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Abstract

White adipose tissue expands through both adipocyte hypertrophy and hyperplasia and it is
hypothesized that fibrosis or excess accumulation of extracellular matrix within adipose tis-
sue may limit tissue expansion contributing to metabolic dysfunction. The pathways that
control adipose tissue remodeling are only partially understood, however it is likely that adi-
pose tissue stromal and perivascular progenitors participate in fibrotic remodeling and also
serve as adipocyte progenitors. The goal of this study was to investigate the role of the
secreted extracellular matrix protein aortic carboxypeptidase-like protein (ACLP) on adipose
progenitor differentiation in the context of adipose tissue fibrosis. Treatment of 10T1/2
mouse cells with recombinant ACLP suppressed adipogenesis and enhanced myofibroblast
differentiation, which was dependent on transforming growth factor- receptor kinase activ-
ity. Mice fed a chronic high fat diet exhibited white adipose tissue fibrosis with elevated
ACLP expression and cellular fractionation of these depots revealed that ACLP was co-
expressed with collagens primarily in the inflammatory cell depleted stromal-vascular frac-
tion (SVF). SVF cells isolated from mice fed a high fat diet secreted increased amounts of
ACLP compared to low fat diet control SVF. These cells also exhibited reduced adipogenic
differentiation capacity in vitro. Importantly, differentiation studies in primary human adipose
stromal cells revealed that mature adipocytes do not express ACLP and exogenous ACLP
administration blunted their differentiation potential while upregulating myofibroblastic mark-
ers. Collectively, these studies identify ACLP as a stromal derived mediator of adipose pro-
genitor differentiation that may limit adipocyte expansion during white adipose tissue
fibrosis.
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Introduction

In response to chronic caloric excess, white adipose tissue (WAT) exhibits increased inflamma-
tion [1,2] increased hypoxia [3] and fibrotic remodeling [4,5]. WAT fibrosis is recognized to be
a major contributor of metabolic dysfunction [6-8] and hypothesized to limit WAT hyperplasia
by blunting the differentiation of progenitors into adipocytes [9-11]. In other fibrotic tissues,
myofibroblasts are a critical cell type which are characterized by elevated a-smooth muscle
actin (SMA) expression and extracellular matrix (ECM) protein production, including collagen
1 (Coll) [12]. Myofibroblasts drive fibrosis via both ECM secretion and contractile remodeling
resulting in stiff fibrous scars [12]. While several cell types likely contribute to WAT fibrosis,
including adipocytes [7] and macrophages [11,13,14], other studies have highlighted the contri-
bution of progenitor differentiation pathways and ECM remodeling in fibrosis [9,15].

Several effectors regulate WAT fibrosis including transforming growth factor-f (TGFB), a
pro-fibrotic [16,17] and anti-adipogenic [18] cytokine, that is increased with obesity [19] and
directs myofibroblast differentiation in adipose progenitors [11]. WAT fibrosis is character-
ized by the accumulation of several collagens including types I, III, and VI [6]. The importance
of specific collagens in WAT fibrosis is supported by studies showing that a cleavage product
of Col6a3, endotrophin, regulates fibrosis [20] and genetic ablation of collagen VI protects
mice from metabolic disorders [7].

Aortic carboxypeptidase-like protein (ACLP), gene name adipocyte enhancer binding protein
1 (AEBPI) [21,22], is a secreted ECM-associated protein expressed primarily by perivascular and
vascular cells which is upregulated in activated vascular cells following vascular injury [23]. ACLP
is composed of an N-terminal signal sequence, a charged lysine, proline, and glutamic acid-rich
domain, a collagen binding discoidin domain and a catalytically inactive metallocarboxypepti-
dase domain [24-26]. The mouse Aebp1 protein was originally described as a transcriptional
repressor and regulator of energy metabolism in WAT [21,27], however it is now generally recog-
nized that Aebpl is a partial clone of ACLP [28]. Several studies have demonstrated that the vas-
cular niche is a source of adipogenic precursors [29-33]. In addition, our previous work has
established that ACLP is expressed in vascular smooth muscle cells and also in the vasculature in
both subcutaneous and visceral adipose depots [23,34,35]. While others have observed that ACLP
expression is negatively regulated during adipogenesis [21,22,36,37], the function of ACLP in adi-
pocyte progenitor differentiation and WAT fibrosis remains largely unknown.

The goal of this study was to examine the expression of ACLP in fibrotic WAT and to investi-
gate its role in regulating the differentiation of adipose progenitors. In vitro studies in mouse
10T1/2 cells determined that ACLP repressed adipogenesis and enhanced myofibroblast differenti-
ation through TGEF receptor (TGFBR) signaling. Histological analysis and tissue fractionation of
high fat diet (HFD) induced fibrotic WAT determined that the stromal-vascular fraction (SVF)
exhibited increased ACLP protein expression and ACLP was co-expressed with collagens. Addi-
tionally, inflammatory cell depleted SVF populations were the primary source of ACLP expression
in fibrotic WAT. Examination of human adipose stromal cells (hASC), determined that ACLP
repressed their differentiation into mature adipocytes and enhanced their differentiation into myo-
fibroblasts. Collectively, these studies identify ACLP as a stromal derived positive mediator of myo-
fibroblast differentiation in adipose tissue progenitors that accumulates in fibrotic adipose tissue.

Materials and methods
Cell culture

De-identified human adipose stromal cells (hASC) were obtained from the Boston Nutrition
Obesity Research Center Adipocyte Biology Core, with approval by the Institutional Review
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Board of Boston University Medical Center. All subjects provided informed consent. C3H/
10T1/2 (10T1/2) (ATCC) fibroblasts and hASC were cultured in 1:1 Ham’s F12:DMEM sup-
plemented with 10% fetal bovine serum (FBS, Atlas Biochemicals) and 1% penicillin/strepto-
mycin and incubated in a 5% CO, atmosphere at 37°C. Confluent 10T1/2 fibroblasts were
differentiated into adipocytes with 5 uM dexamethasone, 500 uM 3-isobutyl-1-methylxanthine
(IBMX), 860 nM insulin, and 125 pM indomethacin (DMII). After 2 days, cells were main-
tained in 10% FBS, 430 nM insulin, for the remainder of the study. Adipocyte differentiation
assays of hASC were performed as previously described [38]. Briefly, hASC were grown for 2
days after reaching confluence and then moved to complete differentiation media (CDM) con-
taining 500 uM IBMX, 100 nM insulin, 100 nM dexamethasone, 2 nM triiodothyronine,

10 pg/ml transferrin, 1 uM rosiglitazone, 33 uM biotin and 17 uM pantothenic acid. hASC was
in CDM for 7 days total with a replacement on day 4. Following 7 days of CDM, hASC were
maintained in serum free media with 10 nM insulin and 10 nM dexamethasone. rACLP was
produced and purified as previously described [26]. For analysis of hASC, pre-confluent (80-
90% confluent) hASC were treated with 3.75 pug/ml rACLP (~30 nM) everyday for 2 days prior
to and on the day of providing CDM. For analysis of 10T1/2 fibroblasts, pre-confluent (80-
90% confluent) cells were treated with 3.75 pg/ml rACLP (~30 nM) for 2 days prior to DMII
and maintained in the treatment throughout differentiation. Fractionation of day +8 10T1/2
fibroblasts was performed by incubating cells for 5 minutes in 0.05% trypsin-EDTA, re-sus-
pension in 1.02 mg/ml Ficoll-PBS buffer and subsequent centrifugation for 10 min at 400 x g.

Oil Red-O staining and quantification

To measure lipid accumulation, cells were washed with PBS, fixed with 10% paraformaldehyde
for 30 minutes, stained with Oil Red O for 60 minutes followed by washing with PBS. Bright-
field images were taken with identical exposures on an Olympus IX70 microscope. Oil Red O
was extracted with 100% isopropanol and absorbance was measured at 500 nm using a BioTek
Synergy HT plate reader. Empty wells stained with Oil Red O were used as background and
absorbance was subtracted from each sample for quantification.

SDS-PAGE and Western blotting

Total protein lysates were harvested in Western extraction buffer (25 mM Tris pH 7.4, 50 mM
sodium chloride, 0.5% sodium deoxycholate, 2% NP-40 and 0.2% sodium dodecyl sulfate)
with protease and phosphatase inhibitors (Roche) as described [24]. Protein concentrations
were determined with BCA protein assay kit (Thermo Scientific) and equal amounts of protein
were run on 4-12% NuPage bis-tris protein gels (Life Technologies), and transferred onto
Immobilon-FL PVDF membranes (EMD Millipore) according to standard procedures. Anti-
bodies used include ACLP [35] (1:4000); a-SMA (Sigma A2547 Lot# 084M4795V, 1:4000); col-
lagen a1 (Rockland 600-401-103-0.1 Lot# 33743, 1:1000); FABP4 (Cell Signaling Technology
35448 Lot# 2, 1:2000); cyclophilin A (CypA) (EMD Millipore 07-313 Lot# 2572047, 1:2000);
adiponectin (Thermo Scientific PA1054 Lot# PF194392, 1:2000); perilipin (Cell Signaling
Technology 9349S Lot# 4, 1:2000); PPARy (Santa Cruz Biotechnology SC-7196 Lot# F2614,
1:1000); CRP2 [39] (1:1500); Desmin (Dako M0724 Lot# (074)011, 1:500); SM22 (Abcam
ab14106 Lot# ab14106, 1:1000). Signal was detected with horseradish peroxidase conjugated
secondary antibodies and using ECL substrate (Thermo Scientific) using a Bio-Rad Chemidoc
imaging system. For conditioned media samples, equal loading was confirmed by membrane
staining with Ponceau S (Sigma). Protein quantification relative to CypA was measured by
densitometry using Image Lab software (Bio-Rad).
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Analysis of fibrotic adipose tissue

Male mice fed low fat diet (LFD) (Jackson, D12450B, 10 kcal% fat) or high fat diet (HFD)
(Jackson, D12492, 60 kcal% fat) starting at 6 weeks of age until 22 weeks were acquired from
Jackson laboratories. Adipose tissues were isolated from 7 LFD and 7 HFD fed male mice and
4 animals were examined by tissue fractionation and 3 each were used for histological analysis.
The Boston University School of Medicine Institutional Animal Care and Use Committee
approved all animal experiments. For Western blot analysis, epididymal adipose tissue was
removed, rinsed 3 times in PBS and finely minced. Minced tissue was digested with 1x dispase
(BD Falcon), 1 mg/ml type 1 filtered collagenase (Worthington), 4.5 ug/ml DNase (Worthing-
ton) and 1% BSA (Fisher BioReagents) in DMEM for 45 minutes at 37°C. Cells were passed
through 100 pm cell strainer and were isolated into floating (adipocyte) and pellet (SVF) frac-
tions using a 1.02 mg/ml Ficoll-PBS buffer by centrifugation. Magnetic-activated cell sorting
(MACS) (Miltenyi Biotec) was then performed on the SVF according to manufacturer’s
instructions. Briefly, SVF were incubated with anti-CD45 conjugated microbeads. SVF were
then passed over a MACS column in a magnetic field and subsequently washed. Flow-through
cells were collected as CD45- SVF. The MACS column was then removed from the magnetic
field and CD45+ cells were eluted and collected.

Tissue preparation for histology

Epididymal adipose tissue was rinsed 3 times in PBS, fixed with methyl Carnoy’s fixative (60%
methanol, 30% chloroform, 10% glacial acetic acid) for 3 hours at 4°C and then 70% ethanol
overnight at 4°C. Tissues were processed, embedded in paraffin and sectioned using standard
techniques [34].

Picrosirius red staining

Sections of the epididymal adipose tissue (10 um) were deparaffinized, rehydrated, stained
with picrosirius red solution (Electron Microscopy Sciences) for 90 minutes at room tempera-
ture, rinsed twice with 0.01 N HCI and then dehydrated with increasing concentrations of eth-
anol and finished in xylenes prior to mounting. Brightfield and polarized light images were
obtained using an Olympus IX70 inverted microscope with an Optronics camera.

Immunofluorescence

Sections of epididymal adipose tissue (10 tm) were rehydrated, blocked with normal goat
serum, incubated with ACLP (Thermo Fisher) PA5-23607 Lot# QF2039189, 1:100) or perilipin
(Cell Signaling Technology 9349S Lot# 4, 1:200), followed by Alexa Fluor 647 conjugated sec-
ondary antibodies (Invitrogen, 1:300). Stained tissues were counterstained with DAPI and
mounted. Tissues were also stained with Alexa Fluor 647 conjugated secondary antibody with-
out primary antibody to determine background of immunofluorescence (data not shown).
Images were taken at equivalent exposures with a Zeiss Observer D1 equipped with an
ORCA-Flash 4.0 digital CMOS camera.

Quantitative real-time PCR

RNA was isolated from cells using GeneJET RNA purification kit (Therm Fisher) according to
the instructions of the manufacturer. cDNA was generated from 200 ng of mRNA using a
Maxima First Strand cDNA synthesis kit (Thermo Fisher). Analysis of gene expression was
performed using Luminaris Color HiGreen qPCR Master Mix (Thermo Fisher) in an ABI
Prism 7300 sequence detector. Intron-spanning primers were used for qPCR reactions. The
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relative amount of mRNAs was determined through the comparative threshold cycle (AACr)
method. PPIA was used as invariant control. Primer sequences are listed in S1 Table.

Statistical analysis

Data are presented as mean + S.D. One-way ANOVA with post hoc Tukey’s test were used to
compare data between two conditions among multiple conditions. For analysis comparing
two conditions where each control replicate was set to 1, a one sample ¢ test was used to deter-
mine statistical significance. For all other analysis, a Student’s f test was used to determine sta-
tistical significance. Differences were considered significant when p < 0.05.

Results

ACLP is predominately expressed in non-differentiated 10T1/2 fibroblasts
with limited expression in differentiated 10T1/2 adipocytes

Previous studies have documented the kinetics of ACLP expression during adipogenesis
[21,28,36,40], however it is unclear why ACLP expression re-emerges at later time points dur-
ing adipogenesis. We hypothesized the non-differentiated cells re-expressed ACLP while
mature adipocytes no longer expressed ACLP. We differentiated 10T1/2 fibroblasts into
mature adipocytes (Fig 1A). 10T1/2 fibroblasts expressed a-SMA and ACLP prior to adipo-
genic induction and these proteins were substantially diminished with adipogenic induction
on day 2 (7% and 14% of day 0 respectively) (Fig 1B). As anticipated, the expression of both
adiponectin and FABP4 increased with adipogenic differentiation (Fig 1B). Notably, ACLP
expression increased on day 4 and continued throughout terminal differentiation (Fig 1B). To
examine if this expression was in the mature adipocytes or in the residual undifferentiated
10T1/2 fibroblasts, the day 8 cells were fractionated by centrifugation based on buoyancy.
Mature adipocytes (A) expressed the adipocyte markers, FABP4 and adiponectin, with limited
expression of o-SMA and ACLP (Fig 1B). Non-differentiated 10T1/2 fibroblasts (ND)
expressed ACLP and o-SMA, with decreased amounts of FABP4 and adiponectin relative to
adipocytes. These findings demonstrate an inverse relationship between ACLP, the established
progenitor marker a-SMA [29,32], and adipogenesis.

Recombinant ACLP represses adipogenesis and enhances myofibroblast
differentiation in progenitors

Because ACLP is rapidly down regulated with adipogenesis (Fig 1B) and is a secreted ECM-
associated protein [23] that contributes to fibrosis in other organs [41], we next investigated if
ACLP blunted adipogenic differentiation by stimulating fibrotic pathways. We treated 10T1/2
cells with recombinant ACLP (rACLP) prior to and following adipogenic induction (Fig 2A).
Compared with untreated controls, rACLP treatment significantly inhibited adipocyte differ-
entiation, indicated by lower expression levels of adiponectin, FABP4 and PPARy (2.7, 1.8, 3.5
fold respectively) (Fig 2B). Additionally, compared with untreated controls, rACLP enhanced
myofibroblast differentiation, as indicated by increased ACLP and collagen I (Col I) (8.6 and
4.5 fold respectively) (Fig 2B). rACLP treated cells also contained 55% less lipid measured by
Oil Red O accumulation (Fig 2C). These findings demonstrate ACLP shifts progenitor differ-
entiation towards myofibroblast differentiation.
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Fig 1. ACLP expression is repressed during adipogenesis. A, Scheme of time course for 10T1/2 adipogenic
differentiation. B, 10T1/2 fibroblasts were induced to undergo adipogenesis with DMII on day 0. Protein was
harvested on days -2, 0, +2, +4 and +6. Day +8 cells were fractionated into differentiated adipocytes (A) and the non-
differentiated 10T1/2 fibroblasts (ND) and harvested for protein. Protein expression was analyzed using SDS-PAGE
and Western blot with antibodies against ACLP, 0.-SMA, FABP4, adiponectin (AdipoQ) and cyclophilin A. Protein
expression was quantified by densitometry normalized to CypA expression and all samples were compared to day 0
cells or mature adipocyte fraction. *, p < 0.05 versus control, one way ANOVA with post hoc Tukey’s test for day -2, 0,
+2, +4 and +6 samples and one sample t-test for fractionated day +8 samples.

https://doi.org/10.1371/journal.pone.0197777.9001
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Fig 2. ACLP signaling represses adipogenesis. A, Scheme of 10T1/2 adipogenesis and rACLP treatment. B, 10T1/2
fibroblasts were treated with 30 nM rACLP on days -2, -1, 0, +2 and +4 and induced to undergo adipogenesis with DMII
on day 0. Protein was harvested on day +6 and analyzed by SDS-PAGE and Western blot with antibodies against ACLP,
collagen, a-SMA, AdipoQ, FABP4, PPARY and cyclophilin-a (CypA). PPARy analysis was performed in separate
experiments. Protein expression was quantified by densitometry normalized to CypA expression and relatively compared
to control cells. *, p < 0.05 versus control, one sample t-test for all values. C, 10T1/2 fibroblasts were treated with 30 nM
rACLP on days -2, -1, 0, +2 and +4 and induced to undergo adipogenesis with DMII on day 0. On day +6 cells were fixed,
stained, imaged and quantified with Oil Red O dye (n = 3). Data were normalized relative to untreated controls. *,

P < 0.05 versus paired control, one sample t-test. Data presented are expressed as mean + SD. The scale bar represents 2
mm.

https://doi.org/10.1371/journal.pone.0197777.9002

ACLP-mediated repression of adipogenesis and enhancement of
myofibroblast differentiation is dependent on TGFBR signaling

Our previous work showed that ACLP signaling exhibited both TGFp receptor (TGFBR)
dependent and independent activity in pulmonary fibroblasts [26]. We investigated whether
the effect of ACLP on adipogenesis was dependent on TGFpR signaling pathways. To test this,
we treated 10T1/2 fibroblasts with rACLP in the presence or absence of a TGFBR-I kinase
inhibitor (SB431542) prior to and throughout adipogenesis (Fig 3A). Compared with
untreated controls, rACLP treatment inhibited adipocyte differentiation, indicated by lower
expression levels of adiponectin and FABP4 (Fig 3B). Additionally, compared with untreated
controls, rACLP enhanced myofibroblast differentiation, as indicated by increased ACLP and
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Fig 3. ACLP inhibition of adipogenesis and enhancement of myofibroblast differentiation is dependent on TGF§
receptor activity. A, Scheme of 10T1/2 fibroblast adipogenesis with SB431542 and rACLP treatment. B, 10T1/2
progenitors were concurrently treated with 30 nM rACLP and vehicle control or 1 uM SB431542, a TGFp receptor
kinase inhibitor, on days -2, -1, 0, +2 and +4 as well as induced to undergo adipogenesis on day 0. Protein was
harvested on day +6 and analyzed by SDS-PAGE and Western blot with antibodies against ACLP, a-SMA, AdipoQ,
FABP4 and CypA. Protein expression was quantified by densitometry normalized to CypA expression and relatively
compared to untreated control cells (n = 3). One way ANOVA with post hoc Tukey’s test for all values (* p < 0.05, **
P < 0.005). Data presented are expressed as mean + SD.

https://doi.org/10.1371/journal.pone.0197777.9003

o-SMA (Fig 3B). The TGFfR inhibitor alone did not alter expression of ACLP or a-SMA or
the ability of cells to undergo adipogenesis. However, addition of the TGFBR inhibitor blocked
rACLP-mediated induction of ACLP and a-SMA expression and rescued adipogenesis as indi-
cated by increased FABP4 and adiponectin expression (Fig 3B). These data demonstrate that
the ACLP repression of adipogenesis and enhancement of myofibroblast differentiation is
dependent on TGFpR activity.

ACLP accumulation is increased in regions of adipose tissue fibrosis

To define the expression of ACLP in fibrotic adipose tissue, we analyzed epididymal white adi-
pose tissue (eWAT) from male mice fed LFD or HFD for 16 weeks. We assessed collagen

PLOS ONE | https://doi.org/10.1371/journal.pone.0197777 May 25,2018 8/20


https://doi.org/10.1371/journal.pone.0197777.g003
https://doi.org/10.1371/journal.pone.0197777

@° PLOS | ONE

Aortic carboxypeptidase-like protein regulation of adipose tissue stromal progenitor differentiation

accumulation by picrosirius red staining and imaging with polarized light [42,43]. In LFD fed
mice, collagen was primarily associated with vasculature and was not detected in regions prox-
imal to adipocytes (Fig 4A). In contrast, HFD fed mice exhibited peri-cellular collagen deposi-
tion (Fig 4A). This observation was consistent in HFD fed mice, however the extent of peri-
cellular collagen deposition varied between mice (S1 Fig). ACLP was strongly associated with
the vasculature and not adipocytes in LFD fed animals (Fig 4B, closed arrowhead). ACLP
staining co-localized with regions of peri-cellular collagen deposition in adipose tissue isolated
from HFD fed mice (Fig 4B, open arrowhead). Consistent with the effects of chronic HFD
observed by others [44], perilipin staining was intermittent in these fibrotic regions, indicative
of adipocyte cell death (Fig 4B). This observation of perilipin and ACLP staining was consis-
tent in all HFD fed mice in areas of increased nucleus density (S1B Fig). Previous studies have
demonstrated that adipocytes secrete numerous ECM proteins in response to diet induced
obesity [7]. In order to determine the response and source of ACLP expression to HFD, we
performed Western blot analysis on isolated adipocytes and SVF. Following collagenase diges-
tion of LFD and HFD eWAT, we isolated adipocytes and SVF cells based on buoyancy and
subsequently generated protein extracts. The SVF of LED fed male mice expressed significantly
less (12% of LFD) ACLP compared to SVF of HFD (Fig 4C). Unexpectedly, o-SMA exhibited
the inverse expression pattern with ACLP in the SVF being lower (2% of LFD) in SVF of HFD
mice (Fig 4C). To better understand this decrease in a-SMA in the HFD SVF, we examined
additional smooth muscle cell markers in these samples. Interestingly, desmin, SM22 and cys-
teine and glycine rich protein-2 (CRP2) expression was equivalent in SVF of LFD fed and
HFD fed mice (Fig 4C). As expected, isolated adipocytes did not express ACLP or a-SMA (not
shown). Interestingly, while LFD and HFD derived adipocytes both expressed PPARYy at simi-
lar levels, adiponectin was expressed in the LFD fed male mice and its expression was signifi-
cantly attenuated by HFD (<1% of LFD) (Fig 4D). These findings demonstrate that ACLP
expression increases in the SVF in diet-induced fibrotic regions of eWAT.

Fibrotic adipose tissue SVF cells depleted of inflammatory cells express
ACLP

Fibrotic ECM deposition in the adipose tissue correlates with infiltration of immune cells,
including macrophages [11,45]. In order to delineate the cellular origin ACLP and collagens in
the fibrotic eWAT, we isolated inflammatory and non-inflammatory sub-populations from
eWAT of HFD fed male mice. Adipocytes were separated based on buoyancy and the remain-
ing cells were fractionated into CD45+ (immune) and CD45- (SVF) populations (Fig 5A) [46].
Transcript levels of Aclp, Collal, IL6 and Mcpl were higher in SVF cells compared to immune
and adipocyte sub-populations. Interestingly, other major ECM components Colla2, Col3al
and Col6a3, were similarly expressed in both the SVF and adipocytes and significantly higher
compared to immune cells. SVF and immune cells expressed similar amounts of CD45 tran-
script and higher levels compared to adipocytes. The immune cell fraction expressed signifi-
cantly higher amounts of, F4/80, compared to SVF, but similar to adipocytes. Adipocytes
expressed significantly higher adipoq and higher plinl compared to SVF and immune cells
(Fig 5B). Together these results demonstrate ACLP is produced primarily by stromal-vascular
cells, and not by adipocytes or immune cells in the fibrotic eWAT.

HEFD derived SVF cells secrete increased ACLP and have impaired
adipogenic potential

Recent studies have demonstrated a HFD induces a shift in the adipose progenitor pool
towards myofibroblast differentiation [9], however it is unknown how HFD impacts ACLP
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Fig 4. ACLP expression increases in the stromal vascular fraction from diet induced fibrotic epididymal adipose tissue. A, epididymal adipose
tissue from C57BL6/J male mice on low fat diet or high fat diet for 16 weeks (n = 3 for each diet group) was excised and fixed with methyl Carnoy,
stained with picrosirius red and imaged using brightfield (left panels) and under polarized light (right panels). B, Tissue sections of epididymal adipose
tissue following low fat diet or high fat diet were immunostained for ACLP and perilipin and counterstained with DAPI. Data are representative of
parallel 10 um sections. Closed arrowhead indicates vasculature. Open arrowhead indicates peri-cellular staining. Scale bar represents 100 um. C,
Epididymal adipose tissue from C57BL6/J] male mice on low fat diet or high fat diet for 16 weeks (n = 3 for each diet group) was excised, enzymatically
digested, fractionated based on buoyancy and then protein lysates were generated of each population. Whole stromal vascular fraction lysate was
analyzed by SDS-PAGE and Western blot with antibodies against ACLP, 0.-SMA, desmin, SM22, CRP2 and CypA. Protein expression was quantified by
densitometry normalized to CypA expression and relatively compared to higher expressing diet sample. *, p < 0.05 versus low fat diet by Students t-test.
D, Whole adipocyte lysate was analyzed by SDS-PAGE and Western blot with antibodies against adiponectin, PPARy and CypA. Protein expression was
quantified by densitometry normalized to CypA expression and relatively compared to low fat diet. *, p < 0.05 versus low fat diet using Students t-test.

https://doi.org/10.1371/journal.pone.0197777.g004
expression and adipogenic phenotype. As SVF cells are the source of progenitors [30,31,33]

and the primary producers of ACLP in the fibrotic eWAT (Fig 5B), we analyzed this SVF sub-
population to define the adipogenic phenotype in relation to ACLP secretion. SVF cells
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Fig 5. CD45- SVF derived from fibrotic adipose tissue is the source of ACLP expression. A, a scheme of isolating SVF CD45-, SVF
CD45+ and adipocyte populations from epididymal adipose tissue. B, CD45- SVF, CD45+ immune and adipocyte populations were
isolated from epididymal adipose tissue from C57BL6/] male mice on high fat diet for 16 weeks (n = 4) and mRNA levels were
determined by qPCR analysis of fibrosis, inflammation and adipocyte markers. * p < 0.05, one way ANOVA with post hoc Tukey’s test
for all values. Data presented are expressed as mean + SD.

https://doi.org/10.1371/journal.pone.0197777.9005

depleted of CD45+ cells were purified from LFD and HFD adipose tissue (Fig 5A) and cul-
tured for 24 hours. The media was collected, clarified and analyzed by Western blot for
secreted ACLP. Compared with LFD derived SVF, HFD derived SVF secreted increased
amounts of ACLP into the media (Fig 6A). HFD derived SVF cells exhibited impaired adipo-
genesis compared to LFD derived SVF cells, as indicated by significantly lower expression of
adiponectin and FABP4 (9.0 and 4.3 fold respectively), however there was similar expression
of perilipin (Fig 6B). Consistent with Western blot analysis, we examined lipid droplet accu-
mulation by oil red O staining and compared with controls, HFD derived SVF accumulated
52% less lipid (Fig 6C). These results demonstrate that HFD-induced obesity increases the
secretion of ACLP from SVF. Furthermore, the HFD-induced obesity decreases the adipogenic
potential of the total SVF. Collectively this supports the inverse relationship of ACLP and
adipogenesis.
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Fig 6. High fat diet reduces adipogenic potential of total SVF. A, Epididymal adipose tissue from C57BL6/] male
mice on low fat diet or high fat diet for 16 weeks (n = 3 for each group) was excised, enzymatically digested and
depleted of CD45+ cells. CD45- SVF cells were then cultured for 24 hours in 10% FBS DMEM and subsequently media
was collected and analyzed by SDS-PAGE and Western blot with antibodies against ACLP. B, CD45- SVF cells were
isolated as above and cultured for 10 days in 10% FBS DMEM, DMII was given on day 2 and cell lysates were harvested
on day 10. Cell lysates were analyzed by SDS-PAGE and Western blot with antibodies against adiponectin, perilipin
and FABP4. Protein expression was quantified by densitometry normalized to CypA expression and relatively
compared to low fat diet cells (n = 3). * p < 0.05, Students t-test used for all values. C, SVF cells were isolated as above
and were cultured (100,000 cells/well (12 well)) until confluent, and then induced to undergo adipogenesis with DMII
2 days after confluent. Oil Red O staining and imaging was performed 8 days following adipogenic induction (n = 3). *
p < 0.05, Students t-test used for value. The scale bar represents 100 um. Data presented are expressed as mean + SD.

https://doi.org/10.1371/journal.pone.0197777.9006

ACLP is downregulated during adipogenesis in human adipose stromal
cells

Human adipose tissue depots differentially respond to the stresses of obesity [5,47]. In contrast
to the subcutaneous depot, the omental depot is susceptible to fibrotic changes following
chronic excess caloric intake [9,48]. Little is currently known about the expression and func-
tion of ACLP in human adipogenesis. To determine kinetics of ACLP expression during adi-
pogenesis, primary human adipose stromal cells (hASC) from omental and subcutaneous
depots were induced to differentiate with serum-free complete differentiation media (CDM)
(Fig 7A) [38]. ACLP and o-SMA protein expression was detected in undifferentiated omental
hASC but their expression decreased 2 days following adipogenic induction (Fig 7B). Expres-
sion of each re-emerged 8 and 15 days with the concomitant emergence of fatty acid binding
protein 4 expression (FABP4) (Fig 7B). A similar early expression pattern of ACLP and o-
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SMA was observed in differentiating subcutaneous hASC (Fig 7C) but ACLP was only mini-
mally expressed by day 15. Our observations demonstrate that ACLP expression repressed
during adipogenesis in omental and subcutaneous human adipose stromal cells.

Recombinant ACLP represses human adipose stromal cells adipogenesis
and promotes myofibroblast differentiation

Omental adipose stromal cells are resistant to adipogenesis compared to subcutaneous adipose
stromal cells [49,50]. To test whether rACLP directs the fate of subcutaneous adipose stromal
cells towards myofibroblast differentiation, individual subcutaneous hASC isolates were cul-
tured in media containing rACLP (30 nM) prior to adipogenic induction, during the commit-
ment phase [51] (Fig 7D). In comparison to untreated control cells, treated cells expressed
lower amounts of perilipin and FABP4 (2/3 and 2/3 cell isolates respectively) and enhanced
amounts of o-SMA and Coll (3/3 and 1/3 cells respectively) at 8 and 15 days following differ-
entiation (Fig 7E). Consistent with an attenuation of adipogenesis, ACLP treated cells also con-
tained 41% less lipid compared to control (Fig 7F). While rACLP treatment can dampen
adipogenesis, its effect on subcutaneous hASC varied from donor to donor.

Discussion

Our studies have uncovered new functions for the secreted protein ACLP in regulating that
balance between adipogenic and myofibroblast differentiation fates of progenitors. We report
that ACLP expression is downregulated during adipogenesis of mouse precursors and is not
primarily in differentiated adipocytes. ACLP signals via the TGFR to repress adipogenesis
and enhance myofibroblast differentiation. ACLP production is enhanced and localized in
peri-cellular, collagen rich fibrotic regions of eWAT of HFD fed mice. The principal source of
ACLP expression is non-immune stromal vascular cells. Furthermore, our studies have deter-
mined that treatment of hASC with rACLP blunted adipogenic differentiation and enhanced
myofibroblast differentiation.

TGEFBR is a critical mediator of both myofibroblast differentiation and adipogenesis [16-
18]. Our studies demonstrate that ACLP enhances myofibroblast differentiation and represses
adipogenesis through extracellular activation of the TGFfR (Fig 3B). Additionally, ACLP sig-
naling repressed upregulation of PPARY protein expression during adipogenesis (Fig 2B) and
this likely contributes to the inhibition of adipogenesis. Previously our lab has demonstrated
that ACLP enhances TGFBR dependent pathways and its downstream effectors, including
SMAD?2/3 and myocardin-related transcription factor-A (MRTFA), in differentiating lung
fibroblasts [26]. Active TGFPR signaling represses terminal differentiation of adipogenesis by
activating SMAD2/3 which complexes with CCAAT/enhancer-binding protein-p and inhibits
downstream activation of adipogenic genes [18].

Adipose progenitors are capable of differentiating into multiple cell types, including adipo-
cytes, chondrocytes and osteoblasts [52,53]. Our studies demonstrate that ACLP enhances
myofibroblast differentiation and represses adipogenesis (Fig 2B) and is increased in WAT
fibrosis (Fig 4). Previous reports have also demonstrated that ACLP expression is increased
with idiopathic pulmonary fibrosis and is a critical mediator of myofibroblast differentiation
[26,41], together suggesting ACLP is a fibrotic mediator. While our studies demonstrate ACLP
enhance myofibroblast differentiation, ACLP may also be involved with enhancement of
chondrogenesis and osteogenesis differentiation. Supporting this, ACLP is highly expressed in
both connective tissue and skeletal structures in developing mice [34]. Additionally, individu-
als with an AEBPI gene mutation exhibit connective tissue disorders [54]. In vitro differentia-
tion of osteoblasts and chondrocytes requires numerous mediators [55], which were not
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Fig 7. Recombinant ACLP inhibits adipogenesis and enhances myofibroblast differentiation in human adipose stromal cells. A,
Scheme of time course for adipogenesis of hASC. B, hASC derived from subcutaneous adipose depots were induced to undergo
adipogenesis with CDM on day 0. Protein was harvested on days 0, +1, +2, +8 and +15. Protein expression was analyzed using SDS-PAGE
and Western blot with antibodies against ACLP, o.-SMA, FABP4 and cyclophilin-A. C, Omental hASC were induced to undergo
adipogenesis with CDM on day 0. Protein was harvested on days 0, +1, +2, +8 and +15. Protein expression was analyzed using SDS-PAGE
and Western blot with antibodies against ACLP, 0.-SMA, FABP4 and cyclophilin-A. D, Scheme of adipogenesis for hASC and rACLP
treatment. E, Subcutaneous hASC were treated with 30 nM rACLP on days -2, -1 and 0 and induced to undergo adipogenesis with CDM
on day 0 and +4. Protein was harvested on day +15 and analyzed by SDS-PAGE and Western blot with antibodies against collagen, o-
SMA, perilipin, FABP4 and CypA (n = 3). F, Subcutaneous hASC were treated with 30 nM rACLP on days -2, -1, and 0 and induced to
undergo adipogenesis with CDM on day 0 and +4. On day +15 cells were fixed, stained, imaged and quantified with Oil Red O dye

(n = 5). Data were normalized relative to control. * p < 0.05 versus control. Data presented are expressed as mean + SD. The scale bar

represents 2 mm.

https://doi.org/10.1371/journal.pone.0197777.9007

included in these studies. We anticipate that ACLP could potentially participate in chondro-
genic and osteogenic differentiation and further studies are required.
It is clear that WAT fibrotic pathways are controlled by inflammation, hypoxia and cell
death pathways [4,56], much less is known about the role of ECM associated proteins includ-
ing ACLP in progenitor differentiation and fibrosis. Our studies support a model where ACLP
modulates the differentiation in adipose progenitors from the stromal vascular compartment.
ACLP producing cells are non-adipocyte and non-immune cells (Fig 7A and 7B). While CD45
transcripts were expressed by both SVF and immune fractions at comparable levels possibly
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indicating incomplete fractionation, our results support that the SVF sub-population is the pri-
mary producer of ACLP along with other ECM genes. Interestingly, adipose progenitors
express ACLP and are also capable of undergoing adipogenesis (Fig 1B) [21,22,36,37].
Together this suggests that adipose progenitors may express but not sufficiently secrete ACLP,
or additional mediators may be required to cooperate with ACLP. For instance, our observa-
tions of ACLP localization in fibrotic eWAT suggest that ACLP expressing cells expand along
with infiltration and expansion of non-ACLP expressing cells (Fig 6B), including immune cells
[11,45]. ACLP is a target of TGFB-TGFpR signaling activity [57,58], which is increased with
obesity [19] and obesity induced macrophage infiltration [11]. Together this supports the
notion that ACLP secretion and signaling is increased from stromal cells following infiltration
of TGFB secreting immune cells. Our observations of ACLP in fibrotic eWAT demonstrate
that ACLP co-localizes among perilipin negative adipocytes (Fig 6B), indicative of cell death
which triggers an inflammatory response [44], further supporting that ACLP expression
occurs following inflammation. This concept has been demonstrated in experimentally
induced lung fibrosis, where genetic ablation of ACLP protected against fibrosis however there
was no change in early immune infiltration [41]. Together these data support that ACLP
increase in eWAT is a consequence of inflammation and can exacerbate eWAT fibrosis in a
non-immune dependent manner.

Several studies have demonstrated the impact of ECM structural properties and composi-
tion on adipogenesis and adipose tissue function [7,59,60]. Here we have demonstrated that
ACLP is inhibitory to adipogenesis in vitro (Fig 3B and 3C) and localizes with peri-cellular
ECM deposition with eWAT fibrosis (Fig 6A and 6B). A protein related to ACLP, carboxypep-
tidase X-1 (CPX-1) shares structural similarities to ACLP with a central discoidin domains
and catalytically inactive metallocarboxypeptidase domain [25], Interestingly, CPX-1 knock-
down impairs adipogenesis and results in a reduction of ECM associated proteins [61]. While,
ACLP and CPX-1 share structural similarities, they appear to have opposing effects on adipo-
genesis. While it is unclear the exact impact ACLP has on collagen structure and ECM remod-
eling, human mutations in AEBP] have been recently shown to be causative of connective
tissue disorders [54]. Also consistent with a collagen associated function for ACLP, Gusinjac
and colleagues observed an anti-adipogenic activity for ACLP in a collagen rich environment
[40]. Other studies using proteomics revealed ACLP is increased with fibrotic remodeling in a
model of ischemia [58] and abdominal aortic aneurysm [62] which has lead to its designation
as a core ECM protein [63].

In numerous tissues, fibrosis is driven by myofibroblasts which are characterized in part by
increased co-expression of ECM genes and o-SMA [12]. Our Western blot analysis of male
mice eWAT SVF demonstrates a substantial decrease of o-SMA expression in total SVF with
HFD (Fig 6C). Others have detected elevated a-SMA expression levels in a subset of SVF cells
(PDGFRa+, CD9" ™) with obesity in C3H male mice [9]. The loss of overall o-SMA expres-
sion in SVF is potentially due to dedifferentiation of a-SMA+ adipose vascular smooth muscle
cells to an a-SMA- ECM producing phenotype, which is well documented in settings of vascu-
lar injury [64] and inflammation [65]. Interestingly, the SVF of LFD and HFD expressed com-
parable levels of other smooth muscle cells markers, SM22, CRP2 and desmin, (Fig 6C). This
difference in smooth muscle cell markers and a-SMA suggest either these genes are differen-
tially regulated or the reduction in o-SMA is not related to the vasculature. For instance, in
fibrotic eWAT there is a large expansion of cells (Fig 4B) which is likely due to immune cell
infiltration [66]. This immune cell infiltration results in potential dilution of o.-SMA+ myofi-
broblasts in the total SVF, thereby reducing the a-SMA expression across the total SVF. Addi-
tionally, there is the possibility where the myofibroblast population in fibrotic eWAT are not
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predominately o-SMA+. While others have demonstrated an increase in o-SMA expression in
WAT SVF sub-populations, these may represent a minority of myofibroblasts [5,9,11].

In summary, we demonstrated ACLP enhances the differentiation of mouse and human
adipose progenitors to a myofibroblast phenotype at the expense of adipogenic differentiation.
Importantly, ACLP is derived from non-adipocytes and non-immune cells, is greatly increased
with chronic HFD and localizes with peri-cellular ECM deposition in fibrotic WAT. ACLP
activity may represent a novel therapeutic target that is independent of inflammation in ame-
liorating WAT fibrosis.

Supporting information

S1 Fig. ACLP expression localizes with pericellular ECM deposition. A, epididymal adipose
tissue from C57BL6/J male mice on low fat diet or high fat diet for 16 weeks (n = 3 for each
diet group) was excised and fixed with methyl Carnoy, stained with picrosirius red and imaged
using brightfield (left panels) and under polarized light (right panels). B, Tissue sections of epi-
didymal adipose tissue following low fat diet or high fat diet were immunostained for ACLP
and perilipin and counterstained with DAPI. Closed arrowhead indicates vasculature. Open
arrowhead indicates peri-cellular staining. Data are from parallel 10 um sections. Arrow indi-
cates vasculature. Scale bar represents 200 um.
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