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Abstract: Senecavirus A (SVA) is a member of the genus Senecavirus of the family Picornaviridae.
SVA-associated vesicular disease (SAVD) outbreaks have been extensively reported since 2014–2015.
Characteristic symptoms include vesicular lesions on the snout and feet as well as lameness in adult
pigs and even death in piglets. The capsid protein VP3, a structural protein of SVA, is involved in
viral replication and genome packaging. Here, we developed and characterized a mouse monoclonal
antibody (mAb) 3E9 against VP3. A motif 192GWFSLHKLTK201 was identified as the linear B-cell
epitope recognized by mAb 3E9 by using a panel of GFP-tagged epitope polypeptides. Sequence
alignments show that 192GWFSLHKLTK201 was highly conserved in all SVA strains. Subsequently,
alanine (A)-scanning mutagenesis indicated that W193, F194, L196, and H197 were the critical
residues recognized by mAb 3E9. Further investigation with indirect immunofluorescence assay
indicated that the VP3 protein was present in the cytoplasm during SVA replication. In addition, the
mAb 3E9 specifically immunoprecipitated the VP3 protein from SVA-infected cells. Taken together,
our results indicate that mAb 3E9 could be a powerful tool to work on the function of the VP3 protein
during virus infection.

Keywords: Senecavirus A; VP3 protein; B-cell epitope; monoclonal antibody

1. Introduction

Senecavirus A (SVA) is a member of the genus Senecavirus of the family Picornaviridae,
which is considered one of the etiological agents causing vesicular disease in pigs. The first
isolated SVA strain, SVV-001, was discovered from a routine cell culture in 2002 [1]. Since
the rapid emergence of SVA-associated vesicular disease (SAVD) in Brazil in 2014–2015 [2],
SVA has become well known in the field of porcine diseases. Since then, SVA has been
isolated from clinical samples of pig farms in the United States [3], Canada [4], Colombia [5],
Vietnam [6], China [7], and Thailand [8]. As one of the etiological agents of swine vesicular
disease, SVA can cause vesicular damage to the oral and nasal mucosa, lethargy, anorexia,
lameness in pigs, and even acute death in piglets [9,10]. Because SVA induces similar
vesicular disease as Foot and Mouth disease virus (FMDV), Swine vesicular disease virus
(SVDV), and Vesicular stomatitis virus (VSV), it is difficult to distinguish them from each
other in clinical practice.

SVA contains a single-stranded and positive-sense RNA genome, which encodes a
polypeptide cleaved to a leader protein L and three precursor proteins P1, P2, and P3.
Subsequently, P1 is cleaved into VP4, VP2, VP3, and VP1 structural proteins, while P2 and
P3 are cleaved into 2A, 2B, 2C, 3A, 3B, 3C, and 3D nonstructural proteins [11]. Structural
proteins are necessary to form a mature infectious viral particle. Nonstructural proteins
are mainly involved in viral replication or gene expression regulation and do not bind
to virions [12].
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The picornavirus VP3 protein has been well investigated for its function. The VP3
protein of the Avian encephalomyelitis virus was reported to activate caspase-3-induced
apoptosis [13]. The VP3 protein of the Duck hepatitis A virus plays an important role in
the host’s cell adsorption and apoptosis [14]. FMDV VP3 evades the host innate immune
system by inhibiting the IFN-β signaling pathway [15]. Maggioli et al. [16] found that SVA
VP3 can elicit neutralizing antibodies at an early stage of virus infection. A recent study
has shown that SVA VP3 protein is also involved in cell autophagy [17]. These findings
indicate that picornavirus VP3 proteins play critical roles in the viral infection of the host.

Here, monoclonal antibodies (mAbs) of SVA VP3 were generated to investigate the
distribution of VP3 in the SVA-infected cells, and a B cell epitope was finely mapped in this
study. The detailed analysis of the epitope provides a deep understanding of the roles of
amino acids in the epitope and viral replication. The results indicate that VP3-specific mAb
will be useful in elucidating the function of VP3 during virus infection and developing
new diagnostic reagents.

2. Materials and Methods
2.1. Virus, Cells and Animals

SVA GD05/2017 strain and its virus infectious clone plasmid (pC3-SVA-GD05) were
kept at our laboratory. The ST-R, HEK293T, and BHK-21 cells were routinely cultured in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS,
Hyclone, Logan, UT, USA) at 37 ◦C in a 5% CO2 incubator. A SP2/0 myeloma cell line was
passaged in RPMI-1640 supplemented with 20% heat-inactivated FBS. Female BALB/c
mice were obtained from Yangzhou University Experimental Animal Center.

2.2. Expression, Purification and Identification of Recombinant VP3 Protein

A VP3 gene fragment of the strain SVA GD05/2017 was amplified using primers VP3-
F and VP3-R (Table S1), and the prokaryotic expression vector pCold II was used to express
truncated SVA VP3 protein. The recombinant plasmid was transformed into Escherichia coli
BL21 (DE3) cells and induced by 0.2 mM isopropyl β-D-thiogalactoside (IPTG) for 7–8 h
at 16 ◦C. The bacterial cells were collected by centrifugation at 5000× g for 10 min. Then,
the VP3 fusion proteins were identified by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). Recombinant VP3 protein (rVP3pro) was purified through
Ni2+ column affinity chromatography and SDS-PAGE gel separation. The purified rVP3pro

was analyzed by SDS-PAGE and western blotting.

2.3. Preparation of Monoclonal Antibodies against VP3

Four female BALB/c mice (6-week old) were injected intraperitoneally with 108 TCID50
SVA. The mice then received two more doses with 100 µg of purified rVP3pro emulsified in
Freund’s complete adjuvant and incomplete adjuvant at two weeks intervals, respectively.
Mice with high antibody titers were lastly boosted by intraperitoneal injection with 50 µg
rVP3pro for hybridoma production. Mice were euthanized three days later, and spleen
cells were obtained and then fused with SP2/0 cells by PEG 1500 (Solarbio, Beijing, China)
as previously described [18]. The fused cells were plated into 96-well plates and grew
in a hypoxanthine-aminopterin-thymidine (HAT) selection medium. Ten days later, the
medium was changed to a hypoxanthine-thymidine (HT) medium. After HAT/HT medium
selection, positive hybridoma cells were screened by indirect immunofluorescence assay
(IFA) and subcloned 3–4 times by a limiting dilution method. Ascites fluid was obtained
by intraperitoneal injection of positive hybridoma cells.

2.4. Characterization of the VP3 Monoclonal Antibody

The reactivity of mAb with rVP3pro was analyzed by western blotting. Proteins were
separated with 12% SDS-PAGE and blotted onto nitrocellulose membranes (Millipore Corp,
Billerica, MA, USA). The membranes were blocked with 5% skim milk for 2 h. After
washing three times with PBST, the membranes were then incubated with mAb of SVA-VP3
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overnight at 4 ◦C. After washing, the membranes were further incubated with HRP-labeled
goat anti-mouse IgG antibody (ABclonal Technology, Woburn, MA, USA) at 37 ◦C for
1 h. Following the washes, the membranes were treated with enhanced chemiluminescent
(ECL) reagent (New Cell and Molecular Biotech, Suzhou, China) and visualized under the
Tanon Chemiluminescent Imaging System (Biotanon, Shanghai, China).

Immunoprecipitation was performed as described below. Protein A/G immune
precipitation beads (Bimake, Houston, TX, USA) were treated according to the manufac-
turer’s instructions and combined with mAb against SVA-VP3. SVA-infected ST-R cells
(MOI = 0.01) were collected at 16–20 hpi, washed three times with PBS (pH 7.4), and sus-
pended in immunoprecipitation (IP) lysis buffer containing 1 mM phenylmethylsulfonyl
fluoride (PMSF) on ice for 10 min. The lysate supernatant was added to the beads-antibody
mixture overnight at 4 ◦C. After washing the beads four times with lysis buffer, immuno-
precipitated proteins were analyzed by western blotting using mAb 3E9, while the lysate
from mock-infected ST-R cells was used as a control.

2.5. Identification of the Linear B-Cell Epitopes

To finely map the B-cell epitope of VP3-specific mAb, a panel of polypeptides was
expressed according to previously described methods [19–22]. In the first round, five
peptides spanning the SVA-VP3 protein (amino acids 123–157, 137–171, 161–195, 185–219,
and 209–243) were expressed as GFP-fusion proteins. The gene fragments of desired
peptide sequences were amplified and cloned into the pEGFP-C3 vector. The recombinant
plasmids were transfected into HEK293T cells for protein expression using Lipofectamine
3000 Transfection reagent (Invitrogen, Waltham, MA, USA). Cells were collected at 24 h
post transfection. Western blotting was used to confirm the expression of GFP-fused
recombinant proteins with mAb 3E9. After that, a second-round panning was performed
with five polypeptides spanning amino acids 161–219, which was expressed as GFP fusion
proteins. The gene fragments of five polypeptides were cloned into pEGFP-C3, and the
expression of recombinant proteins in HEK293T cells was identified by western blotting.
In the last round, another panel of 11 peptides was produced by decreasing the number
of amino acids one by one from the N-terminus and C-terminus of amino acids 186–201.
Coding sequences were inserted into pEGFP-C3 and expressed as GFP fusion proteins. The
primers are listed in Table S1.

2.6. Site-Directed Mutagenesis Assay

To identify amino acids that are critical for the epitope, each residue was sequentially
substituted with alanine as described previously [23–25]. The primers used to introduce
the specific mutations are shown in Table S2. Infectious clone pC3-SVA-GD05 was used
as a template for site-directed mutagenesis, and ten mutants were constructed (G192A,
W193A, F194A, S195A, L196A, H197A, K198A, L199A, T200A, and K201A). For PCR, the
50 µL reaction mixture was composed of 25 µL of PrimeSTAR Mix, 1 µL of forward primer,
1 µL of reverse primer, 21 µL of sterile dd H2O, and 2 µL of template. The PCR cycles
were set as follows: predenaturation at 98 ◦C for 3 min, 98 ◦C for 10 s, 55 ◦C for 20 s, and
72 ◦C for 50 s, in 30–31 cycles., with the final extension at 72 ◦C for 8 min. The mutated
fragments were digested with SacII and PpuMI and reintroduced into pC3-SVA-GD05. The
mutant plasmids were transfected into BHK21 to rescue the viruses and were propagated
blindly on ST-R for three generations. The rescued mutant viruses were subjected to IFA.
For IFA, ST-R cells were infected with pC3-SVA-GD05 and the mutant viruses (multiplicity
of infection [MOI] 0.01) and incubated for 16–24 h at 37 ◦C. After that, cells were washed
twice with PBS, fixed with 4% formaldehyde for 10 min, and then permeabilized and
blocked with 0.1% Triton-X-100 plus 2% BSA for 30 min. Cells were then rewashed and
incubated with anti-VP3 or anti-3C mAbs (prepared in our lab) for 1 h in PBS. Cells were
washed three times and incubated with Dylight 488 goat anti-mouse IgG antibody.

The VP3 fragments were digested from the full-length clone pC3-SVA-GD05 and the
mutants, by restriction enzymes KpnI and XhoI, and ligated into the plasmid pCAGGS-
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3xFLAG to generate pCAGGS-3FlLAG-VP3. ST-R cells were transfected with 2 µg of
recombinant plasmids to express VP3 mutant proteins, which were analyzed using anti-
FLAG or anti-VP3 as the primary antibody by Western blotting.

2.7. Bioinformatic Analysis

For sequence alignment, all SVA strains available from GenBank were analyzed using
the MAFFT software to investigate the conservation of the VP3 epitope. The SVA-VP3
amino acid sequence was imported into the SWISS online system to predict the structure
of VP3. Based on the results obtained from the SWISS-model online server, the epitope
position was mapped to the three-dimensional (3D) structural model of SVA-VP3 using
PyMOL software, and the position was indicated by colors to distinguish the location.

3. Results
3.1. Expression, Purification, and Identification of Recombinant VP3 Protein

To express the SVA-VP3 protein, the VP3 gene was amplified and cloned into a pCold
II vector. The recombinant plasmid pCold II-VP3 was verified by restriction enzyme
digestion with KpnI and EcoRI and PCR amplification. The results showed that the correct
DNA bands were obtained from the recombinant plasmid (Figure 1a).

The plasmid pCold II-VP3 was then transformed into BL21(DE3) cells, and recombi-
nant VP3 protein with a His-Tag was successfully expressed (Figure 1b). The molecular
weight of VP3 protein was approximately 13.5 kDa. The target protein expressed in the
form of inclusion body was purified through Ni2+ column affinity chromatography and
SDS-PAGE gel purification. The purified recombinant VP3 protein was identified by
Western blotting with an anti-His tag antibody (Figure 1c).
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Figure 1. Expression and purification of recombinant SVA-VP3 protein. (a) The SVA-VP3 gene was
amplified by RT-PCR and inserted into a pColdII vector. The pColdII-SVA-VP3 was identified by
restriction enzyme digestion and PCR. (b) Recombinant SVA-VP3 protein was purified through Ni2+

column affinity chromatography and SDS-PAGE gel purification. All protein samples were analyzed
by SDS-PAGE. (c) The recombinant SVA-VP3 protein was identified by Western blotting using an
anti-His-tag antibody. Recombinant SVA-VP2 protein was used as a negative control.

3.2. Generation and Characterization of mAbs against VP3

The purified rVP3pro was used to immunize mice for the preparation of mAbs against
VP3. One hybridoma cell line secreting antibody specific to SVA VP3 protein was selected
and subcloned four times by limiting dilution. It was named mAb 3E9 and reacted
specifically with the rVP3pro expressed in bacterial cells (Figure 2a) detected by Western
blotting, with the molecular weight of rVP3pro of about 13.5 kDa. The mAb 3E9 can also
immunoprecipitate native SVA VP3 protein (26.8 kDa) expressed in the SVA-infected ST-R
cells (Figure 2b). These results demonstrated that mAb specifically recognized the SVA
VP3 protein.
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Figure 2. Identification of VP3 monoclonal antibody; (a) Characterization of mAb by Western
blotting. The VP3 proteins expressed in E. coli BL21(DE3) were collected for SDS-PAGE, and the
VP2 protein expressed in E. coli BL21(DE3) was used as a control group. (b) Immunoprecipitation of
VP3 protein in the SVA-infected ST-R cells. The mAb 3E9 was used as the primary antibody, and the
horseradish-peroxidase-labeled goat anti-mouse IgG antibody was used as a secondary antibody.

3.3. Identification of the Minimal Epitope

To roughly identify the epitopes, five overlapping fragments of VP3 were expressed
in eukaryotic cells. Western blotting results show that the mAb 3E9 only reacted with
N161-195 and N185-219 rather than N123-157, N137-171, or N209-243, indicating that the
epitopes may be located in the N161-219 fragment (Figure 3a). To further determine the
epitope, another five fragments of VP3 were expressed. The results showed that mAb 3E9
only reacted with N186-201, indicating a smaller epitope located in the N186-201 fragment
(Figure 3b). In the last round, another panel of 11 peptides with distinct numbers of amino
acids was expressed and subjected to Western blotting. As shown in Figure 3c, the common
part 192GWFSLHKLTK201 was the minimal epitope.
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Figure 3. Epitopes mapping by Western blotting; (a) The SVA-VP3 protein (123–243aa) was truncated
into five segments with 10-amino acid overlapping between neighboring parts and subjected to
Western blotting with mAb 3E9. (b) The fragment of SVA-VP3 N161-219 was divided into five
peptides with 5-amino acid overlapping and subjected to Western blotting with mAb 3E9. (c) A panel
of truncated peptides covering the whole SVA-VP3 N186-201 fragment were expressed and subjected
to Western blotting to determine the minimal epitope of mAb 3E9.
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3.4. Reactivity of the mAb with Different SVA Strains

IFA was carried out to determine whether mAb 3E9 could react with different SVA
strains. ST-R cells were infected with ten SVA strains that were stored in our laboratory.
Using mAb 3E9 as a primary antibody, IFA showed that mAb 3E9 had good reactivity with
all seven SVA strains (Figure 4).
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Figure 4. Identification of Reactivity of mAb 3E9 to different SVA strains by IFA (a) and Western blot
(b). The reactivity of mAb 3E9 to ST-R cells infected by different SVA strains was analyzed. Normal
ST-R cells were used as a negative control.

3.5. Amino Acid Alignment of Epitopes

To explore the level of conservation of the VP3 epitope, all SVA strains from GenBank
were selected for sequence alignment using MAFFT. The results indicated that the epitope
192GWFSLHKLTK201 was highly conserved in the VP3 protein among SVA strains, except
for an Asp to Gly substitution at position 192 in the strain SVA/CHN/05/2017 (Figure 5).

To determine if mAb 3E9 could react with the mutant epitope of SVA/CHN/05/2017
strain, infectious clone pC3-SVA-GD05 was used as a template for site-directed mutagenesis,
and the position Gly192 was substituted with an Asp. The rescued virus G192D was
subjected to IFA, and its VP3 protein was subjected to WB using mAb 3E9. As shown in
Figure 6a,b, mAb 3E9 recognized the mutant epitope of the SVA/CHN/05/2017 strain.
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Figure 6. Identification of the reactivity between mAb 3E9 and the mutant epitope of
SVA/CHN/05/2017 strain. (a) ST-R cells were transfected with pCAGGS-3FlLAG-VP3 and pCAGGS-
3FLAG-VP3-G192D for 48 h and then immunoblotted with anti-FLAG and anti-VP3 mAbs. (b) ST-R
cells were infected with SVA/GD05/2017 and SVA/CHN/05/2017(G192D), respectively. IFA was
performed using anti-VP3 mAb.

3.6. Spatial Distribution of the Novel Epitope

The three-dimensional structure of SVA VP3 protein was constructed by the SWISS
online system. Furthermore, the location of the VP3 epitope was analyzed by PyMOL
software. As shown in Figure 7, the epitope was located on the surface of the VP3 protein.
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is presented in spheres (a), and cartoon (b) from the predicted three-dimensional structure of SVA VP3, and the epitope
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3.7. Identification of the Critical Amino Acid Residues of the Epitope

To further delineate the residues contributing to the activity of the 192GWFSLHKLTK201

epitope, a group of mutant viruses were modified, in which each residue of the 10-aa pep-
tide was substituted in turn by alanine. All mutant viruses were rescued, except G192,
L199, and T200, suggesting that sites 192, 199, and 200 of VP3pro were essential for SVA
replication (Figure 8b,c). The reactivity of the mutant viruses to mAb 3E9 was detected by
IFA (Figure 8b,c). IFA results showed that the W193A, F194A, L196A, and H197A mutations
completely abrogated the reactivity of the epitope with mAb 3E9. Similarly, the reactivity
of the mutant VP3 proteins to mAb 3E9 was detected by Western blotting (Figure 8a,c),
which indicated that the residues Trp193, Phe194, Leu196, and His197 were critical binding
sites for mAb 3E9. However, the substitution of the Gly192, Ser195, Lys198, Leu199, Thr200,
and Lys201 with alanine had no effect on the reactivity between the epitope and mAb 3E9.
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Figure 8. Alanine-scanning mutagenesis. (a) Alanine-scanning mutagenesis to determine the critical amino acids of the
VP3 epitope 192GWFSLHKLTK201. ST-R cells were transfected with pCAGGS-3FLAG-VP3 mutants for 48 h and then
immunoblotted with anti-FLAG and anti-VP3 mAbs M: marker. (b) A group of pC3-SVA-GD05 plasmids was used to rescue
the recombinant viruses, which were then propagated in the ST-R cells for three generations and analyzed by IFA using
anti-VP3 mAbs. (c) Identification of SVA mutant viruses by virus rescue and immunological investigation with mAb 3E9.
‘NA’ means not available, ‘+’ means positive, ‘-’ means negative.

4. Discussion

SVA-associated vesicular disease (SVAD) has been reported in many countries since
2014–2015 [2–8]. The outbreak of the emerging infectious disease has resulted in economic
losses to the swine industry. Unfortunately, there is no commercial SVA vaccine for pigs,
though recombinant live vaccine candidate strains [26] and an oil adjuvant inactivated
vaccine candidate [27] have been reported. Therefore, it remains essential to monitor
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the virus epidemic and investigate the antigenicity of virus field strains. Preparation of
mAbs against SVA contributes to identifying viral antigen epitopes, which will provide
a powerful tool for structure and function research on viral proteins and develop new
diagnostic reagents.

So far, the reported mAbs against SVA were designed against viral particles and
the VP1 and VP2 proteins. Yang et al. immunized mice with binary ethylenimine (BEI)-
inactivated SVA to produce five mAbs and developed an SVA-specific competitive enzyme-
linked immunosorbent assay (cELISA) for serodiagnosis. Fan et al. prepared eight
monoclonal antibodies against VP1 and VP2 by using recombinant VP1 and VP2 pro-
teins. Six epitopes against these mAbs were first revealed, including 21GELAAP26 on VP1
and 12DRVITQT18, 71WTKAVK76, 98GGAFTA103, 150KSLQELN156, and 248YKEGAT253 on
VP2 [28]. SVA VP3 protein is located on the surface of the virus and forms the viral capsid,
which is an important structural protein involved in viral replication. Here, we expressed
truncated SVA VP3 via a prokaryotic expression system and prepared a specific monoclonal
antibody against VP3. Mice were immunized with prokaryotic-expressed VP3 every two
weeks. Finally, one hybridoma cell line that secreted SVA VP3 monoclonal antibody was
obtained after cell fusion, positive screening, and subcloning. We used the IFA method to
detect positive hybridomas with SVA-infected ST-R cells, which can effectively eliminate
the problem of false positive antibodies.

Epitopes are also known as antigenic determinants, which are composed of specific
amino acid or chemical groups on the antigen molecule that determine the specificity of
the antigen. Epitope identification includes epitope peptide scanning, protein cleavage,
and phage display technology [29,30]. In this study, the eukaryotic expression vector
pEGFP-C3 was used to express truncated VP3 protein to identify epitopes. This system is
not only simple to operate but can also accurately identify the epitopes. The pEGFP-C3
carries a green, fluorescent label, and the expression of the fusion protein can be directly
observed under an inverted fluorescence microscope. The epitope 192GWFSLHKLTK201

was identified by Western blotting.
To investigate the applicability of the mAb 3E9, ST-R cells were infected with seven

SVA strains kept in our laboratory. IFA showed that the mAb 3E9 could specifically react
with all of them. Comparative analysis of SVA VP3 sequences available from GenBank
indicated that the epitope sequence of 192GWFSLHKLTK201 was highly conserved among
almost all of the SVA strains, except SVA/CHN/05/2017 with one amino acid mutation.
Subsequent analysis showed that the mAb 3E9 could react with the mutant epitope of strain
SVA/CHN/05/2017. Furthermore, other SVA strains that contain the 192GWFSLHKLTK201

epitope can be recognized by mAb 3E9, indicating that the monoclonal antibody has the
potential to react with all known SVA strains.

These findings provided useful information for understanding the antigenicity of
VP3 and may be valuable in developing epitope-based vaccines or diagnostic kits for SVA
infection. In addition, to identify the critical amino acid residues of the epitope, a series of
mutant viruses were constructed by reverse genetics. As shown in Figure 8, three mutant
viruses (G192A, L199A, and T200A) could not be rescued, but mutations at these three
sites did not affect the reaction between VP3 protein and mAb 3E9, suggesting that amino
acid residues at the sites 192,199, and 200 of VP3 were necessary for SVA replication but
did not affect the antigenicity of the VP3 protein. The W193A, F194A, L196A, and H197A
mutations were successfully rescued, and the results from Western blots and IFA showed
that they completely abrogated the reactivity of VP3 protein with mAb 3E9 (Figure 8b,c),
suggesting that the four amino acids were critical residues on this linear epitope. These
results may provide new insights into the antigenicity of SVA. Furthermore, the results
showed that the S195A, K198A, and K201A mutations did not affect either viral replication
or the antigenicity of the VP3 protein.
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5. Conclusions

In summary, a novel monoclonal antibody of SVA was obtained in this study, and
a linear B cell epitope against SVA VP3 was identified for the first time, which provides
a powerful immunological tool to elucidate the function of the VP3 protein during virus
infection as well as develop new diagnostic reagents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13112300/s1, Table S1: Primers used for construction of VP3 truncations, Table S2:
Primers used to generate specific mutations in the VP3 gene of the infectious clone pC3-SVA-GD05.
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