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Abstract: Differentially expressed genes have been previously identified by us in multidrug-resistant
tumor cells mainly resistant to doxorubicin. In the present study, we exemplarily focused on some
of these genes to investigate their causative relationship with drug resistance. HMOX1, NEIL2,
and PRKCA were overexpressed by lentiviral-plasmid-based transfection of HEK293 cells. An in
silico drug repurposing approach was applied using virtual screening and molecular docking of
FDA-approved drugs to identify inhibitors of these new drug-resistant genes. Overexpression of
the selected genes conferred resistance to doxorubicin and daunorubicin but not to vincristine,
docetaxel, and cisplatin, indicating the involvement of these genes in resistance to anthracyclines but
not to a broader MDR phenotype. Using virtual drug screening and molecular docking analyses,
we identified FDA-approved compounds (conivaptan, bexarotene, and desloratadine) that were
interacting with HMOX1 and PRKCA at even stronger binding affinities than 1-(adamantan-1-yl)-2-
(1H-imidazol-1-yl)ethenone and ellagic acid as known inhibitors of HMOX1 and PRKCA, respectively.
Conivaptan treatment increased doxorubicin sensitivity of both HMOX1- and PRKCA-transfected cell
lines. Bexarotene treatment had a comparable doxorubicin-sensitizing effect in HMOX1-transfected
cells and desloratadine in PRKCA-transfected cells. Novel drug resistance mechanisms independent
of ABC transporters have been identified that contribute to anthracycline resistance in MDR cells.

Keywords: cancer; chemotherapy; drug resistance; RNA sequencing; transfection

1. Introduction

Drug resistance is frequently multifactorial in nature, but the full complexity of mech-
anisms and genetic alterations has been rarely addressed. Multidrug resistance (MDR)
is linked with drug efflux pumps such as P-glycoprotein, but other mechanisms are also
involved [1–4]. Drugs accumulate in cancer cells by various mechanisms, such as diffu-
sion, drug transport, and endocytosis. Each of these mechanisms possesses physiological
significance based on detailed uptake studies in drug-resistant mutants [5].

The main reasons of chemotherapy failure are drug resistance development in tumor
cells and the high susceptibility of normal tissues to treatment-related toxicity [6–10]. Some
important multidrug resistance mechanisms in cancer are apoptosis inhibition, DNA repair,
drug efflux, and altered drug metabolism [5,11–15]. Vesicle trafficking, including the
release of extracellular micro-vesicles, is critical in carcinogenesis and progression, which
involves invasion, metastasis, cell cycle regulation, angiogenesis, tumor immune privilege,
and chromosomal aberrations, all of which contribute to the development of multidrug
resistance (MDR) [16]. The role of MDR mechanisms in cancer progression is visualized in
Figure 1.

It has been reported that preventing or delaying the emergence of drug resistance
potentially increases the effectiveness of chemotherapy and improves clinical outcomes
for cancer patients [1]. In our previous study [2], we applied genomic and transcriptomic
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strategies to identify possible candidate mechanisms of drug resistance in addition to ABC
transporters. To maximize the therapeutic benefit and minimize treatment-related toxicity,
drug resistance phenomena should be better understood and the responsible mechanisms
should be identified.

In the present study, we exemplarily selected candidate genes that were previously
found to be overexpressed in multidrug-resistant CEM/ADR5000 tumor cells [2] in order
to evaluate their causative relationship with MDR. A drug repurposing approach was
applied to identify potential inhibitors of these novel drug resistance mechanisms in an
attempt to overcome drug resistance conferred by these genes.
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2. Results
2.1. Generation of Transfectant Cell Lines

As shown in Figure 2, HMOX1, NEIL2, and PRKCA plasmid constructs were trans-
fected into HEK293 cells. Expected bands were observed after EcoRI digestion of the
plasmid constructs (Figure 2A). Successful transfection was verified with the GFP signal
(Figure 2B). Overexpression of HMOX1, NEIL2, and PRKCA was verified for the transfected
cells, and β-actin was used as a loading control (Figure 2C).



Pharmaceuticals 2021, 14, 1051 3 of 13Pharmaceuticals 2021, 14, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 2. Transfection of HEK293 cells with HMOX1, NEIL2, and PRKCA plasmid constructs. (A) Verification of the clones 
after EcoRI digestion. (B) Verification of transfection with GFP signal observation under a fluorescent microscope. (C) 
Verification of protein overexpression for HMOX1, NEIL2, and PRKCA. β-actin was used as a loading control. NC, non-
transfected control. 

2.2. Resistance of Transfectant Cell Lines toward Anthracyclines 
The established transfectant cell lines overexpressing either HMOX1, NEIL2, or 

PRKCA revealed increased resistance toward daunorubicin and doxorubicin (Figure 3), 
implying that the selected genes contributed to resistance to anthracyclines. We observed 
significantly higher IC50 values for HMOX1, NEIL2, and PRKCA transfected cell lines 
compared to the untransfected cell line. It is clear from the corresponding dose response 
curves. The degree of resistance is especially higher for doxorubicin. Then, we concluded 
that upregulation of these genes leads to higher resistance toward anthracyclines, and we 
continued with analyzing the effect of potential HMOX1 and PRKCA inhibitors in the 
FDA-approved drug dataset to check whether they could induce a lower IC50 value for 
doxorubicin. The three transfected cell lines did not reveal resistance to vincristine, 
docetaxel, or cisplatin (data not shown). 

Figure 2. Transfection of HEK293 cells with HMOX1, NEIL2, and PRKCA plasmid constructs. (A) Verification of the
clones after EcoRI digestion. (B) Verification of transfection with GFP signal observation under a fluorescent microscope.
(C) Verification of protein overexpression for HMOX1, NEIL2, and PRKCA. β-actin was used as a loading control. NC,
non-transfected control.

2.2. Resistance of Transfectant Cell Lines toward Anthracyclines

The established transfectant cell lines overexpressing either HMOX1, NEIL2, or
PRKCA revealed increased resistance toward daunorubicin and doxorubicin (Figure 3),
implying that the selected genes contributed to resistance to anthracyclines. We observed
significantly higher IC50 values for HMOX1, NEIL2, and PRKCA transfected cell lines
compared to the non-transfected cell line. It is clear from the corresponding dose response
curves. The degree of resistance is especially higher for doxorubicin. Then, we concluded
that upregulation of these genes leads to higher resistance toward anthracyclines, and
we continued with analyzing the effect of potential HMOX1 and PRKCA inhibitors in
the FDA-approved drug dataset to check whether they could induce a lower IC50 value
for doxorubicin. The three transfected cell lines did not reveal resistance to vincristine,
docetaxel, or cisplatin (data not shown).

2.3. Virtual Screening for HMOX1 and PRKCA Inhibitors

As a next step, we performed virtual screening with a library of 1577 FDA-approved
drugs. The top 10 compounds with the highest binding affinity identified by PyRx-based
blind docking using AutoDock VINA were selected and further subjected to defined
molecular docking using AutoDock 4.2.6. The results for HMOX1 are summarized in
Table 1 and for PRKCA in Table 2. His25, Leu147, and Phe207 are the most commonly
observed residues and appeared for six compounds for HMOX1. Ala366 appeared for
eight compounds, and Met417 appeared for seven compounds for PRKCA. The similarity
analysis of the top 10 compounds with labels is depicted in Figure 4. Structural similarity
analysis is based on the rubber banding forcefield approach, which translates similarity
better than a principal component analysis (PCA) and is faster than a self-organizing
map (SOM). It was performed to assess the similarities in the identified compounds. In
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this method, compounds are mapped into a two-dimensional area, similar molecules are
located close to each other, and higher similarity is also indicated by green color. The
structural diversity of the top 10 compounds from screening was reflected with the help
of this similarity analysis. All test compounds revealed stronger binding affinities than
the known control inhibitors. Conivaptan appeared in the top 10 list for both HMOX1
and PRKCA. The docking poses of conivaptan are visualized in Figure 5. Conivaptan
and bexarotene bound to a slightly different region on HMOX1 compared to the inhibitor
(1-(adamantan-1-yl)-2-(1H-imidazol-1-yl)ethenone), whereas conivaptan and desloratadine
bound in close proximity on PRKCA compared to the inhibitor (ellagic acid).
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Table 1. In silico screening of FDA-approved drugs binding to HMOX1. Shown are the top 10 out of 1577 tested drugs. The
amino acid residues in bold formed hydrogen bonds.

Compound AutoDock 4.2.6 LBE (kcal/mol) Interacting Amino Acid Residues

Adapalene −12.383 ± 0.025 Lys18, His25, Ala28, Glu29, Thr135, Leu138, Gly139, Ser142, Leu147,
Lys179, Arg183, Phe207, Asn210

Montelukast −12.307 ± 0.671 Lys18, Thr21, Lys22, His25, Tyr134, Arg136, Gly139, Ser142, Gly143,
Leu147, Lys179, Arg183, Phe207

Bexarotene −11.527 ± 0.051 Lys18, His25, Tyr134, Thr135, Arg136, Leu138, Gly139, Ser142, Leu147,
Lys179, Arg183, Phe207

Conivaptan −10.837 ± 0.427 His25, Val50, Leu54, Ile57, Tyr134, Arg136, Leu138, Gly139, Asp140,
Ser142, Gly143, Leu147, Phe166, Phe167, Phe207, Asn210, Leu213, Phe214
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Table 1. Cont.

Compound AutoDock 4.2.6 LBE (kcal/mol) Interacting Amino Acid Residues

Sonidegib −10.420 ± 0.226 Val59, Glu62, Glu63, Ile65, Glu66, Val77, Tyr78, Phe79, Pro80, Leu83,
His84, Lys86, Tyr137

Trospium −10.010 ± 0.044 His25, Met34, Phe37, Phe47, Val50, Leu54, Thr135, Arg136, Asp140,
Leu147, Phe167, Phe207, Asn210

Azelastine −9.950 ± <0.001 His25, Ala28, Glu29, Met34, Gln38, Val50, Thr135, Arg136, Leu147,
Phe207, Asn210, Phe214

Ergotamine −9.877 ± 0.035 Tyr55, His56, Val59, Tyr107, Gln112, Arg113, Val115, Lys116, His119

Saquinavir −8.180 ± 0.370 Leu49, Tyr97, Gln102, Glu103, Val104, Ile105, Pro106, Tyr107, Thr108,
Pro109, Gln112, Leu220

Rolapitant −7.727 ± 0.156 Glu62, Glu63, Ile65, Glu66, Tyr78, Phe79,
Pro80, Leu83, His84, Lys86, Tyr137

1-(Adamantan-1-
yl)-2-(1H-imidazol-

1-yl)ethenone
−7.333 ± 0.032 Glu62, Ile65, Glu66, Tyr78, Phe79, Pro80, Leu83, His84, Tyr137

Table 2. In silico screening of FDA-approved drugs binding to PRKCA. Shown are the top 10 out of 1577 tested drugs. The
amino acid residues in bold formed hydrogen bonds.

Compounds AutoDock 4.2.6 LBE (kcal/mol) Interacting Amino Acid Residues

Lifitegrast −13.080 ± 0.123 His455, Lys456, Met489, Asp491, Gly492, Tyr515, Gly516, Lys517,
Ser518, Pro577, Gly587, Glu588

Conivaptan −12.207 ± 0.015 Leu345, Phe350, Ala366, Met417, Glu418, Tyr419, Val420, Asn421,
Gly422, Gly423, His428, Met470

Dihydroergotamine −11.187 ± 0.061 Leu345, Phe350, Val353, Ala366, Lys368, Glu387, Met417, Tyr419,
Val420, Asn421, Met470, Ala480, Asp481

Olaparib −10.763 ± 0.042 Phe350, Val353, Ala366, Lys368, Glu387, Thr401, Met417, Tyr419,
Asp467, Asn468, Met470, Ala480, Asp481

Simeprevir −10.663 ± 0.086 Leu345, Val353, Ala366, Tyr419, Val420, Asn421, Gly422, Gly423,
Asp424, Tyr427, His428, Met470, Lys617

Ergotamine −10.663 ± 0.291 Leu393, Leu394, Asp395, Lys396, Pro397, Pro398, Gln402, Leu403,
Ile449, Phe453, Glu606, Asn607

Desloratadine −10.450 ± <0.001 Phe350, Ala366, Lys368, Met417, Tyr419, Val420, Asn468, Ala480,
Asp481

Palbociclib −9.810 ± 0.0529 Phe350, Ala366, Lys368, Glu387, Leu391, Thr401, Met417, Glu418,
Val420, Asp424, Asp467, Met470, Ala480, Asp481

Cyproheptadine −9.760 ± <0.001 Gly346, Phe350, Val353, Ala366, Lys368, Glu387, Thr401, Met417,
Glu418, Val420, Asp481

Sulindac −9.207 ± 0.183 Lys347, Gly351, Lys352, Ile369, Leu370, Lys371, Val374, Val375, Asp378

Ellagic acid −7.550 ± <0.001 Val353, Ala366, Lys368, Glu387, Thr401, Met417, Val420
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treated the cell lines with bexarotene (10 µM). A doxorubicin-sensitizing effect was found 
on the HMOX1-transfected cell line. The dose response curve of bexarotene alone (Figure 
6D) revealed an IC50 value of 35.8 ± 6.6 µM for HMOX1-transfected cells. Bexarotene plus 
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Figure 5. Molecular docking poses of conivaptan (blue) and bexarotene (green) on (A) HMOX1 and that of conivaptan (blue)
and desloratadine (green) on (B) PRKCA. The known HMOX1 inhibitor 1-(adamantan-1-yl)-2-(1H-imidazol-1-yl)ethenone
and the known PRKCA inhibitor ellagic acid are displayed in red. Amino acid residues forming hydrogen bonds are
displayed in bold.

There is no structure available for human NEIL2, and the sequence homology of
human NEIL2 to the available NEIL2 structures from other species was low. Therefore, we
did not perform homology modeling and subsequent in silico drug screening for NEIL2.

2.4. Doxorubicin-Sensitizing Effects of HMOX1 and PRKCA Inhibitors

Among the candidate compounds, conivaptan, bexarotene, and desloratadine caused
clear decreases of IC50 values for doxorubicin in vitro, indicating sensitization of trans-
fected cells toward doxorubicin by these three compounds. Treatment of both cell lines
with conivaptan (10 µM) decreased the IC50 value for doxorubicin, implying an increased
sensitivity toward doxorubicin. The dose response curves are shown in Figure 6. The
IC50 values of conivaptan alone were 64.3 ± 10.6 µM for HMOX1-transfected cells and
60.4 ± 0.3 µM for PRKCA-transfected cells (Figure 6A). The IC50 values of conivaptan
plus doxorubicin vs. doxorubicin alone in HMOX1-transfected cells were 8 ± 2 nM vs.
17 ± 15 nM (Figure 6B), and the IC50 values of conivaptan plus doxorubicin vs. doxoru-
bicin alone in PRKCA-transfected cells were 3 ± 1 nM vs. 13 ± 4.6 nM (Figure 6C). Then,
we treated the cell lines with bexarotene (10 µM). A doxorubicin-sensitizing effect was
found on the HMOX1-transfected cell line. The dose response curve of bexarotene alone
(Figure 6D) revealed an IC50 value of 35.8 ± 6.6 µM for HMOX1-transfected cells. Bexarotene
plus doxorubicin vs. doxorubicin alone revealed IC50 values of 10 ± 6 nM vs. 17 ± 15 nM
in the HMOX1-transfected cell line (Figure 6E). Desloratadine treatment (10 µM) revealed
a doxorubicin-sensitizing effect on the PRKCA-transfected cell line. The dose response
curve of desloratadine alone (Figure 6F) revealed an IC50 value of 27.5 ± 2.4 µM for
PRKCA-transfected cells. Desloratadine plus doxorubicin revealed a lower IC50 value than
doxorubicin alone in PRKCA-transfected cells (3.2 ± 0.4 nM vs. 13 ± 4.6 nM) (Figure 6G).
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Figure 6. Effect of candidate inhibitors of HMOX1 or PRKCA on doxorubicin cytotoxicity in HMOX1- or PRKCA-transfected
cell lines (cell viability, % of control: y-axis; concentration in µM: x-axis). (A) Conivaptan alone, (B) conivaptan with or
without doxorubicin in HMOX1-transfected cells, (C) conivaptan with or without doxorubicin in PRKCA-transfected cells,
(D) bexarotene alone, (E) bexarotene with or without doxorubicin in HMOX1-transfected cells, (F) desloratadine alone, and
(G) desloratadine with or without doxorubicin in PRKCA-transfected cells.
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3. Discussion

Drug resistance, in general, is a multifaceted phenomenon, and MDR is much more
complex than frequently estimated. Beyond ABC transporters, there are more factors that
account for the full mechanistical complexity of chemotherapy failure. For this reason, we
previously performed transcriptomic and genomic profiling of multidrug-resistant tumor
cells to investigate possible drug resistance mechanisms apart from ABC transporters in a
comprising manner [2]. Among the upregulated genes, we selected some candidates to
evaluate their causative involvement in drug resistance.

One of these candidates was HMOX1. This gene encodes heme oxygenase, which
metabolizes heme, CO, and ferrous iron. This enzyme regulates ferroptosis and is involved
in tumor progression [17]. HMOX1/HO-1 was 71.7-fold upregulated in CEM/ADR5000
leukemia cells [2] and has been linked with doxorubicin and daunorubicin resistance in
the present study. HMOX1 has been previously shown to be involved in drug resistance
of breast cancer cells by preventing apoptosis and autophagy, since siRNA knockdown of
HMOX1 enhanced the cytotoxicity of doxorubicin in MDA-MB-231 and BT549 cells [18,19].
HMOX1 exerted anti-apoptotic activity in imatinib-resistant chronic myelogenous leukemia
patients [20]. Inducing its expression via the PKC-β/p38-MAPK (mitogen-activated protein
kinase) pathway promoted resistance of tumor cells to oxidative stress [20].

Another candidate gene chosen for the present study was PRKCA, which encodes
protein kinase Cα. Protein kinase C members are involved in signal transduction pathways
related to carcinogenic tumor promotion, cell adhesion, cell cycle control, etc. [21]. In
the present study, PRKCA-transfected cells were resistant to anthracyclines unlike non-
transfected cells. In our previous investigation of multidrug-resistant CEM/ADR5000 cells,
PRKCA was 70.0-fold upregulated compared to CCRF-CEM sensitivecells [2]. PRKCA was
also associated with drug resistance in ovarian cancer cells [22,23], colon cancer cells [24],
and pancreatic cancer cells [25]. PRKCA phosphorylated and modulated the activity
of RLIP76, which is involved in endocytosis of glutathione conjugates and xenobiotic
compounds, including doxorubicin [26]. Inhibition of PRKCA and RLIP76 resulted in a
synergistic increase of doxorubicin sensitivity [27].

A gene that was 22.3-fold upregulated in CEM/ADR5000 cells was NEIL2 (Nei-like
DNA glycosylase 2) [2]. NEIL2 is involved in DNA base excision repair by cleaving
cytosine and other bases with oxidative damage [28,29]. DNA repair was also associated
with the MDR phenotype of CEM/ADR5000 cells as 46 out of 225 DNA repair genes were
deregulated, including MSH4, BRCA2, and RRM2B, in addition to NEIL2 [2].

Previously, we characterized the cross-resistance profile of CEM/ADR5000 cells [10].
These cells were >1000-fold resistant to the resistance-selecting agent doxorubicin. CEM/
ADR5000 cells were cross resistant to other typical drugs involved in the MDR phenotype
(<500-fold), e.g., Vinca alkaloids and taxanes. While it seems plausible that the degree
of resistance to doxorubicin as a selecting agent was higher than that to other cross-
resistant drugs, the molecular mechanisms for this observation are unknown. Interestingly,
three of the genes overexpressed in CEM/ADR5000 cells (HMOX, NEIL2, and PRKCA)
conferred resistance to anthracyclines (doxorubicin and daunorubicin) but not to the other
anticancer drugs tested if transfected into HEK293 cells. This indicates that the set of genes
overexpressed in CEM/ADR5000 cells consist not only of genes that confer MDR to a
broad spectrum of drugs, such as the ABC transporter P-glycoprotein, but also of genes
that more specifically confer resistance to anthracyclines alone. This is an interesting and
novel aspect of MDR cells that has been merely discussed in the past.

Our drug repurposing approach to identifying novel inhibitors for HMOX1 and
PRKCA identified compounds with even stronger binding to these two targets than the
corresponding known inhibitors of these proteins (1-(adamantan-1-yl)-2-(1H-imidazol-1-
yl)ethenone and ellagic acid). Conivaptan was identified as an inhibitor of both HMOX1
and PRKCA among the top 10 out of the 1577 compounds investigated. Supporting the
molecular docking results, conivaptan treatment indeed increased doxorubicin sensitivity
of both transfected cell lines, implying its potential to be used as a dual inhibitor for both
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proteins. In addition, bexarotene sensitized HMOX1-transfected cells and desloratadine
PRKCA-transfected cells to doxorubicin. Unfortunately, the unavailability of a suitable
crystal or homology structure of NEIL2 prevented us from searching for NEIL2 inhibitors.

Conivaptan is a non-peptide inhibitor of vasopressin and was approved to treat
hyponatriemia in neurological and neurosurgical patients as well as patients with heart
failure [30,31]. Interestingly, it has also been used for hyponatriemia management in cancer
patients and to prevent tumor lysis syndrome [32,33].

Bexarotene is a synthetic retinoid analogue with activity against cutaneous T-cell
lymphoma and mycosis fungoides [34,35]. It has also been suggested to treat alopecia [36].
As alopecia is one of the most frequent side effects of cancer chemotherapy, this activity
may be of interest if bexarotene would be considered for cancer therapy.

Desloratadine is an antihistaminic drug that suppresses allergic reactions, e.g., ur-
ticaria, rhinitis, and allergic inflammatory diseases [37,38]. Remarkably, desloratadine has
been also reported to improve the survival time of patients suffering from melanoma or
breast cancer [39].

Although all three drugs have been mentioned in the literature in the context of cancer,
their relationship to anticancer drug resistance, as reported in the present paper for the
first time, is novel. The sensitization of HMOX1- or PRKCA-overexpressing cells toward
doxorubicin offers a thriving new option to improve the outcome of chemotherapy by over-
coming anthracycline resistance. This study is of importance for the future development of
more specific anticancer strategies for overcoming MDR.

4. Materials and Methods
4.1. Cell Culture

HEK293 cells were cultured in DMEM medium (Gibco, Eggenstein, Germany) sup-
plemented with 10% FBS (Gibco), 1% penicillin/streptomycin (100 U/mL penicillin and
100 µg/mL streptomycin) (Gibco), and 6 mM L-glutamine (Gibco).

4.2. Establishment of Stably Transfected Cell Lines

The main steps involved were as follows: (1) culturing of pLOC clones (Dharmacon,
GE, Cambridge, UK) in ampicillin (Gibco) containing LB medium, (2) miniprep plas-
mid preparation with a QIAprep spin miniprep kit (Qiagen, Hilden, Germany), and
(3) EcoRI (New England Biolabs, Frankfurt, Germany) digestion as described in the
pLOC vector-based transfection manual mentioned in the manufacturer’s protocol. Three
genes (HMOX1, NEIL2, and PRKCA) were selected from the list of upregulated genes
in multidrug-resistant CEM/ADR5000 cells [2]. A pLOC lentiviral vector was used for
the establishment of stably transfectant HEK293 cells. Transfected cells were selected by
continuous blasticidin treatment (2.5 µg/mL, Gibco). Western blotting confirmed the over-
expression of these three clones (HMOX1, NEIL2, and PRKCA). The protocol for Western
blotting has been previously described [2]. Primary antibodies for HMOX1 and PRKCA
(New England Biolabs, Frankfurt, Germany) as well as NEIL2 (Santa Cruz Biotechnology,
Dallas, TX, USA) were diluted in a ratio of 1:1000. The primary antibody for β-actin (New
England Biolabs) was diluted in a ratio of 1:2000. All antibodies were applied overnight
at 4 ◦C.

4.3. Cytotoxicity Assay

The resazurin assay [40] was applied to assess the cytotoxicity of established chemother-
apy drugs toward the transfected cell lines. We performed the assay as recently de-
scribed [41]. For each compound, three independent repetitions were performed with 72 h
treatment. To investigate the sensitizing effect of in silico identified potential resistance
modulating compounds, resazurin assays were performed by using non-cytotoxic concen-
trations of these compounds in combination with doxorubicin. Compounds presumably
inhibiting HMOX1 or PRKCA were used to treat transfectant cell lines and study whether
they were able to lower the IC50 values for doxorubicin.
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4.4. In Silico Screening and Molecular Docking

A library of FDA-approved drugs (1577 compounds) was used to assess the binding
strength toward HMOX1 (PDB ID: 1N45) and PRKCA (PDB ID: 3IW4), first by virtual
screening with the AutoDock VINA algorithm. We converted the pdb files to pdbqt files
to perform virtual screening and molecular docking. For the protein files, heterogenous
molecules, such as water molecules, were removed to eliminate possible interference with
the docking analysis. We performed virtual screening with AutoDock VINA, as it yields
results faster, and we ranked the compounds according to their binding energies. Then we
selected the best 10 compounds and performed molecular docking analysis to investigate
the binding energies and docking poses with AutoDock by applying the Lamarckian
genetic algorithm. The top 10 compounds with strong affinities were further considered
for molecular docking in order to validate the binding energies and docking poses with
the AutoDock 4.2 algorithm. As control drugs, 1-(adamantan-1-yl)-2-(1H-imidazol-1-
yl)ethenone [42] was used as the known HMOX1 inhibitor and ellagic acid [43] was used
as the known PRKCA inhibitor. Three independent repetitions were performed for both
virtual screening and molecular docking.

4.5. Similarity Analysis

Data Warrior software (Actelion Pharmaceuticals Ltd., Allschwil, Switzerland, https:
//openmolecules.org/datawarrior/download.html, accessed on 22 September 2021) was
used to perform the structural similarity analysis by referring to the user manual. Similarity
Analysis available on this software uses a rubber banding forcefield approach, and it is
stated to translate similarity better than a PCA and is faster than an SOM.

5. Conclusions

In conclusion, HMOX1, PRKCA, and NEIL2 contribute to anthracycline resistance
within the more complex MDR phenotype, while P-glycoprotein/ABCB1 overexpres-
sion causes not only anthracycline resistance but also resistance to other anticancer drug
classes [2]. Conivaptan has the potential to be used as the dual inhibitor of HMOX1 and
PRKCA, whereas bexarotene has the potential as an HMOX1 inhibitor and desloratadine
as a PRKCA inhibitor. All three compounds sensitized transfected cells to doxorubicin.
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