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Three decades after the eradication of smallpox, the threat of bioterrorism and outbreaks of emerging diseases
such as monkeypox have renewed interest in the development of safe and effective next-generation poxvirus
vaccines and biodefense research. Current smallpox vaccines contain live virus and are contraindicated for a
large percentage of the population. Safer, yet still effective inactivated and subunit vaccines are needed, and
epitope identification is an essential step in the development of these subunit vaccines. In this study we
focused on 4 vaccinia membrane proteins known to be targeted by humoral responses in vaccinees. In spite of
the narrow focus of the study we identified 36 T cell epitopes, and provide additional support for the physical
linkage between T and B epitopes. This information may prove useful in peptide and protein-based subunit
vaccine development as well as in the study of CD4 responses to poxviruses.
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Introduction

Smallpox is a deadly disfiguringdisease thatwas endemicworldwide
and caused hundreds of millions of deaths in the last few centuries and
countless deaths before that (Fenner et al., 1988). Edward Jenner's
discovery of cowpox vaccination as a preventivemeasure (Jenner, 1798)
led to the eradication of smallpox after a decade's long effort led by the
WHO (Fenner, 1982). Thirty years after its eradication, variola virus is
considered a biological weapon candidate and, given the possibility of
bioterrorism or zoonotic poxvirus outbreaks, poxviruses remain a
significant public health concern (Henderson, 1999; Henderson et al.,
1999; Jahrling et al., 2005; Larkin, 2003; Mayr, 2003).

Control of this disease relied heavily on the availability of an
extremely effective, live, viral vaccine based on the immunologically
cross-protective vaccinia virus (Artenstein, 2008; Kennedy et al., 2009a,
b; Metzger and Mordmueller, 2007). Although its origin is unclear,
vaccinia-based smallpox vaccines induce robust and protective humoral
and cellular immune responses lasting for decades (Combadiere et al.,
2004; Crotty et al., 2003; el-Ad et al., 1990; Ferrier-Rembert et al., 2008;
Frey et al., 2003; Hammarlund et al., 2003; Kan et al., 2007). The vaccine
also caused serious adverse events and routine vaccination was halted
soon after the eradication (Fulginiti, 2003; Fulginiti et al., 2003;
Goldstein et al., 1975; Lane et al., 1970; Morgan et al., 2008; Neff et al.,
1967). Recent increased terrorist activity and outbreaks of monkeypox
and other emerging infectious diseases have stimulated biodefense
research and vaccine preparation in regard to smallpox. These efforts
have led to renewed interest in the immunologic mechanisms behind
smallpox vaccination, in particular: the identification of T and B cell
epitopes, and the development of subunit vaccines (Golovkin et al.,
2007; Heraud et al., 2006; Kennedy and Poland, 2007; Moutaftsi et al.,
2010; Poland, 2005; Sakhatskyy et al., 2008).

Epitope identification for large, complex pathogens such as
poxviruses is often a difficult and laborious process. To simplify the
task, many groups turn to computer algorithms designed to predict
peptide binding. Protein sequences can be scanned by computer
algorithms to identify likely candidates, which are then synthesized
and tested (Hammer et al., 1994; Larsen et al., 2007;Meister et al., 1995;
Rammensee et al., 1995, 1999; Roomp et al., 2010; Tong et al., 2007).
Even with the algorithms, comprehensive epitope identification
requires that thousands of peptides be tested. Other groups use shotgun
genomic approaches to express and test random protein sequences.
Once hits are identified, gene sequencing is used to identify the protein
targets fromwhich individual peptides can then be tested. In spite of the
complications involved in identifying immunogenic poxviruses epi-
topes, in the last several years a number of groups have identified
hundreds of MHC I restricted peptides (Drexler et al., 2003; Jing et al.,
2005; Johnson et al., 2005; Mathew et al., 2005; Moise et al., 2009;
Moutaftsi et al., 2006; Oseroff et al., 2005; Pasquetto et al., 2005a,b;
Sidney et al., 2008; Snyder et al., 2004; Terajima et al., 2003, 2008;
Tscharke et al., 2005, 2006;Walsh et al., 2009), and studies examining T
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Fig. 1. Cellular and humoral responses to vaccinia. A) The histogram on the left shows
the range of IFNγ ELISPOT results as stimulation index (S.I.: average spot forming units
in vaccinia stimulated wells divided by the average spot forming units in background
wells). X-axis scale indicates upper bound of each bin, i.e. two subjects had an S.I. less
than 2, and six subjects had S.I. values between 2.1 and 6. B) The histogram on the right
shows the range of 50% inhibitory dose (ID50: reciprocal of the serum dilution which
inhibits 50% of viral activity). X-axis scale indicates upper bound of each bin, i.e. no
subjects had ID50 values less than 20, while 3 subjects had an ID50 between 21 and 60.
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helper epitopes are also being reported (Calvo-Calle et al., 2007; Jing
et al., 2007, 2008; Mitra-Kaushik et al., 2007; Sette et al., 2008; Sirven
et al., 2009; Strug et al., 2008; Tang et al., 2006; Wang et al., 2009). Our
approach to the problemwas to focus onpotential interactions between
antigen-specificB andTcells. Decades ago, B cellswere shownto acquire
antigen through surface bound immunoglobulin and present antigen to
T cells (Lanzavecchia, 1985; Lanzavecchia and Bove, 1985). Similar
antigen acquisition and presentation processes (involving uptake and
internalization of MHC/peptide complexes) have been shown for T
helper cells and may explain, in part, the close physical proximity of
strong CTL and T helper epitopes (Adamopoulou et al., 2007; Davies
et al., 2007; Huang et al., 1999; Kennedy et al., 2005; Umeshappa et al.,
2009). We reasoned that poxvirus proteins targeted to B cells by
antibody–antigen recognitionwould allow for the efficient presentation
of any HLA class II epitopes within the same protein to vaccinia-specific
T helper lymphocytes.With this hypothesis in mindwe focused on four
of the viral proteins known to be targeted by humoral immunity (A27L,
A33R, B5R, and L1R) (Bell et al., 2004; Davies et al., 2007, 2008; Duke-
Cohan et al., 2009; Galmiche et al., 1999; Golden et al., 2008; Lawrence
et al., 2007; Wolffe et al., 1995).

Consistent with our hypothesis we identified multiple T cell
epitopes within each of the four proteins tested. These results also
provide additional evidence of what Sette et al. (2008) have labeled
the “deterministic linkage of specificities” for poxvirus epitopes. This
report adds to the growing list of HLA II-restricted poxvirus epitopes,
and as with many of those other reports, we found no clear cut
indications of immunodominance at the peptide level.

Results

Protein selection and library screening

Since robust humoral responses to vaccinia dependon T cell help,we
hypothesized that the close physical proximity of T helper and B cell
epitopes would provide themost efficient provision of the needed T cell
help as has been seen in other model systems (Bernard et al., 2005;
Bishop and Hostager, 2001; Lanzavecchia, 1985; Noelle and Snow,
1991).We initially compiled a list of viral proteins known to be targeted
by humoral responses to vaccinia (Davies et al., 2007, 2008). From this
list of over a dozen proteinswe selected four (A33R, A27L, B5R, and L1R)
for further study. Published literature for each of these four proteins
indicates that they are targeted by T cell responses (Fogg et al., 2004;
Hooper et al., 2000, 2003; Tang et al., 2006). Overlapping peptide
libraries spanning the amino acid sequence for each protein were
synthesized and divided into pools using the Deconvolute This software
(courtesy of Mario Roederer, NIH) (Roederer and Koup, 2003). Each
peptide was placed into three separate pools to allow for more rapid
deconvolution of positive responses. Twenty-nine individuals who had
received the smallpox vaccine within the last 4 years were recruited.

Immune responses to vaccinia virus

Humoral immunity was measured using a reporter-based neutral-
izing antibody assay (R. Kennedyet al., 2009;Manischewitz et al., 2003).
All of the subjects had detectable levels of vaccinia neutralizing
antibody, with ID50 (the serum dilution which neutralizes 50% of viral
activity) values ranging from37.3 to 1631.6 (Fig. 1). Each of these values
is significantly greater than those seen in vaccinia-naïve individuals
(ID50 values routinely below 5.0) (Kennedy et al., 2009a). All but two of
the 29 subjects enrolled in this study exhibited vaccinia-specific T cell
responses (S.I.N2) asmeasured by IFNγ ELISPOT assay. Spots permillion
cells in vaccinia stimulated wells were divided by the spots per million
cells in background wells to provide the stimulation index (S.I.) which
ranged from 1.22 to 444.0 (Fig. 1), reflecting a large spectrum of cellular
immune responses.
Immune responses to viral peptides and epitope identification

Immune responses to peptide pools were tested in IFNγ ELISPOT
assays using cells from these individuals. A representative example of
the immune response profile is shown in Fig. 2. Positive pools were
identified and the individual peptides potentially contributing to the
response profile were identified using the Deconvolute This software.
These potential epitopeswere then screened individually or in smaller
pools depending on the number of possible candidates (Fig. 3).
Positive peptides were confirmed in follow-up experiments using
cells depleted of CD8+ T lymphocytes (Fig. 4). One of the main
benefits of using overlapping peptide libraries for epitope mapping is
that it allows one to test all possible HLA class I and class II peptides
without regard for allele-specific binding restrictions.

Nearly all (28/29) subjects demonstrated significant T cell responses
to peptide pools, indicative of cellular immune responses to these four
proteins. Importantly, we were able to identify individual epitope-
specific responses in nearly one-half of the responders (13/28). The
remaining subjects had significant immune responses to pooled
peptides but not to individual peptides, indicating that these initial
responses were either false positives or that they represented the
combined, synergistic effect of multiple epitope-specific T cell popula-
tions which, when analyzed individually, fell below the level of
detection of our assays. The epitope mapping results are shown in
Tables 1 and 2. Table 1 shows peptides recognized by CD4+ T cells that
are presumably presented by HLA class II molecules. Table 2 shows
peptides recognized by PBMCs. These epitopes were not definitively
linked to CD4+ T cell responses due to either a lack of sufficient cells to
test the CD4+ T cell responses, ormore commonly, the disappearance of
responses to individual peptides when CD8+ T cells are removed from
the ELISPOT assays. These results indicate that the peptides listed in
Table 2 are likely presented by HLA class I molecules to CD8+ T cells. In
support of this hypothesis, the sequence VLFRLENHA within peptide
#21 (Table 2) has been identified as an HLA-A*0201 epitope (Otero
et al., 2006), as has the sequence QTSVFSATV within peptide #22
(Sidney et al., 2008). Our results do not rule out the possible presence of
HLA II epitopes elicitingminor responses below the level of sensitivity of
our assays. For example, Sirven et al. (2009) have identified various DR



Fig. 2. Immune responses to pooled peptides from a single individual are illustrated. Bars indicate the average number of IFNγ producing spots for wells (3–5 replicates) stimulated
with the antigen indicated on the X-axis. Error bars represent the standard deviation. Dark gray bars indicate responses significantly above background (pb0.05). Data illustrated in
this figure to Fig.–4 come from the same individual.
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binding epitopes within peptides #23 and #24. In some cases the first
round peptide pool screening was immediately followed by individual
peptide testing in CD8 T cell depleted PBMCs. Of the 36peptides listed in
Tables 1 and 2 only three were recognized by more than 1 individual.
Peptide#6was recognizedby3 subjects andpeptides#15and#20were
recognized by two individuals.

Epitope identification did not show any correlation with the
magnitude of either humoral or cellular vaccinia-specific responses
(Fig. 5), nor were there significant differences in immune response
between individuals with identified peptide responses and those
without (Fig. 6).

Our results support our hypothesis that proteins targeted by B cell
responses are likely to also contain T helper epitopes, as we have
identified multiple peptides from each of the four target proteins.
Fig. 3. Immune responses to individual peptides from a single individual. The positive pools
described in Fig. 2.
Epitope characterization

As shown in Table 1, the identified vaccinia peptides show
remarkable sequence homology (N 97%)with their variola counterparts.
In fact, 27 of the 36 peptides were 100% conserved, of the 9 peptides
withdifferent protein sequences (Proteins#1,#4,#6,#7,#12, #18,#21,
#23 and #30 from Tables 1 and 2): 6 peptides differed by only a single
amino acid, 2 peptides had two amino acid differences and one peptide
had 5 divergent amino acids. At the protein level, these 4 proteins show
very high homology between vaccinia, variola, monkeypox and
camelpox viruses. We synthesized several of the VARV homologs of
the peptides in Tables 1 and 2 and detected an IFNγ response to the
VARV version of peptide #18 but not to the peptides #1, #4, #6, #21, or
#30 (Table 3).
shown in Fig. 2 were used to select peptides for individual screening. Graph layout is as
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Fig. 4. CD4+ T cell responses to selected peptides from a single individual. Prior to stimulation with the indicated peptides (X-axis) CD8+ T cells were removed by magnetic bead
depletion. Resulting cell populations containedb2% CD8+ T cells (data not shown). The graph layout is as described in Fig. 2.
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Similar to what other groups have found, we did not identify any
clearly immunodominant peptides as most of the peptides were
recognized by a single individual, in fact, of the 36 epitopeswe identified
only 3were recognized bymore than one individual. At the protein level
we identified more epitopes from the B5R (11 epitopes) and L1R (15
epitopes) proteins than the A33R (7 epitopes) or A27L (3 epitopes)
proteins.

Discussion

We initially hypothesized that T and B cell epitopes would reside
within the sameproteins or evenwithin close physical proximity to one
another as this would result in optimal activation of both CD4+ T cells
Table 1
Characteristics of newly identified MHC II-restricted T helper epitopes.

Peptide #a Sequenceb Proteinc VARV sequ

1 KADEDDNEETLKQRLT A27L KADGDDNE
2 VYSTCTVPTMNNAKLT B5R VYSTCTVPT
3 CTVPTMNNAKLTSTET B5R CTVPTMNN
4 LYNKPLYEVNSTMTLS B5R LYNKPLYEV
5 PNAVCETDKWKYENPC B5R PNAVCETD
6 CYILHSDYQLFSDAKA A33R CYIFHSDYQ
7 AKLTSTETSFNNNQKV B5R AKLTSTETS
8 CETDKWKYENPCKKMC B5R CETDKWKY
9 TVYGDKIQGKNKRKRV A33R TVYGDKIQG
10 KITNVTTKFEQIEKCC A27L KITNVTTKF
11 AFLIVRLNQCMSANEA A33R AFLIVRLNQ
12 SSTTQYDHKESCNGLY A33R SSTTQYKHQ
13 SGSTFSIGGVIHLSCK B5R SGSTFSIGG
14 CNLTVKNMCSADADAQ L1R CNLTVKNM
15 NCAIKALMQLTTKATT L1R NCAIKALM
16 KCDIEIGNFYIRQNHG L1R KCDIEIGNF
17 QNVIIDECYGAPGSPT L1R QNVIIDECY
18 GVIFLISVIVLVCSCD B5R GVIFLISVIV
19 AALFMYYAKRMLFTST L1R AALFMYYA

a An arbitrarily assigned number, used to identify peptides discussed in the text.
b Sequence of the identified epitope. The VACV-ACAM2000 sequence was used for peptid
c Vaccinia protein name following VACV-Copenhagen designation.
d Consensus variola sequence with differences indicated by bold, underlined font.
e Average sequence homology between the protein listed in column c and the homologs f

CMLV=camelpox).The VACV-ACAM2000 protein sequences were compared to sequen
Bioinformatics Resource Center (www.poxvirus.org). The average homology for each poxvi
and B cells and provision of the T cell help necessary for robust humoral
responses to poxviruses. In support of this theorywe identified 36 T cell
epitopes within 4 viral proteins targeted by antibody responses.

A33R is a membrane glycoprotein found on the surface of EV
particles, A27L is anMVmembrane protein involved in cell attachment
and fusion, B5R is anEVmembraneprotein required for the formationof
EVparticles, and L1R is amyristylated product of a vaccinia late gene and
is essential for the formation of infectiousMV (Chung et al., 1998; Isaacs
et al., 1992; Roper et al., 1998; Wolffe et al., 1995). All of these proteins
are the targets of neutralizing antibody responses, with B5R serving as
the major target of EV neutralizing activity in serum samples from
vaccine recipients (Bell et al., 2004). PBMCs from almost all of our
subjects reacted to multiple peptide pools as demonstrated by IFNγ
enced Protein sequence homologye

VACV VARV MPXV CMLV

ETLKQRLT 99.5 98.1 94.6 97.3
MNNAKLT 98.6 93.6 96.8 93.1
AKLTSTET 98.6 93.6 96.8 93.1
NAIITLI 98.6 93.6 96.8 93.1
KWKYENPC 98.6 93.6 96.8 93.1
LFSDAKA 99.3 94 96.5 95
FNDKQKV 98.6 93.6 96.8 93.1
ENPCKKMC 98.6 93.6 96.8 93.1
KNKRKRV 99.3 94 96.5 95
EQIEKCC 99.5 98.1 94.6 97.3
CMSANEA 99.3 94 96.5 95
ESCNGLY 99.3 94 96.5 95

VIHLSCK 98.6 93.6 96.8 93.1
CSADADAQ 100 99.6 98.8 98.4
QLTTKATT 100 99.6 98.8 98.4
YIRQNHG 100 99.6 98.8 98.4
GAPGSPT 100 99.6 98.8 98.4
LVCSCN 98.6 93.6 96.8 93.1
KRMLFTST 100 99.6 98.8 98.4

e library synthesis.

rom the indicated poxviruses (VACV=vaccinia, VARV = variola, MXPX=monkeypox,
ce from each strain of the indicated poxvirus strains available from the Poxvirus
rus was then calculated and presented in this table.

image of Fig.�4
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Table 2
Characteristics of newly identified T cell epitopes.

Peptide #a Sequenceb Proteinc VARV sequenced Protein sequence homologye

VACV VARV MPXV CMLV

20 IRISMVISLLSMITMS A33R IRISMVISLLSMITMS 99.3 94 96.5 95
21 EVLFRLENHAETLRAA A27L DVLFRLENHAETLRAA 99.5 98.1 94.6 97.3
22 EQTSVFSATVYGDKIQ A33R EQTSVFSATVYGDKIQ 99.3 94 96.5 95
23 DKIQGKNKRKRVIGLC A33R DKIQGKNKRKRVIGIC 99.3 94 96.5 95
24 FSIGGVIHLSCKSGFI B5R FSIGGVIHLSCKSGFI 98.6 93.6 96.8 93.1
25 KLEQEANASAQTKCDI L1R KLEQEANASAQTKCDI 100 99.6 98.8 98.4
26 ITINCDVGYEVIGASY B5R ITINCDVGYEVIGASY 98.6 93.6 96.8 93.1
27 IIVALTIMGVIFLISV B5R IIVALTIMGVIFLISV 98.6 93.6 96.8 93.1
28 KATTQIAPRQVAGTGV L1R KATTQIAPRQVAGTGV 100 99.6 98.8 98.4
29 MYYAKRMLFTSTNDKI L1R MYYAKRMLFTSTNDKI 100 99.6 98.8 98.4
30 DTFFRTSPMVIATTDM L1R DTFFRTSPMVIATTDI 100 99.6 98.8 98.4
31 QIAPRQVAGTGVQFYM L1R QIAPRQVAGTGVQFYM 100 99.6 98.8 98.4
32 KRMLFTSTNDKIKLIL L1R KRMLFTSTNDKIKLIL 100 99.6 98.8 98.4
33 ANKENVHWTTYMDTFF L1R ANKENVHWTTYMDTFF 100 99.6 98.8 98.4
34 VIILAALFMYYAKRML L1R VIILAALFMYYAKRML 100 99.6 98.8 98.4
35 NVHWTTYMDTFFRTSP L1R NVHWTTYMDTFFRTSP 100 99.6 98.8 98.4
36 TTYMDTFFRTSPMVIA L1R TTYMDTFFRTSPMVIA 100 99.6 98.8 98.4

Peptides listed in this table elicited significant IFNγ ELISPOT responses with total PBMCs and may represent CD4 and/or CD8 epitopes. Please refer to Table 1 for a description of each
column.

Fig. 5. Correlation between immune response and number of epitopes identified.
A) Scatter plot shows vaccinia-specific IFNγ ELISPOT S.I. on the X-axis and the number of
identified epitopes on the Y-axis. The best fit line is depicted in gray with the r2 value
indicatedon the graph. Eachdiamond represents a single subject's response. B) Scatter plot
shows the vaccinia-specific neutralizing antibody ID50 on the X-axis and the number of
identified epitopes on the Y-axis. The best fit line is depicted in gray with the r2 value
indicated on the graph. Each diamond represents a single subject's response.
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ELISPOT responses that were significantly higher than those seen in
background wells. Unfortunately, this reactivity was lost in half of the
subjects when we tested individual peptides. Sirven et al. (2009))
studied human CD4+ T cell responses to the B5R and A33R proteins
among individuals with unknown smallpox vaccination history and
found thatmultiple rounds of in vitro stimulationwas required to detect
T cell responses to HLA class II binding vaccinia peptides. The need for
multiple peptide stimulationmay have been due to the need to activate
and expand a small number of naïve T cells or to activate cross-reactive
memory cells, alternatively, repeat stimulationmay have been required
due to the low level of immune memory from vaccination 30+ years
ago. In all of these cases, low level responses (due to either rare
precursor frequency or low-affinity TCR/HLA interactions) are likely to
require multiple rounds of stimulation for optimal response. While
someof this loss in reactivitymay be due to false positive responses, it is
also possible that low frequencies of peptide-specific T cells resulted in
suboptimal responsesbelow the limit of detection inourassays.Another
possibility is the fact that our epitope library consisted of 16mer
peptides offset by 4 amino acids and likely did not capture all possible
epitopes. As has been found in other studies examining CD4+ T cell
responses to poxviruses, our results varied between individuals, likely a
reflection of the large number of potential T cell epitopes within the
~250 ORFs of vaccinia virus, inter-individual HLA differences, and
perhaps variations in time since vaccination. We had two individuals
with undetectable responses to vaccinia virus and another 6 with
extremely low vaccinia-specific responses (S.I.b3), yet several of these
subjects exhibited peptide-specific responses (Fig. 5). This discrepancy
could be due to the fact that T cell responses to viral particles require
infection, proteolytic cleavage of the antigen, peptide loading onto
appropriate HLA molecules, and transport to the cell surface for
presentation, an inherently less efficient process than exogenous
loading of higher concentrations of soluble peptide onto surface HLA.
These individuals may have very low levels of vaccinia-specific
responses that are optimally detected using exogenous peptide rather
than whole virus. Another possibility is that the epitope-specific
responses are due to a population of cross-reactive T cells. Consistent
with this hypothesis are the published reports documenting cross-
reactivity betweenvaccinia and LCMV (Chen et al., 2001; Cornberg et al.,
2007; Selin et al., 1998), or vaccinia and Pichinde virus (Cornberg et al.,
2010). In humans similar cross-reactivity has been found between
influenza and EBV (Clute et al., 2005) as well as between influenza and
hepatitis C (Urbani et al., 2005). Considerable effort is being spent on
developing subunit vaccines for select agents, including smallpox. This is
especially important given the reactivity and morbidity of the current
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Fig. 6. Comparison of immune responses in subjects with and without identified epitopes. Average immune responses to vaccinia virus (left panel=humoral response represented
by ID50 values, right panel=cellular immunity denoted by IFNγ ELISPOT S.I.) for subjects with identified T cell epitopes are compared to the anti-viral immune responses of subjects
for which no epitopes were found. Student's t test comparison p-values are indicated on each graph.
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live viral vaccine. Our results provide additional support for the
importance of these 4 membrane proteins in subunit based smallpox
vaccines. Each protein contains multiple T and B cell epitopes and is
widely targeted by both humoral and cellular immune responses in
vaccine recipients. Although the proteins we tested are fairly well
conserved among poxviruses, a small number of the peptides do have
amino acid differences which could abrogate cross-reactivity. Of the six
peptides that we were able to test, only one of the VARV homologs
showed T cell reactivity. A similarly low level of cross-reactivity for CD8+

Tcell epitopeshas recently been reportedbySette et al. (2009)As subunit
vaccines are being developed it will be important to minimize these
differences through the use of whole protein-based vaccines, selective
epitope choice and/or the inclusion ofmultiple epitopes in peptide-based
vaccines in order to elicit population-wide, cross-protective immunity to
the poxviruses constituting potential public health threats (variola,
monkeypox and camelpox).

Our results also illustrate advantages of parallel efforts in epitope
identification. For example, Jing et al. (2007) tested peptide responses
from in vitro restimulated T cell cultures from recent vaccine recipients
and identified a peptide fromA33R (A33R160–173) and a peptide from L1R
(L1R127–137) but did not identify any of our epitopes to either protein.
Relying on their report or ours alonewould present an incomplete picture
of the T cell epitopes contained within these two proteins. Another
example is the report by Calvo-Calle et al. (2007) which focused on DR1-
binding peptide sequences across the viral genome. The authors did not
find any epitopes from theA27L, A33R, or B5Rproteins, however, they did
identify two epitopes from L1R: L1R181–201 and L1R187–207 which overlap
Table 3
Comparison of immune reactivity to VACV and VARV homologs.

Peptide #a Sequenceb Virusc S.I.d p-valuee

1 KADEDDNEETLKQRLT VACV 1.5 0.01
KADGDDNEETLKQRLT VARV 1 0.68

4 LYNKPLYEVNSTMTLS VACV 1.5 0.01
LYNKPLYEVNAIITLI VARV 1 0.92

6 CYILHSDYQLFSDAKA VACV 3.5 0.006
CYIFHSDYQLFSDAKA VARV 1.1 0.95

18 GVIFLISVIVLVCSCD VACV 2.1 0.012
GVIFLISVIVLVCSCN VARV 2.3 0.02

21 EVLFRLENHAETLRAA VACV 2.5 0.04
DVLFRLENHAETLRAA VARV 0.7 0.16

30 DTFFRTSPMVIATTDM VACV 2 0.008
DTFFRTSPMVIATTDI VARV 1.1 0.89

a Peptide number from Tables 1 and 2.
b Peptide sequence.
c Virus containing the listed peptide sequence.
d Stimulation index (mean spots per well containing peptide/mean spots per

background wells).
e p-Value comparing spots per well with peptide vs. spots per well with DMSO

control. Positive responses are in bold font and represent peptides with a 1.5 fold
increase in mean spots/well over background (S.I.≥1.5) and a p-value of ≤0.05.
the sequences of peptides #19, #28, #31, #32, and #34 from Tables 1 and
2. In this instance the reports provide validation for the identifiedepitopes
and complementary information, with Calvo-Calle providing evidence of
DR1 restriction, while our report shows that 3 additional subjects
recognize 5 epitopes within close physical proximity to the 2 epitopes
recognizedby the single subject fromtheCalvo-Calle report.Differences in
approach (computer algorithm, overlappingpeptides, andpeptide elution
from HLA molecules), subject selection (recent vaccinees vs. those
immunized decades ago), vaccine studied (Dryvax, ACAM2000, MVA),
immune assay selection (Flow cytometry, tetramer staining, ELISPOT, and
ELISA) and even immune outcome (IL2 vs. TNFα vs. IFNγ vs. perforin and
CD107a) may contribute to the distinctive results found by the different
laboratory groups involved. Importantly, we feel that these parallel efforts
allow redundancy in epitope identification, increase confidence in the
results, provide complementary information regarding T cell responses,
and frequently identify unique peptides therebymaximizing our chances
of systematic and comprehensive epitope identification.

Conclusions

In this study we identified 36 viral epitopes in 4 selected vaccinia
proteins, providing support for the hypothesis that T and B cell epitopes
are found in close physical proximity, and that this close spatial linkage
allows for the generation of robust immune responses. As seen in other
reports, the CD4+ T cell response to these 4 proteins is diverse and
varied,withonly 3of the36epitopesbeing recognizedbymore thanone
individual. While most of the vaccinia peptides were completely
conserved in their variola counterparts, most of those epitopes with
amino acid differences did not show cross-reactivity with variola
sequences. Our results support using known immune interactions for a
rational and directed epitope identification process and indicate that
pathogen epitopes, once identified, must be carefully tested for
reactivity and utility before incorporation into vaccine candidates.

Materials and methods

Subject recruitment

Healthy volunteers from Mayo Clinic who had participated in past
smallpox vaccine trials or were part of the DHHS first responder's
initiativewere recruited for this study. All individuals provided informed
consent and submitted to a single blood draw of 100 ml. Serum and
PBMCs were isolated, aliquoted and frozen until use. Approval for the
study was received from Mayo Clinic's Institutional Review Board.

Viruses and cell lines

Vaccinia viruses (both NYCBOH andWR strain) were grown in Hela
S3 cells, titrated in Vero cells and stored at −70 °C until use. Virus was
inactivated using Psoralen andUV light as described (Crotty et al., 2003)

image of Fig.�6
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or heated to 52 °C for 1 h. DC2.4 and LB27.4 cells and allogeneic
splenocytes were used as MHC II positive APCs where indicated.

Peptides and reagents

We designed a series of 16mer peptides, offset by 4 amino acids that
spanned the length of each of the 4 selected viral proteins. Peptides for
the overlapping library were purchased from Mimotopes (Clayton,
Australia) and purified peptides were synthesized at Mayo Clinic or
Mimotopes. All peptidesweredissolved inDMSOat 20 mg/ml and stored
at −20 °C until use. Peptide pools contained equal amounts of 9–11
peptides each.

ELISPOT assays

PBMCs were purified from whole blood using CPT tubes (Becton
Dickinson Franklin Lake, NJ). After purification, PBMC were aliquoted
and frozen in liquid nitrogen until use. Culturemedia consisted of RPMI
(Invitrogen, Carlsbad, CA) supplemented with 10% FCS, penicillin/
streptomycin, non-essential amino acids, sodium pyruvate and sodium
bicarbonate and 50 μMbeta-mercaptoethanol.Where indicated CD8+ T
cells were removed using magnetic bead separation (Miltenyi Biotec
Auburn, CA). IFNγ ELISPOT kitswere obtained fromBDBiosciences (San
Diego, CA) and assays were conducted according to established
protocols (Ryan et al., 2005a,b) adapted formonitoring vaccinia-specific
responses (Ennis et al., 2002; Hammarlund et al., 2003). Briefly, 200,000
PBMCs were plated in each well. Peptide pools (consisting of 9–11
peptides each) were added at a final concentration of ~10 μg/ml, while
individual peptides were added at concentration of 30 μg/ml. Vaccinia
viruswas inactivatedwith Psoralen andUV light (Crotty et al., 2003) and
inactivatedviral particleswere added to individualwells at anMOIof 5.0
(based on pre-inactivation titration). Plates were incubated for 24 h,
washed and developed as per manufacturer's instructions. All plates
were then scanned and analyzed on an ImmunoSpot® S4 Pro Analyzer
(Cellular Technology Ltd., Cleveland, OH, USA) using ImmunoSpot®

version 4.0 software (Cellular Technology Ltd.).

Statistical analyses

For ELISPOT assays, the number of spots per million cells was
calculated for each well. The average spot number per experimental
group was compared to the negative control wells (medium alone or
DMSO) using a two-tailed student's t test. Positive responses were
defined as those with an average spot number 1.5 fold over background
values andwithp≤0.05. Thepeptides reportedherehadpositive results
in at least two separate experiments. For the initial screening of peptide
pools a more generous p-value of 0.10 was used. False positive results
were minimized by the more rigorous statistical standards in the
subsequent screening of individual peptides and the requirement for
positive signals in multiple experiments.
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