
predictability in the United States under various climate scenarios. Over the historic period (1950–2005), 
the recurrent pattern of precipitation is highly predictable in the East and along the coastal Northwest, 
and is less so in the arid Southwest. Comparing the future (2040–2095) to the historic period, larger 
changes in precipitation predictability are observed under Representative Concentration Pathways 
(RCP) 8.5 than those under RCP 4.5. Finally, there are region-specific hotspots of future changes in 
precipitation predictability, and these hotspots often coincide with regions of little projected change in 
total precipitation, with exceptions along the wetter East and parts of the drier central West. Therefore, 
decision-makers are advised to not rely on future total precipitation as an indicator of water resources. 
Changes in precipitation predictability and the subsequent changes on seasonality and variability are 
equally, if not more, important factors to be included in future regional environmental assessment.

Changes in precipitation associated with future climate change will strongly impact ecological processes and the 
utilization of ecosystem services. As projected by the Phase 5 of the Coupled Model Intercomparison Project 
(CMIP5) of the Intergovernmental Panel on Climate Change (IPCC) and the United States (US) National Climate 
Assessment1,2, precipitation in the US is expected to change in a spatially and temporally heterogeneous manner 
in the 21st century3–10. We are currently observing rapid changes in Earth’s hydrological cycle, and plans for opti-
mizing societal infrastructural and environmental resilience in the face of future changes depend on the proper 
descriptions of future precipitation fluctuation and seasonality at the regional scale in this rapidly changing 
world1. Changes in precipitation fluctuation and seasonality will affect resource availability, which will ultimately 
impact biodiversity and the decisions to manage hydrological, agricultural, and ecological systems. Current 
efforts assessing climate change-induced precipitation redistribution focus on long-term temporal trends and 
seasonal patterns. Such predictions are important for well-informed adaptation and mitigation decision-making, 
yet there is also a need to investigate whether the perturbed precipitation patterns will become more or less pre-
dictable (in terms of how seasonal precipitation pattern fluctuate inter-annually) for natural adaptation to take 
place. This has led to a knowledge gap in terms of an ecologically and/or hydrologically meaningful characteriza-
tion of changes of precipitation variability. This study is directed toward providing an initial step toward rectifying 
this knowledge gap.

A variable climate is not necessarily an unpredictable one, as variability consists of both stochasticity and 
cyclicity11. Maximum stochasticity results from perfectly random fluctuation, while a cyclic fluctuation is rep-
resented by a time-dependent occurrence probability. As such, the combination of stochasticity and cyclicity 
defines the likelihood of an expected climatic condition, which in turn defines how predictable a particular pat-
tern is, and the consequent environmental stability/regularity that drives ecosystem structure and functionality. 
Environmental cues are certain predictable factors (e.g. photoperiod, temperature, precipitation) providing reli-
able signals to anticipate optimal agricultural options12,13, breeding conditions14, succession15, wildlife adaptation 
strategies16 as well as human system infrastructure17. In a perturbed climate, such as those simulated under vari-
ous RCP greenhouse gas scenarios, precipitation stochasticity and cyclicity will likely change, resulting in altered 
precipitation predictability from present. Proper understanding of the changes in the precipitation predictability 
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expected to result from global change is fundamental to the sustainable utilization of ecosystem services, and 
presents one of the greatest challenges to humanity in the face of future uncertainty18. The goal of the current 
study has therefore been to characterize the changes in precipitation predictability, so as to gain insights regarding 
changes in the likelihood of recurrent precipitation patterns that control ecosystem dynamics and the provision 
of ecosystem services.

The Colwell index19, also referred to as the constancy/contingency model14, utilizes information theory to 
provide measures of the likelihood of an expected phenomenon to occur, so as to reveal the properties of pre-
dictability nested within the long-term data records (e.g. climate20; species life-history trait evolution16; hydro-
logical flow variation)21. The Colwell index of predictability (P) can be decomposed into two terms: constancy 
(C) and seasonality (S). An environmental phenomenon can be predictable because it has constancy over time  
(i.e. there is little to no magnitude change over any timescale), or because the degree to which the quantity changes 
depends upon season, but is consistent inter-annually (i.e. seasonality)14. The Colwell index thus provides simple 
yet interpretable quantification of stochasticity and cyclicity to improve understanding of precipitation predict-
ability based on observed seasonal and inter-annual variability from existing climate data22,23. Consequently, 
the Colwell index is adopted in this study to explore properties of observed (i.e. Maurer historic dataset)24,25 
and CMIP5-simulated precipitation predictability. Specifically, this study seeks to: 1) provide spatial patterns 
of precipitation predictability over the conterminous US landscape; 2) evaluate the performance of the CMIP5 
multi-model ensemble in simulating precipitation predictability over the period 1950–2005; and 3) identify spa-
tial hotspots of changes in precipitation predictability in the US under various future climate change scenarios 
(i.e. RCP 4.5 and RCP 8.5). This study generalizes and builds on Jiang et al.23, which only investigated spatial pat-
terns of precipitation extremes over the historic period. The term “predictability” used in this study differs from 
traditional understanding of predictability in that it does not reflect the predictive power of modeled precipitation 
based on understanding of the underlying processes and mechanisms, but rather, it is a description of the power 
of past precipitation attributes in both seasonality (contingency) and inter-annual variability within a specific 
time interval (constancy throughout 1950–2005) of observed precipitation itself to predict future precipitation.

Results
Spatial patterns of precipitation predictability.  Clear regional contrasts for the distributions of pre-
cipitation P, C and S are observed (Fig. 1, top row). In general, over the period 1950–2005, precipitation is less 
predictable in the arid Southwest as compared to the East and the coastal Pacific Northwest. Further, a decreasing 
pattern from the Southwest to the Northeast is apparent for scores of C (high scores indicate high magnitude 
constancy). Additionally, parts of the Interior West along the Rocky Mountains also have relatively invariant 
precipitation fluctuations (little change in interannual variability). In comparison, the spatial distributions of S 

Figure 1.  Gridded monthly precipitation predictability, constancy, and seasonality over the conterminous 
US for the period 1950–2005, based on Maurer, CMIP5 Spatially Downscaled but not Bias Corrected 
(SDnoBC), and CMIP5 Spatially Downscaled and Bias corrected (SDBC) monthly precipitation datasets. 
Figure was plotted in R Studio (V0.99, RStudio Inc.).
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have much sharper regional contrasts: relatively higher scores of S are observed in Florida, parts of the Midwest, 
and along the West coast.

Capacity of Earth system models.  For the same timeframe (i.e. 1950–2005), the Colwell index based 
on CMIP5 SDnoBC data show a wide range of correlations to those computed from historic observations 
(correlation coefficients between individual CMIP5 models to Maurer dataset range between 0.2–0.8, 0.7–0.9, 
and 0.2–0.85 for scores of P, C and S, respectively) (Fig. 2). Spatially, historic distributions of P, C and S are 
not well represented by the SDnoBC multimodel means (Fig. 1, middle row). For instance, there is a reduced 
Southwest-Northeast contrast for the scores of C in the SDnoBC dataset compared to those generated by the 
Maurer dataset, and it is also evident that precipitation P in the Intermountain West is generally less well repre-
sented by the CMIP5 models. Spatial representations of individual model results based on SDnoBC dataset are 
provided in Figure S1. Bias-correction substantially improves the correlation between the CMIP5 multimodel 
ensemble and historic observations (Figure S2), with some minor regional discrepancies (Fig. 1, bottom row). 
Based on the SDBC dataset, it is thus possible to provide comparisons of precipitation predictability between 
historic baseline and the future under various RCP scenarios.

Hotspots of changes in precipitation predictability.  Comparisons of changes in precipitation pre-
dictability between the historic baseline and the future under the two RCP scenarios are provided in Fig. 3. More 
significant changes of P, C and S occur in RCP 8.5 than in the RCP 4.5 scenario (Z-value and P-value for statistical 
significance of the change are provided in Figures S3 and S4, respectively). Precipitation becomes less predictable 
(as high as 3% reduction) in Florida and the Central US, and becomes more predictable in sporadic locations of 
the West (as high as 3% increase). Precipitation fluctuations become less constant in the West (except the south-
ern California coast) and the Central South (as high as 8% decrease in C scores, which represents increased vari-
ability), and become more constant in the Central North (2% increase in C scores). In comparison, reductions in 
S are observed in the upper Midwest, northern Great Plains, and Florida (~ −​ 50%), and enhanced S are apparent 
in the desert Southwest and along the path of frequent storm tracks on the East Coast (~ +​ 200%).

Changes in mean annual precipitation between the historic and future periods show different spatial patterns 
compared to those changes in P (Fig. 3, bottom row). Under the RCP4.5 scenario, mean annual precipitation in 
the future (i.e. 2040–2095) increased by 20% in the Northeast and parts of the South (e.g. south corner of Texas 
and Florida), and decreased by ~20% in the central Great Plains. Under the RCP8.5 scenario, similar patterns are 
observed across the US, with the exception of the West (especially California), where reductions in mean annual 
precipitation occur.

Discussion
A generally decreasing pattern of precipitation predictability from the Northeast to the Southwest is identified in 
this study across the US landscape (Fig. 1). Despite its relatively low magnitude, precipitation in hot, arid deserts 
is frequently described in qualitative terms such as “unpredictable” for its high stochasticity between precipitation 
and non-precipitation events26,27. This study, using standardized precipitation data (i.e. calculated as monthly per-
cent of annual total to allow meaningful comparison between wet and dry regions), finds that precipitation in the 
Southwest arid/semi-arid region is indeed less predictable than other parts of the country, largely as a result of low 
scores of constancy (and therefore highly variable). However, precipitation seasonality in this region exhibits a strong 
coast-interior contrast: the West coast has some of the highest S scores across the US landscape, whereas the interior 

Figure 2.  Taylor plot for the computed predictability, constancy, and seasonality scores across the US 
landscape for the historic period 1950–2005, based on Maurer monthly precipitation (open black circle), 
CMIP5 Spatial Downscaled but not Bias Corrected (SDnoBC) multi-model ensemble means (closed black 
circle), and the individual CMIP5 SDnoBC model results (open red circles). Figure was plotted in R Studio 
(V0.99, RStudio Inc.).
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West has some of the lowest. As such, precipitation is unpredictable in the interior Southwest for its low magnitude 
constancy and seasonality, while it is unpredictable in coastal California only because of its low constancy.

Figure 3.  Gridded percent differences for scores of predictability, constancy, seasonality, and mean annual 
precipitation percent differences over the conterminous US between the future RCP4.5 scenario and 
historic periods (left panel), and between the future RCP8.5 scenario and historic periods (right panel), 
based on the CMIP5 multi-model ensemble Spatially Downscaled and Bias Corrected (SDBC) monthly 
precipitation datasets. Figure was plotted in R Studio (V0.99, RStudio Inc.).
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Moreover, precipitation is highly predictable in the East and along the coastal Pacific Northwest as a result of 
invariant precipitation magnitude fluctuation both seasonally and inter-annually. For Florida, a stronger season-
ality is observed, reflecting the known wet (summer) and dry (from mid fall through late spring) seasons of its 
sub-tropical climate28. Along the Pacific Northwest coast, precipitation is also highly predictable, with relatively 
high C and S scores. The observed strong seasonality along the Pacific Northwest coast reflects its typical wet 
winter and dry summer climate29,30.

The interpretation of the estimated precipitation predictability at the national level must consider that the 
calculation of the Colwell index is scale-dependent: the inclusion/exclusion of different geographic range and/or  
different timeframe will affect the computed scores of predictability31. This study uses 56-year of monthly pre-
cipitation data at the national level to minimize the impact of phase changes in large-scale climatic oscillations 
(e.g. Pacific Decadal Oscillation or El Nino Southern Oscillation). Additionally, this study standardizes monthly 
precipitation as percent of annual total, so that the classification scheme to compute the Colwell index is stand-
ardized across all grids in the US. By doing this, inclusion/exclusion of different geographic ranges does not affect 
the computed Colwell index, and the 56-year of data provides a reliable range of time to define the predictability 
of a long-term climate that is meaningful for providing stable environmental cues for ecological adaptation and 
evolution.

Our understanding of future climate change is largely based on projections from state-of-the-art earth system 
models, but there are still large uncertainties in model simulations32. Earth system models are increasingly able to 
realistically simulate spatial distribution and temporal changes of precipitation means and extremes33–35. While 
it has been demonstrated that models are able to provide robust estimates of the magnitude and directional shift 
in climate change35, limited information is available quantifying the model uncertainties in simulating climate 
variability. A recent call for including variability in climate change assessment has been made36, arguing that 
including variability in future climate change analyses would allow the differentiation of normal and abnormal 
events, thereby providing an indication of the changes in predictability. Based on the SDnoBC datasets of the 
CMIP5 multimodel ensemble, this study shows current Earth system models are not yet able to accurately esti-
mate precipitation variability (the reverse of constancy), seasonality, and predictability (Fig. 2). The discrepancy 
is especially large in the interior West and the Central US (Fig. 1), reflecting the possible limitations of models to 
simulate air-land interactions in complex topography.

Climate variability across a range of timescales determines the structure and function of Earth’s ecosystems. 
Over the last several hundred years in which humans have been making scientific observations of the environ-
ment, actual changes in climate and the hydrological cycle have been relatively small. There is, however, unequiv-
ocal evidence that Earth’s hydrological cycle is now changing at an unprecedented rate, and our existing societal 
infrastructure and environmental resilience depends on knowledge of how predictable future precipitation would 
be in this rapidly changing world1. Undoubtedly, the magnitude and predictability of the change are both impor-
tant to understand for a well-informed climate change adaptation and mitigation strategy in the face of future 
uncertainty. Below, three examples are given to illustrate the implications of precipitation predictability regarding 
biodiversity conservation, crop production, and urban systems across the conterminous US landscape.

The California Floristic Province has been identified as an endemic plant hotspot of global importance37,38. 
The combination of California’s complex geological history, sharp climatic gradients, and climatic fluctuations 
generated by changes in ocean currents has allowed genetic diversification in the region over the past several 
millions of years39. Climatic factors, especially precipitation, were the strongest predictors of elevated biodiversity 
within the Province40,41. This study shows that the favorably consistent precipitation conditions that allowed the 
persistence and diversification of endemic species in California is likely to become temporally less constant in the 
future over the Sierra Nevada mountains. Superimposed on top of this are likely enhanced aridification under 
the RCP8.5 scenario and reduced aridification under the RCP4.5 scenario, rendering not only the magnitude, 
but also the sign of predicted changes dependent on emissions scenarios. Although there is little change in total 
predictability scores, the expected changes in precipitation constancy and totals have two important biodiversity 
conservation implications: 1) reduced constancy implies more variable and hence possibly more rare climatic 
events to obscure the interpretation of environmental cues (e.g. resource availability) in choosing strategies for 
reproduction in mammals and birds (e.g. female length at first reproduction and longevity of tule perch – a fish 
species confined to drainages in central California – varied directly with environmental predictability)42, thereby 
challenging ecosystem resilience and creating less favorable climatic conditions for natural adaptation to climate 
change; and 2) climate change adaptation policies targeting different emission scenarios would result in com-
pletely different biodiversity management options, as aridification is likely to be ameliorated under RCP4.5, but 
is likely to be exacerbated under RCP8.5 scenario. New conservation policies should holistically consider these 
implications and uncertainties.

Iowa, Minnesota and Wisconsin in the Midwest are traditional corn production states in the US. According 
to statistics from the US Department of Agriculture43, corn production in year 2014 from these 3 states alone 
account for ~30% of the US’s annual total production. Studies have shown that corn yield is mostly influenced by 
precipitation variation, especially over an 8-week of vital growth period44. Future changes in precipitation in these 
regions thus have important food safety implications at the national level.

Across most of the Corn Belt, precipitation has been increasing in the early growing season but decreasing 
in the late growing season45. This within-season precipitation trend correlates spatially (especially in the 3 states 
mentioned above) with the most prominent reductions in precipitation predictability, accompanied by enhanced 
C scores and reduced S scores (Fig. 3). The increases in C indicate that precipitation is expected to become more 
constant interannually, and the reduced S indicates that precipitation is expected to become less seasonal, with 
important implications for the summer growing season. With little to no change in mean annual precipitation 
under both RCP4.5 and RCP8.5 scenarios (Fig. 3, bottom panel), precipitation is essentially more constant both 
within year and among years. However, the reduction in predictability means that while precipitation may not 
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vary seasonally or interannually, the total annual precipitation is relatively unpredictable, and thus could be dras-
tically different than current. Crop policies based on analyses of precipitation directional or magnitude change 
are inadequate in addressing the issues revealed by changes in seasonality and predictability. Consequently, 
future water resource management should recognize the importance of considering climate predictability for 
better-prepared irrigation infrastructure and farming practices.

Changes in precipitation P, C, S and annual totals in five widely separated major US cities are outlined in 
Table 1 (Minneapolis, San Diego, New York, Miami, and Denver). Comparing the future (2040–2099) to the 
historic period (1950–2005), mean annual precipitation will increase (1.4–9.5%) in Minneapolis, San Diego, New 
York and Miami, and will decrease (−​3.2%) in Denver under the RCP4.5 scenario. The same directional change 
in total precipitation is observed for all cities except San Diego under the RCP8.5 scenario. As indicated by the 
Colwell index, dry seasons in Minneapolis, San Diego (under only RCP 4.5 scenario) and Miami are getting 
wetter (reduced seasonality accompanied by increases in annual total), but interannual variability is more pre-
dictable only in San Diego, implying that more fluctuations will occur in Minneapolis and Miami, in addition to 
the reduced seasonality and enhanced precipitation totals. In comparison, wet seasons in Denver and San Diego 
(under the RCP 8.5 scenario) are getting drier (reduced seasonality accompanied by decreases in annual total), 
but precipitation is becoming more predictable only in San Diego (under RCP 8.5), indicating a seasonally and 
inter-annually consistent drier trajectory. For New York City, precipitation is becoming more predictable with 
enhanced seasonality and reduced constancy. At the same time, precipitation total increases, thus wet seasons get 
wetter while totals vary greatly from year to year.

Consequently, it is implied that a high flood risk may be possible for New York City (depending on how much 
of the wet-getting-wetter scenario results in extreme precipitations), and a high likelihood of persistent drought 
in San Diego under the RCP 8.5 scenario. Uncertainties in changes in precipitation are also high as a result of 
different emission scenarios for San Diego. Nevertheless, existing infrastructure designed to cope with drought 
and flooding events has been challenged by recent occurrences (e.g. California drought46; New York flooding)17,47, 
and specific approaches to enhancing infrastructural resilience in these likely future scenarios is critical to local 
residents, stakeholders and decision makers.

Conclusion
The Colwell index provides an appropriate tool to complement the traditional methods in revealing climate pre-
dictability. Analysis of the predictability of CMIP5 ensemble results with regard to precipitation indicates that 
precipitation is more predictable in the East and along the Pacific Northwest coast, and is generally less so in the 
arid Southwest. Furthermore, it is evident that Earth system models without bias-correction are unable to provide 
retrodictions that match the observed patterns of precipitation predictability, constancy and seasonality, but that 
bias corrections allow a more realistic comparison between historic and future periods. Comparing the future 
(2040–2095) to the historic (1950–2005) periods, more prominent changes in precipitation predictability are 
observed under the RCP 8.5 scenario than those under the RCP 4.5 scenario. Finally, region-specific hotspots of 
future changes in precipitation predictability are found in California, the Pacific Northwest, and the Great Plains, 
and these regional hotspots are ecologically and socio-economically important. These changes in predictability 
do not coincide with changes in projected annual precipitation totals; as such, decision-makers are admonished 
to not rely on future total precipitation as an indicator of water resources and availability. Changes in precipita-
tion predictability and the subsequent changes on seasonality and interannual variability are equally, if not more, 
important factors to be included in future regional environmental assessment.

Materials and Methods
Datasets.  Historic observed monthly precipitation data were based on daily gridded meteorological data 
for the conterminous US at 1/8° resolution over the period 1950–2005 24,25. Monthly precipitation data of the 
CMIP5 Spatially Downscaled and Bias Corrected (SDBC) precipitation dataset at 1/8° resolution for the periods 
1950–2005 and 2040–2095, and the CMIP5 Spatially Downscaled but not Bias Corrected (SDnoBC) dataset for 
the period 1950–2005, were utilized48,49. The bias correction follows a quantile mapping technique operated on a 
monthly and location-specific basis, which involves using observed and modeled monthly data from 1950–1999 
to determine the biases which are then applied to the future climate49. The historic period provided a baseline 
for comparison of the computed Colwell index between historic and future time periods. For the future period 
the RCP 8.5 and RCP 4.5 scenarios were used to establish a range of likely future trajectories. Models included 

Case City Latitude Longitude

% diff RCP4.5 - hist % diff RCP8.5 - hist

Annual 
mean prcp P C S

Annual 
mean prcp P C S

1 Minneapolis, MN 44.9375 −​93.3125 1.4 −​1.3 0.8 −​12.8 0.4 −​1.7 1.3 −​19.1

2 San Diego, CA 32.6875 −​117.1875 1.5 0.7 1.4 −​2.7 −​10.4 0.6 1.0 −​1.2

3 New York, NY 40.6875 −​74.0625 7.2 0.6 −​0.5 60.0 14.0 0.7 −​0.8 78.8

4 Miami, FL 25.6875 −​80.3125 9.5 −​0.6 0.1 −​4.0 7.2 −​1.3 −​0.5 −​5.3

5 Denver, CO 39.6875 −​105.0625 −​3.2 −​0.5 0.2 −​5.6 −​10.2 −​1.0 0.3 −​9.2

Table 1.   City-specific percent differences for scores of predictability (P), constancy (C), seasonality (S), 
and mean annual precipitation over the conterminous US between the future RCP 4.5 scenario and historic 
periods, and between the future RCP 8.5 and historic periods, based on the CMIP5 multi-model Spatially 
Downscaled and Bias Corrected (SDBC) monthly precipitation datasets.
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in this study are provided in Table S1. The monthly precipitation data were transformed into monthly percent of 
annual total to allow a meaningful comparison between regions of different precipitation totals and interannual 
variability. The Colwell index was subsequently generated based on the 56-year monthly precipitation datasets at 
the gridded-level.

The Colwell Index.  The term “predictability” used in this study, as introduced earlier, differs from traditional 
understanding of predictability in that it is not about the predictive power of precipitation based on understand-
ings of the underlying processes and mechanisms, but more a description of the precipitation variability over a 
certain timeframe itself. Precipitation predictability19 is numerically represented by the sum of magnitude con-
stancy and seasonal contingency (which we call seasonality hereinafter) that varies from 0 (completely unpredict-
able) to 1 (completely predictable). Constancy is essentially a measure of the precipitation variability that varies 
inversely with magnitude of precipitation fluctuation, and seasonality is a measure of the seasonal dependence 
of precipitation through time. A high score of constancy indicates that total annual precipitation will not vary 
through time at any given locality (regardless of the value of precipitation at that locality), while a high score in 
seasonality indicates that precipitation is highly seasonal. Scores of predictability (P), constancy (C) and season-
ality (S) all ranges between 0–1. Details of the mathematical derivation are provided in SI Text 1.

To apply the Colwell index with monthly precipitation data, a 12 ×​ 12 frequency matrix consisting of 56-year 
monthly precipitation data was constructed at the gridded level. Each column represents a month within the 
year, and each row represents a certain level of precipitation. Because the maximum monthly precipitation as 
percent of annual total is 1, the 12 precipitation bins are classified as 0, 0–1/11, 1/11–2/11, …​ 10/11–11/11. The 
56-year of monthly precipitation data were projected onto the frequency matrix at each grid, using the respective 
historic and future datasets. Individual CMIP5 model results were aggregated at each grid level to compute the 
multimodel ensemble mean; hence each model has an equal weight in the final multimodel ensemble mean. Data 
processing and analyses were performed in R Studio (V0.99, RStudio Inc.). Code scripts are available in SI Text 2.
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