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Abstract: Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; devel-
opment; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The
nature of ploidy-related advantages is still not completely understood. Here, we summarize the liter-
ature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate
gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality.
Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation
via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated
polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover,
Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in
already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of
cells to search for adaptive states of cellular programs through gene regulatory network rewiring.
This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity,
flexible energy metabolism, and a complex system of DNA damage protection, combining primitive
error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and
DNA damage-buffering ability. These three features can be considered important components of the
increased adaptability of polyploid cells. The evidence presented here contribute to the understand-
ing of the nature of stress resistance associated with ploidy and may be useful in the development of
new methods for the prevention and treatment of cardiovascular and oncological diseases.

Keywords: polyploidy; epigenetic regulation; Myc; chromatin opening; adaptation to stress; gene
regulatory network; cancer; cardiovascular diseases; neurodegeneration; hypertranscription

1. Introduction

Somatic polyploidy exists in tissues of nearly all multicellular organisms, including
higher and lower plants, invertebrates, and vertebrates [1–5]. In humans and mammals,
polyploidy may be a part of normal developmental programs and may result from stress
caused by a variety of pathological conditions. In the normal mammalian development, cell
polyploidization accompanies the early postnatal organogenesis of the neocortex, neuroglia,
heart, retina, blood vessels, blood, liver, skin, placenta, kidneys, and other organs [4,6–9].
In humans, polyploidy develops mostly in the heart, where almost every normal cardiomy-
ocyte contains 4–16 genomes [10]. Pathological conditions that enhance the accumulation
of genomes in cells include neurodegenerative disorders, cardiovascular diseases, diabetes,
wound healing, etc. [8,11–20]. Recent studied have indicated that polyploidy promotes
cancer initiation, progression, metastasis, and drug resistance [21–24]. The main features of
polyploidy include the association with stress and the ability to enhance stress adaptation
under normal and pathological conditions [25,26]. The data confirming the relationships be-
tween polyploidy and stress under normal conditions only recently appeared, significantly
contributing to the understanding of the biological role of genome duplications. It has
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become clear that in the development of mammals, the accumulation of genomes in somatic
cells coincides with critical periods of postnatal growth when cells combine proliferation
and differentiation and are subjected to stress associated with global physiological rear-
rangements [11,12,14,27,28]. For example, developmental cardiomyocyte polyploidization
coincides with metabolic rearrangements accompanied by the transition to the microen-
vironment, with high oxygen content associated with DNA damage response, oxidative
stress, and a decrease in expression of nuclear lamina filament lamin B2 (Lmnb2), which
regulates nuclear breakdown prior to cell division [29,30]. Accordingly, in macrophages,
polyploidization induced by inflammation is triggered by replication stress and DNA
damage response [31]. The data obtained by single-cell sequencing of human tetraploid
cell lines provide clear evidence that these cells undergo high rates of DNA damage during
DNA replication in the first S phase following induction of tetraploidy [32]. In pathological
conditions, polyploidy is associated with and aids in survival when faced with different
types of stress. Thus, in cardiovascular diseases, including tetralogy of Fallot, cardiomy-
opathy, hypertension, and ischemic heart disease, polyploidy helps to cope with hypoxia
and mechanical tension [10,33–38]. In neurodegeneration, polyploidy promotes adaptation
to oxidative damage, ischemia, and inflammation [8]. In wound healing and myocardial
infarction, genome accumulation stimulates adaptation to DNA damage, mechanical stress,
and inflammation [9,34]. Moreover, in polyploid giant cancer cells, multiple genomes
confer resistance to chemo- and radiotherapy [23,39–47]. These data are in agreement with
previous observations of plant polyploid cells, indicating that multiple genomes can live
under conditions under which diploid cells do not survive [25].

Notwithstanding the benefits under stress, polyploid cells cannot outcompete their
diploid counterparts under normal conditions because of their slower proliferation, DNA
instability, high energetic cost, and mitotic defects [17,25,48,49]. The ability of various
types of polyploid cells to survive under extremely stressful conditions despite multiple
detrimental effects suggests that genome accumulation creates new phenotypic features
via specific pathways of gene regulation. Polyploidy does not alter gene dosage balance.
Therefore, it cannot exert strong effects on the expression of separate genes. Furthermore, a
tight association with stress suggests that polyploidy can operate via epigenetic changes.

Ploidy-associated epigenetic regulation has attracted increasing attention because
it enables genome reorganization and cell fate change in adverse environments and in
response to extreme stress [39,41,42,50]. Moreover, this mode of regulation operating via
ploidy-related epigenetic rearrangements is characteristic of carcinogenesis and resistance
to therapy [42,43]. In this review, we extensively analyze the literature, which indicates
that polyploidy provokes global genome reorganization via chromatin relaxation induced
by stress-related Myc overexpression and ploidy-related architectural rearrangements. The
relaxation is observed at both high and low levels of chromatin organization. We also
provide evidence that polyploidy activates global transcription amplifiers belonging to
Myc-family oncogenes, which further promote chromatin opening.

2. Stress-Induced Myc Promotes Polyploidy and Vice Versa

Oncogenes of the Myc family (c-Myc and N-myc) are the most powerful and well-
studied stress-response-related amplifiers of global transcription [51–53]. Recent studies
indicate that, on the one hand, polyploidy is associated with Myc upregulation and, on the
other hand, that Myc can promote polyploidy. Many features associated with polyploidy are
also manifestations of activated Myc. Below, we outline the literature providing evidence
that polyploidy can upregulate Myc and vice versa and that overexpressed Myc and
polyploidy have many common manifestations.

2.1. Overexpressed Myc Induces Polyploidy

Stress-related Myc overexpression can trigger and enhance polyploidy. Supraphys-
iological Myc expression is sufficient to trigger polyploidy in cells with various mitotic
potentials. Myc induces DNA replication in quiescent, terminally differentiated cells, in-
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cluding mammalian cardiomyocytes, neurons, kidney cells, and post-mitotic epithelial
cells of Drosophila [8,54]. Myc enforces genome accumulation in normal cells with weak
mitotic capacity (hepatocytes, neurons, megakaryocytes, keratinocytes, and trophoblast
cells) [55,56] and in cycling polyploid cancer cells of various origins [43,45,57–60]. More-
over, N-Myc upregulation was recently documented in a wide variety of cancer cells with
polyploid genomes [61]. Overexpressed Myc promotes polyploidy and endoreduplication
via the induction of S-phase regulators, such as cyclins of CCNE and CCND families, cyclin-
dependent kinases CDK2 and CDK4, and transcription factors of the E2F family [62–65].
Myc also interacts with DNA replication origins and activates them epigenetically through
histone modifications and nucleosome remodeling, promoting re-replication in specific loci
and chromosomal regions by acting as an illegitimate replication-licensing factor [65,66].

Surprisingly, Myc-associated S-phase enforcement is not accompanied by the acceler-
ation of mitotic cellular division [52,58,67]. Recent observations indicate that blocking of
mitotic progression can occur as a result of Myc-induced DNA instability, disturbance of
mitotic spindle geometry, and metaphase and anaphase duration [64,68]. Another reason
for the link between overexpressed Myc and polyploidy is that the latter can abrogate G1
and G2 checkpoints controlling DNA damage and DNA replication [52,57,58,65].

2.2. Polyploidy Upregulates C-Myc

In normal cells, polyploidy is associated with the induction of Myc and its interactants
in human and mouse heart, liver, and placenta [16,43,55,69–73] (Figure 1). Endopolyploidy
and Myc are coupled in polyploid cells of Drosophila arising in development and wound
healing [74–76]. Polyploidy also upregulates Myc in cancer cells. For example, in high-
grade diffuse large B-cell lymphoma, drug-induced and drug-resistant polyploid cells also
show c-Myc overexpression [77]. A similar finding was reported with respect to polyploid
melanoma cells generated by paclitaxel [58]. These cells were found to overexpress c-Myc
and reduce the expression of MAD2, an essential component of the molecular core of the
spindle assembly checkpoint (SAC), indicating impairment of this checkpoint [58]. An
extensive bioinformatics study performed with 10,000 primary human cancer samples and
essentiality data from 600 cancer cell lines provided evidence that polyploidy in cancer is
associated with induction of N-myc [61] (Supplementary Table S1 from [61]). Accordingly,
the authors revealed the steady upregulation of c-Myc targets (Figure 1E in [61]), which
was not accompanied by c-Myc induction (Supplementary Table S1 in [61]), confirming
that chromatin opening can enhance the efficiency of amplifiers, even if their expression is
not changed or is even decreased. The authors observed the induction of gene modules
related to DNA repair, proliferation, and cell cycle, as well as the downregulation of gene
modules involved in immune response and allograft rejection [61]. These data confirm that
polyploidy is associated with the upregulation of c-Myc in various conditions.

Thus, Myc and polyploidy respond to similar stimuli, including a wide variety of
stressful and pathological conditions. Overexpressed Myc promotes polyploidy via the
stimulation of rapid S-phase entry, DNA replication, and mitotic spindle abnormalities,
whereas polyploidy activates Myc through stress response, genetic instability, and replica-
tive stress associated with chromatin opening [64,78,79].
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 Figure 1. The most connected component of protein interaction networks of significantly ploidy-
induced genes in the c-Myc interactome of human and mouse heart, liver, and placenta. The network
was constructed using the String server (https://string-db.org/, assessed on 5 May 2022). The data
for network construction were taken from [72]. Color coding reflects the Biological Process of Gene
Ontology (GO) database. The gene symbols containing portions of various colors indicate that a gene
is involved in several GO biological processes. The fraction of a circle that is a particular color does
not convey any meaning; the circle is simply divided into a number of partitions to reflect the number
of GO processes involved.

https://string-db.org/
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3. Myc and Polyploidy Increase Stress Resistance

It is well-established that Myc enhances stress tolerance to various environmental
clues. Myc promotes protection from hypoxia, oxidative stress, drugs, and DNA insta-
bility [80–82]. Moreover, Myc confers cells with resistance to apoptosis. An association
between overexpressed Myc and protection from apoptosis was observed in tumors of
various origins [77,83–86]. Another important protective feature of Myc is that when over-
expressed, it enables tumor cells to deregulate their microenvironment and evade the host
immune response [82].

Polyploidy is also associated with stress and protects cells from hypoxic, hyperoxic,
and genotoxic environments and increases resistance to drugs [39,40,44,46,57,80,81,87].
Furthermore, polyploidy protects cells from aging related stress. This association has
been well-established in cells of insects and mammals. For example, the increased poly-
ploidization was discovered in spermathecal glands of honeybee queens during senescence,
accompanied by genotoxic and oxidative stress [88]. The authors accounted for this phe-
nomenon with a selective repression or induction of gene expression [88]. In mammals, the
tight association between polyploidy and senescence was documented in neurons, hepato-
cytes, vascular smooth muscle cells, and even in cancer cells [16,43,47,89,90]. Importantly,
polyploidy can also safeguard cell survival under energy depletion. For example, the giant
polyploid nuclei originating from nuclear and cellular fusion arise in the insect vectors
of Chagas disease, especially under starving-stress conditions [91]. The epithelial cells of
Malpighian tubes of blood-sucking insects demonstrate polyploidization via nucleus fusion
after 4.5 month of starvation [92,93].

Polyploidy mitigates consequences of DNA instability via the upregulation of path-
ways related to DNA damage response and DNA repair. This connection was well-
established based on mRNA sequencing data from roughly 10,000 primary human cancer
samples and essentiality data from approximately 600 cancer cell lines [61]. The link be-
tween polyploidy, DNA instability, and related pathways was also indicated for giant
polyploid cancer cells [40,94,95], tumor-initiating cells in vivo, RPE1 cell in culture [32], and
yeast [96]. Polyploidy also confers resistance to apoptosis. This feature was documented for
polyploid cancer cells, giant cancer cells, and polyploid cells of normal tissues [40,61,72,97].
Another unexpected protective feature of polyploidy that is also common with Myc is
immune evasion. The data of experimental studies and extensive transcriptome analyses in-
dicate that in thousands of tumors and in normal tissues, polyploidy is associated with the
downregulation of biological pathways and markers related to immunity [61,71,72,77,98].
Thus, ploidy-associated protection from stress confers polyploid cells with the ability to
survive under conditions that are not suitable for diploid cells. An important cause of
particular stress resistance of polyploid cells is the association between polyploidy and
overexpressed Myc. On the one hand, stress-induced Myc can trigger polyploidy; on the
other hand, polyploidy can upregulate Myc. Thus, there is a link between polyploidy,
overexpressed Myc, and stress resistance.

4. Myc and Polyploidy Promote Chromatin Opening
4.1. Myc Promotes Chromatin Repositioning from the Nuclear Periphery to the Inner Part

Data obtained from B cells indicate that c-Myc can accelerate chromatin decondensa-
tion via its repositioning from the nuclear periphery to the inner part and by promoting a
nuclear architectural shift from long-range to short-range contacts, leading to a near dou-
bling of loops and topologically associated domains (TADs) [64,99]. Data recently derived
from skeletal muscle stem cells provide evidence that Myc can regulate TAD composition
and structure via TAD splitting, merging, rebuilding, rearranging, or disappearing [99,100].
Thus, overexpressed Myc can relax chromatin at the periphery of polyploid cells.



Int. J. Mol. Sci. 2022, 23, 9691 6 of 22

4.2. Polyploidy Stimulates Chromatin Transition from the Outer Part to the Inner Part of
the Nucleus

Polyploidy can also potentially boost the effect of overexpressed Myc related to chro-
matin remodeling. It is well-established that genome duplication decreases the nucleus
surface-to-volume ratio, which suggests the ability to affect high levels of chromatin organi-
zation [101,102]. Initial evidence was recently presented showing that this decrease affects
the architecture of chromatin located at the periphery of the nucleus. Hi-C data obtained
from KBM7 cells indicate that genome accumulation leads to preferential loss of nuclear
lamina (NL) interactions of lamina-associated domains (LADs) [101,102]. The loss occurs as
a result of increased competition for NL contacts originating from the decrease in nucleus
surface-to-volume ratio [101,102]. The LADs exhibit heterochromatic features, including
low gene density, low transcriptional activity, and late replication timing [103]. In the LADs
detached from the lamina, some “repressed LAD promoters” became active as a result of
their removal from the LAD context and transitioned to the nuclear interior [104]. This
transition increases the number of compartments with open A-chromatin at the expense of
compartments with closed B-chromatin [104]. B-to-A chromatin compartmental transition
is a universal mechanism of topological activation of gene expression in development and
differentiation [105]. For example, ploidy-related gene activation via large-scale chromatin
topology rearrangement operates in cardiogenesis. Chromatin regions transitioning from
B to A are strongly enriched for heart developmental genes upregulated during human
and mouse cardiogenesis and in cardiac differentiation of hPSCs [105]. Accordingly, data
obtained from synthetic autotetraploid plants (watermelon, soybean, and Arabidopsis)
also indicate that polyploidy shifts the A-to-B chromatin balance toward the actively tran-
scribed A-chromatin [106,107]. Moreover, recent studies provide evidence that genome
duplications reorganize topologically associated domains (TAD) packaged within A- and
B-chromatin compartments via the increase in intra-TAD interaction and reorganization of
chromatin loops [106,108]. In addition, polyploidy in giant cancer cells can enlarge chro-
mosome territories [109]. The ability of polyploidy to relax chromatin via its repositioning
from the periphery to the center of the nucleus, as well as to alter LADs and TADs geom-
etry, is also characteristic of cancer cells [109,110]. Thus, both c-Myc and polyploidy can
reposition chromatin from the nuclear periphery to the inner part of the nucleus, promoting
its relaxation (Figure 2).



Int. J. Mol. Sci. 2022, 23, 9691 7 of 22Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 25 
 

 

 

 
Figure 2. Polyploidy and overexpressed Myc promote chromatin opening via common effects at 
high (A) and low (B) levels of organization. A-chromatin opening due to lamina-associated domain 
detachment from the lamina and chromatin transition from B (closed) to A (open) state. 
B-chromatin opening due to DNA hypomethylation, histone acetylation, and substitution of ca-
nonical histones with non-canonical histone H2A.Z. 

  

Figure 2. Polyploidy and overexpressed Myc promote chromatin opening via common effects at
high (A) and low (B) levels of organization. A-chromatin opening due to lamina-associated domain
detachment from the lamina and chromatin transition from B (closed) to A (open) state. B-chromatin
opening due to DNA hypomethylation, histone acetylation, and substitution of canonical histones
with non-canonical histone H2A.Z.

5. Myc and Polyploidy Open Chromatin at the Low Level of Organization and
Activate Transcription
5.1. Myc Opens Chromatin and Reinforces Expression of Already Actively Transcribed Genes via
Binding of E Boxes

Myc proteins bind enhancer-box (E-box)-containing CACGTC sites [111]. E-box-
containing genes can be divided into genes with “high-affinity E boxes” and “low-affinity E
boxes” [65,112]. Researchers discovered that the two classes of E boxes can be differentiated
by a marked enrichment of CpG islands and open chromatin marks, including DNA
hypomethylation and histone modifications [65,113]. Consistently with this observation,
Myc target genes were reported to demonstrate higher basal expression (even in the
absence of Myc) relative to non-target genes [112]. Thus, Myc promotes transcription by
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further reinforcing the expression of already intensely working genes and that of genes
with bivalent chromatin marks (i.e., genes containing both active and silent chromatin
H3K4me3 and H3K27me3 marks) [15,51,73,114,115]. This phenomenon explains why
overexpressed Myc shows different faces in various tissues [52,80,116]. Because the set
of actively transcribed genes varies depending on the cell type, manifestations of Myc
overexpression differ according to cell type. This feature indicates that Myc is not a specific
transcription factor but a general amplifier that increases RNA content [117,118].

5.2. Myc Activates Chromatin via the Induction of Pol I, II, and III

Myc oncogenes can also activate chromatin via the induction of Pol I-, II-, and III-
transcribing rRNA, tRNA, and mRNA [119,120]. Pol I, II, and III locally open the double-
stranded DNA so that one strand of the exposed nucleotides can be used as a template for
the RNA synthesis [119,121]. The effects of MYC on genes transcribed by all three poly-
merases are mostly inducing [111,122,123]. Myc activates genes participating in growth,
proliferation, cell cycle (G1/S transition), energy metabolism, purine biosynthesis, ribo-
genesis, protein turnover, and other pathways, whereas Myc-repressed genes include
cyclin-dependent kinase inhibitors and genes involved in apoptosis and adhesion [111,124].
Owing to these properties, Myc oncogenes can reverse DNA-damage-induced prolifera-
tion arrest and activate processes related to adaptation, wound healing, and tumorigene-
sis [75,125,126]. Almost all of the effects of Myc on the expression of specific target genes
are weak and are often below the twofold threshold for expression difference, even when
Myc levels are manipulated to increase several orders of magnitude [111,125,126].

5.3. Myc Interacts with Chromatin-Remodeling Partners

Myc-related facilitation of transcription can also be executed via the interaction with
chromatin-remodeling partners. Myc isoforms interact with transformation/transcription-
domain-associated protein (TRRAP), which is a scaffold protein of several large protein
complexes involved in chromatin remodeling [127]. TRRAP also cooperates with p400
chromatin-remodeling helicase, which is the ATP-hydrolyzing subunit of the chromatin-
remodeling Tip60/Ep400 complex that substitutes the canonical histone H2A for histone
H2A.Z [128]. Histone H2A.Z increases enhancer activity, facilitating the binding of tran-
scription factors and chromatin remodelers to trigger transcription and changes in the
3D chromatin structure [129]. H2A.Z histone also plays an important role in chromo-
some segregation and cell cycle progression, whereby H2A.Z upregulates the expression
of key cell cycle genes, such as c-Myc, Myc-N, KIi67, and AURKA [130]. In addition,
H2A.Z fine tunes processes of cell renewal and mediates the establishment of bivalent
promoters of developmental genes during embryonic stem cell differentiation [131]. The
reduction in H2A.Z in mESCs results in loss of pluripotency, premature differentiation,
and senescence [130]. Another important Myc partner implicated in chromatin opening
is WDR5, which facilitates histone H3 Lys4 (H3K4) methylation and increases the affinity
of MYC for active promoters [65]. Myc can also be involved in chromatin activation via
interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWItch/sucrose
non-fermentable (SWI/SNF) chromatin remodeling complex [132]. It was also shown that
the basic helix–loop–helix region associated with Myc interacts with INI1 repeat 1 (Rpt1) in
ATP-dependent chromatin organization and transactivation [53].

Thus, the literature provides evidence that Myc overexpression can promote chromatin
opening via the repositioning from the surface to the periphery of the nucleus (high level
of chromatin organization) and via interaction with E boxes, RNA polymerases, and
chromatin remodelers (low level). Because polyploidy can open chromatin, we speculate
that when Myc overexpression coincides with polyploidy, their effects on chromatin can be
cooperative. Therefore, it is reasonable to suggest that overexpressed c-Myc and polyploidy
can cause prominent chromatin decompaction, leading to global activation of transcription
and alteration of gene regulatory networks and cell fate decision. The abundance, diversity,
and evolutionary conservatism of biological processes and functions that are coregulated
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by polyploidy and Myc indicate that they are responsible for transcriptional regulation via
global epigenetic changes.

5.4. Polyploidy Promotes DNA Hypomethylation, Histone Modification, and Substitution of
Canonical Histones with Non-Canonical Histones

Ploidy-associated chromatin activation and opening at high levels of organization
induce a coherent response at lower levels. Genome duplications promote DNA hy-
pomethylation and an increase in the amount of various open chromatin marks activating
gene expression. For example, an study performed with colorectal cancer cells (line LS174T)
showed that the onset of tetraploidy is associated with the demethylation of non-mobile
pericentromeric repetitive elements SST1 and transposable elements LINE-1, comprising
approximately 17% of the entire genome [133]. In line with these results, data obtained from
ovarian cancer cells show a strong statistical association between polyploidy, increasing
quantitative LINE1 DNA hypomethylation, and hypomethylation of centromeric DNAs
Chr1 and Sat2 [134]. LINE-1 methylation is usually considered a marker of genome methy-
lation [133]. Therefore, the association between polyploidy and hypomethylation of LINE-1
suggests that genome duplication decreases DNA methylation and opens chromatin in a
substantial part of the genome. The concomitance of polyploidy and global hypomethyla-
tion was also found in trophoblast giant cells and mouse embryonic fibroblasts [135,136].
In concordance, data obtained from plants, including Medicago truncatula symbiotic nodule
cells, neotetraploid rice, Arabidopsis, and soybean, reveal causal relationships between
polyploidy and chromatin opening, mostly via DNA hypomethylation and/or demethy-
lation of DNA packaging protein histone H3 (specifically the H3K27me3 mark) [137,138].
Polyploidy was also found to activate histone acetylation in human embryonic kidney cells
and in bread wheat Triticum aestivum L [139,140]. In addition to DNA hypomethylation,
histone acetylation, and histone demethylation, polyploidy can promote the substitution
of canonical histones with non-canonical histone H2AZ, which is necessary for chromatin
relaxation [135,141]. Thus, Myc and polyploidy can promote chromatin opening and
activation of transcription at various levels of organization.

6. Common Biological Effects of Overexpressed Myc and Polyploidy Manifest in
Embryonic Phenotype and Metabostemness

Chromatin opening affects basic biological processes and cell fate. In multicellular
organisms, open chromatin is a feature of undifferentiated pluripotent stem cells that
maintain plasticity in biological regulation, specific metabolic state, and dual capacity
to self-renew and differentiate into all cell types [142–145]. In differentiated cells, open
chromatin awakens silent genes, enabling sensing of multiple, simultaneous, and often
opposing signals (e.g., adult and fetal) in the environment [142,145]. In addition, chromatin
opening causes dedifferentiation and activates programs of embryonality and pluripo-
tency [142]. These features are acquired via the remodeling of chromatin at various levels
of organization, including nuclear periphery, TADs, LADs, posttranslational modifications
of histones, and DNA methylation [143,144,146]. Polyploidy and overexpressed Myc are
associated with many manifestations related to chromatin opening. Importantly, most of
these features relate to pluripotency.

6.1. Myc and Polyploidy Activate Programs of Embryonality

Myc oncogenes activate signaling pathways involved in pluripotency and embryo-
genesis (including NOTCH, BMP, TGFb, PI3K, HIPPO, and WNT), as well as pathways
of epithelial to mesenchymal transition and cell cycle progression, contributing to self-
renewal through maintenance of undifferentiated states [83,147,148]. Moreover, Myc is
one of the four Yamanaka factors that reprogram differentiated cells to an embryonic-
like state [148]. A polyploid state, as well as the Myc oncogene, can maintain stemness.
The activation of pluripotency programs was observed in polyploid giant cancer cells
(PGCCs) of ovarian, breast, prostate, and colorectal cancers, as well as Burkitt’s lym-
phoma [39,44–46,60,95,149–155]. Moreover, in these cells, polyploidy was accompanied by
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the expression of the key embryonic stem cell markers Oct4/Nanog, Sox2, SCF, and c-kit, as
well as markers of cancer stem cells (CD44 and CD133) [156,157]. In addition, endocycling
cells of Drosophila epidermis and mouse cornea endothelial cells that participate in wound
healing promote stemness through the activation of the Hippo pathway [75]. Researchers
suggest that wound-induced polyploidization enables tissue repair when cell division is
not a viable option [19,75,158]. Data recently obtained via mRNA sequencing of human
and mouse heart, liver, and placenta and from isolated hepatocytes and cardiac intersti-
tial cells provide evidence that polyploidy is associated with the induction of signaling
pathways related to stress response, growth, G1/S transition, and multipotency, includ-
ing NOTCH, BMP, TGFb, PI3K, HIPPO, and WNT, as well as epithelial-to-mesenchymal
transition [2,48,71–73,159,160]. Thus, both, Myc and polyploidy can enhance programs
of stemness.

6.2. Myc and Polyploidy Upregulate Genes with Bivalent Promoters

Another common feature of polyploidy and Myc is the upregulation of bivalent
genes [73,114,161]. These genes harbor two opposite epigenetic modifications of histone
H3, the repressing H3K27me3 mark and the activating H3K4me3 mark, in their promoters
or enhancers, [162]. Bivalent genes are poised for transcription and are capable of rapid
activation [162]. Prevalent in embryonic stem cells, bivalency is postulated to poise/prime
lineage-controlling developmental genes for rapid activation during embryogenesis while
maintaining a transcriptionally repressed state in the absence of activation cues [163]. This
is particularly important for key developmental genes and enhancers, the activation of
which in a short time window during differentiation may be crucial [164].

The activation of genes with bivalent chromatin was also observed in pathologies
associated with cell polyploidization and manifestations of stemness, including cardiovas-
cular diseases and cancer [73,162,165,166]. Moreover, the tight link between polyploidy,
bivalent genes, and programs of embryonality seems to be a fundamental and evolution-
arily conserved phenomenon. Thus, human ohnologs (genes retained in duplicates after
whole-genome duplications) are most strongly enriched in the bivalent genes and genes
implicated in development, showing an analogy with somatic polyploidy [16]. The biased
retention of expression-regulating and developmental genes can be explained by their
particular importance indicated by the strong purifying selection on them [167,168].

6.3. Myc and Polyploidy Are Associated with Metabostemness and Hypertranscription

It is well-known that Myc induces metabolic modification with features of meta-
bostemness observed in enhanced glycolysis, glutaminolysis, ribosome biogenesis, and
hypertranscription, which collectively enable cells to acquire continuous energy supply
via reserved energy-producing pathways [9,111,169–173]. Additional sources of metabo-
lites serve as essential cofactors for epigenetic enzymes regulating DNA methylation,
posttranslational modifications of histones, and nucleosome position [174,175].

Metabolic pathways of polyploid cells also demonstrate manifestations of stem-
ness [11,71,72]. Similarly to pluripotent stem cells, polyploid cells can simultaneously
derive energy from pathways that are incompatible with differentiated cells, promoting
adaptation to stress associated with energy deprivation [49,72,176–182]. Recent data ob-
tained from polyploid cells from normal tissues of animals and plants, various tumors, and
yeasts indicate that these cells possess energetically flexible metabolism combining glycoly-
sis glutaminolysis and oxidative phosphorylation [43,57,72,183–185]. Thus, in addition to
stem cells, polyploid cells can adjust their energy metabolism to the environment, which is
impossible for differentiated cells.

Under hypoxia, lack of nutrients, starvation, or severe genotoxic stress, polyploid cells
can be in a state of dormancy with predominantly glycolytic energy supply, which is a fea-
ture of metabostemness [40,43,46,88,92,93]. Under normoxia, polyploidy is usually accom-
panied by enhanced glycolysis, glutaminolysis, hypertranscription, active protein synthesis,
and ribosome biogenesis, which are also manifestations of embryonality [2,6,71,79,186,187].



Int. J. Mol. Sci. 2022, 23, 9691 11 of 22

All these features of metabostemness have also been described in endopolyploid cells of
Drosophila in development and wound healing, in cancer polyploid cells, and in cells of
normal mammalian tissues [7,57,178,184,188].

6.4. Myc and Polyploidy Awaken Programs of Unicellularity

According to the ancient origin of Myc, it can be traced to unicellular organisms using
deep phylostratigraphy [189], and several Myc-associated traits are also characteristic of
unicellular organisms. For example, as in unicellular organisms, Myc activates glycolysis,
glutaminolysis, ribogenesis, and features of epithelial-to-mesenchymal transition, con-
firming the association between Myc and the reactivation of evolutionary ancient gene
modules [82,190,191]. Recent phylostratigraphic data indicate that both polyploidy and
Myc shift the expression of genes toward unicellularity [43,73]. Polyploidy-associated
features of stemness and metabostemness are also observed in unicellular primitive or-
ganisms, further confirming that polyploidy promotes dedifferentiation and primitive
ancient traits, including the activation of ancestral gene modules related to glycolysis,
epithelial-to-mesenchymal transition, housekeeping genes, cell cycle, ribosome biogen-
esis, and flexible adaptive reaction to stress [22,190–196]. The connection between poly-
ploidy and unicellularity is not surprising because polyploidy is an ancient phenomenon
that appeared together with reproductive cysts of unicellular organisms [197]. Moreover,
Vladimir Niculescu considers polyploidization to be part of the already reactivated uni-
cellular programs and acquired unicellular lifestyle [196,197]. Recent data obtained via
phylostratigraphy indicate that in human and mouse heart and liver, polyploidy shifts the
evolutionary age balance of the expressed genes from the late metazoan phylostrata toward
the upregulation of unicellular and early metazoan phylostrata [73]. It has been shown that
the human interactome consists of unicellular and multicellular giant clusters [167,192]. In
cancer cells, the expression of the unicellular cluster is enhanced, whereas the multicellular
cluster is suppressed [167,198]. Accordingly, in polyploid cancer cells, the expression of the
unicellular cluster is upregulated, whereas the multicellular cluster is downregulated, even
compared with diploid cells of the same cancer, indicating that polyploidization of cancer
cells enhances their unicellular properties [16,199]. The tight connection between cancer
polyploidy and unicellularity confirms the atavistic theory of oncogenesis, which suggests
that cancer is a reversal from a multicellular to a unicellular state [200–203].

7. Myc and Polyploidy Are Possibly Evolutionarily Conserved Partners Increasing
Adaptation to Stress via Epigenetic Plasticity, Metabolism, and DNA
Damage Protection
7.1. Myc Increases the Ability of Polyploid Cells to Outcompete Diploid Cells under
Stressful Conditions

Polyploidy and overexpressed Myc appear in response to physiological and patho-
logical stress. Both exert similar effects on chromatin architecture and many biological
processes, including chromatin relaxation, phenotype plasticity, stemness, metabolic rear-
rangements, regulation of gene expression, and adaptation. Myc is a sensor of intrinsic
and extrinsic stress belonging to early response master regulators that reacts to a wide
variety of stimuli [204]. In response to stress, Myc promotes adaptive reactions, increas-
ing cell resistance and flexibility. Under long-term and severe activation, Myc can also
cause unwanted effects, including DNA instability, hypertranscription, replicative stress,
and cell cycle disturbance [65]. These flaws can stimulate polyploidy, which also exerts
beneficial and detrimental effects [62]. On the one hand, polyploidy increases stress re-
sistance and adaptability (similarly to Myc), and on the other hand, it promotes genetic
instability and chromatin relaxation (also similarly to Myc), contributing to further Myc
induction [43,57,71,72]. Thus, it is reasonable to suggest that Myc and polyploidy can
reinforce each other, facilitating the manifestation of both adaptive and adverse effects.
Likely as a result of this duality, polyploid cells acquire competitive advantages only under
stressful conditions [25].
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7.2. Epigenetic Phenotypic Plasticity, Energy Reserve, and Protection from DNA Instability
Boosted by Myc Might Help Polyploid Cells to Adapt

Why might the Myc–polyploidy partnership enable particular adaptation to extreme
stress? Data obtained from therapy-resistant giant polyploid cancer cells (GPCCs) suggest
that the polyploid-related ability to “survive at the brink” [43] originates from three main
sources. First, stress-related polyploidy can promote rapid adaptation to changing envi-
ronments via global genome reorganization (also termed ‘genome chaos’), leading to high
epigenetic and phenotypic plasticity and dedifferentiation or stemness [41,43,46,205,206].
Secondly, it protects cells from genomic instability [25,40,57,69]. Thirdly, it provides en-
hanced energy supply via additional pathways of ATP and HADH production [49,72,185]
(Figure 3). Epigenetic phenotypic plasticity, stemness, and genome reorganization can
be caused by chromatin opening, DNA damage, and bivalent gene induction promoting
the ability for rapid transitions from one state to another via network self-organization
and adaptive search for an energetically favorable attractor state [41,44,206–213]. Ploidy-
associated cell protection from DNA instability is provided by additional genomes buffering
DNA damage and by an efficient but error-prone DNA repair system, which is a character-
istic of unicellular organisms [214,215]. Additional energy is provided by the activation of
pathways of glycolysis, glutaminolysis, and NADH production, as well as by the induction
of Warburg and Crabtree effects [72,183–185]. All three features enabling rapid identifica-
tion of attractors are also related to ancient, unicellular organisms, confirming a tight link
between polyploidy and recapitulation of evolutionarily ancient programs [200,201]. Thus,
dedifferentiated state, error-prone DNA repair, and a particular metabolic patterns with
enhanced Warburg and Crabtree effects were previously well-established in yeast, amoeba,
and other organisms [183,197].
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In humans, polyploidy, in partnership with Myc, may help cells to survive under
pathologic conditions associated with various diseases, including hypertension, congenital
heart diseases, neurodegeneration, inflammation, and even cancer [8,14,17,43]. In the
case of cancer, polyploidy confers particular resistance to therapy and drugs. Therefore,
it is of particular importance to identify effective therapies that target polyploid cancer
cells. These three ploidy-specific features are promising targets for therapy directed at the
elimination of polyploid cells, particularly in cancer. Specifically, therapy can be directed
toward the correction of metabolism (via impairment of glycolysis or glutaminolysis), the
weakening of stemness through the changing of epigenetic state, and the removal of DNA
instability protection by blocking of error-prone primitive DNA repair pathways. It is also
tempting to suggest that Myc silencing could be effective. However, such an approach is
controversial. On the one hand, Myc silencing can be beneficial, as in endopolyploid cells, it
causes depolyploidization, leading to a reduction in cell size and ploidy [216]; on the other
hand, Myc silencing can be detrimental because silent Myc can cause deep-cell dormancy
accompanied by severe metabolic deprivation and permanent therapy resistance [217].
Therefore, more data and knowledge are needed to come to conclusion about Myc-silencing
therapy for polyploidy targeting.

8. Conclusions

Polyploid cells demonstrate particular plasticity and adaptation to stress. On the one
hand, this feature is beneficial because it helps to adapt to various pathological states,
including cardiovascular diseases, neurodegeneration, inflammation, wound healing, and
regeneration. On the other hand, this feature is detrimental because it promotes carcino-
genesis, metastasis, and cancer relapse caused by cancer therapy resistance. Currently, the
nature of ploidy-related adaptability is not completely understood. Here, we highlight liter-
ature data indicating that polyploidy can regulate gene expression via extensive epigenetic
changes promoting chromatin relaxation. Owing to increased nuclear volume in polyploid
cells, the decreased surface-to-volume ratio results in partial detachment of LADs from the
nuclear lamina, thereby changing the structure of LADs and TADs and increasing the pro-
portion of euchromatin. Polyploidy also promotes DNA hypomethylation and chromatin
modifications, relaxing chromatin. Altogether, these changes awaken bivalent genes that
are rapidly activated in response to stress or signals of morphogenesis. Contributing to the
opening of chromatin, polyploidy also activates global transcription amplifier oncogenes
of the Myc family, which, like polyploidy, contribute to the opening of chromatin. Myc
oncogenes can also accelerate the accumulation of genomes, enhancing polyploidization.
As a result of these cooperative effects of polyploidy and activated Myc, genetic instability
occurs, which, together with chromatin opening and induction of bivalent genes, can
result in genomic chaos, increasing epigenetic and phenotypic plasticity and the ability to
search for adaptive states of cellular programs through gene regulatory network rewiring.
Ploidy-related regulatory and phenotypic plasticity is manifested in (1) traits of stemness,
dedifferentiation, and unicellularity; (2) flexible energy metabolism; and (3) effective pro-
tection from genome instability consisting via buffering of DNA damage and mutation
effects and in complex DNA repair that combines primitive unicellular error-prone repair
pathways and advanced multicellular error-free repair pathways. We suggest that these
three features are important components of the increased adaptability of polyploid cells.
The presented evidence can be useful in the development of new types of therapy with
the aim of eliminating polyploid cancer cells. The evidence presented herein could also
be useful for the development of new measures of preventive medicine with the aim of
preventing excessive polyploidization of cardiomyocytes and neurons in order to reduce
the risk of cardiovascular and neurodegenerative diseases.
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147. Meškytė, E.M.; Keskas, S.; Ciribilli, Y. MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int. J.
Mol. Sci. 2020, 21, 7710. [CrossRef]

148. Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by
Defined Factors. Cell 2006, 126, 663–676. [CrossRef]

149. Erenpreisa, J.A.; Cragg, M.S.; Fringes, B.; Sharakhov, I.; Illidge, T.M. Release of Mitotic Descendants by Giant Cells from Irradiated
Burkitt’s Lymphoma Cell Line. Cell Biol. Int. 2000, 24, 635–648. [CrossRef]

150. Salmina, K.; Jankevics, E.; Huna, A.; Perminov, D.; Radovica, I.; Klymenko, T.; Ivanov, A.; Jascenko, E.; Scherthan, H.; Cragg, M.;
et al. Up-Regulation of the Embryonic Self-Renewal Network through Reversible Polyploidy in Irradiated P53-Mutant Tumour
Cells. Exp. Cell Res. 2010, 316, 2099–2112. [CrossRef]
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