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Abstract

Motivation: The estimation of species phylogenies requires multiple loci, since different loci can

have different trees due to incomplete lineage sorting, modeled by the multi-species coalescent

model. We recently developed a coalescent-based method, ASTRAL, which is statistically consist-

ent under the multi-species coalescent model and which is more accurate than other coalescent-

based methods on the datasets we examined. ASTRAL runs in polynomial time, by constraining

the search space using a set of allowed ‘bipartitions’. Despite the limitation to allowed bipartitions,

ASTRAL is statistically consistent.

Results: We present a new version of ASTRAL, which we call ASTRAL-II. We show that ASTRAL-II

has substantial advantages over ASTRAL: it is faster, can analyze much larger datasets (up to 1000

species and 1000 genes) and has substantially better accuracy under some conditions. ASTRAL’s

running time is Oðn2k jX j2Þ, and ASTRAL-II’s running time is Oðnk jX j2Þ, where n is the number of

species, k is the number of loci and X is the set of allowed bipartitions for the search space.

Availability and implementation: ASTRAL-II is available in open source at https://github.com/smir-

arab/ASTRAL and datasets used are available at http://www.cs.utexas.edu/~phylo/datasets/astral2/.

Contact: smirarab@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The estimation of species trees is complicated by the fact that differ-

ent parts of the genome have different evolutionary histories; there-

fore, the different ‘gene trees’ obtained on different loci are often in

conflict with each other and with the true species tree. Gene tree dis-

cord due to incomplete lineage sorting (ILS) is a major challenge to

species tree estimation (Degnan and Rosenberg, 2009; Edwards,

2009; Maddison, 1997) and is a particular problem for rapid radi-

ations (where several speciation events occur in a relatively short

amount of time).

Because of the possibility of gene tree conflict, species tree esti-

mations are increasingly based on multiple loci. One approach to

estimating the species tree simply concatenates the sequence align-

ments for the different loci together and estimates a tree on the con-

catenated alignment. However, concatenation-based analyses can be

statistically inconsistent under the multi-species coalescent (Roch

and Steel, 2014) and can result in incorrect trees with high support

(Kubatko and Degnan, 2007). Because of this potential for

concatenation analyses to produce incorrect species trees, many

methods have been developed that are designed to address gene tree

incongruence due to ILS. Some of these methods have been proven

statistically consistent under the multi-species coalescent (Rannala

and Yang, 2003), which means that they will return the true species

tree with high probability, given a large enough number of true gene

trees. Some of these coalescent-based methods [e.g. MP-EST by Liu

et al. (2010) and NJst by Liu and Yu (2011)] are now in widespread

use.

Despite the availability of coalescent-based methods, many bio-

logical datasets are too large for the available methods; for example,

MP-EST cannot be used on large datasets due to computational rea-

sons (Bayzid et al., 2014). Other coalescent-based methods are even

more limited; for example, *BEAST (Heled and Drummond, 2010),

a method that co-estimates gene trees and the species tree, cannot be

used with more than about 25 species (Zimmermann et al., 2014).

Computational challenges in real dataset analyses have required the

development of coalescent-based methods that could analyze larger
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datasets; for example, MP-EST could not analyze the 1KP (Wickett

et al., 2014) dataset of about 100 species and 600 genes, due to the

dataset size among other issues.

ASTRAL (Mirarab et al., 2014a) was developed to enable coales-

cent-based analyses of these larger datasets. ASTRAL solves a likely

NP-hard problem by constraining the allowed search space to those

species trees that derive their bipartitions from an input set X,

provided by the user. In the default setting for ASTRAL, we set X to

be all bipartitions in the input gene trees. ASTRAL is statistically

consistent under the multi-species coalescent using this setting for X

and runs in polynomial time. ASTRAL also had excellent accuracy

on the datasets (both simulated and biological) that we explored in

Mirarab et al. (2014a); however, all these datasets were relatively

small (at most 37 species). Our subsequent evaluation of ASTRAL,

which we report here, shows that ASTRAL’s running time increases

quickly for large datasets and that setting X to be the bipartitions in

the input gene trees reduces the accuracy for species trees estimated

by ASTRAL under certain model conditions. In particular, this set-

ting for X is a problem in the presence of large numbers of taxa, few

gene trees or high levels of discordance.

We introduce ASTRAL-II, a new version of ASTRAL. We im-

prove the running time asymptotically by a factor of n (where n is

the number of species), and we show how to define the set X so that

ASTRAL is more robust and also explores a larger search space. We

have also modified ASTRAL so that it can handle polytomies in the

input trees. We compare ASTRAL to coalescent-based species tree

estimation methods and to concatenation using maximum likeli-

hood (CA-ML) on a collection of simulated datasets and a biological

dataset. We show that ASTRAL outperforms the coalescent-based

methods, providing improved accuracy, and is able to analyze very

large datasets. In particular, we show that ASTRAL can analyze

1000 species and 1000 genes in about a day, using a single proces-

sor. The comparison between ASTRAL and CA-ML shows that

ASTRAL is more accurate whenever the ILS level is sufficiently high

and comes close to CA-ML under very low ILS levels. Our extensive

simulations show how the choice of the best method to use can often

depend on the amount of gene tree error, number of genes and the

level of discordance. On the biological data, we show that some dif-

ferences between CA-ML and MP-EST previously attributed to the

fact that MP-EST accounts for ILS have to be interpreted with care,

because ASTRAL-II, which is also consistent under ILS, recovers

topologies similar to CA-ML.

2 Background: ASTRAL-I

Given a set G of k binary input gene trees on n taxa, there is a multi-

set of k
n

4

� �
quartet trees induced by the input. We define the

weighted quartet (WQ) score of a given tree as the number of quar-

tet trees from this multi-set that the given tree also induces. The opti-

mization problem solved by ASTRAL is to find the species tree that

maximizes the WQ score (Mirarab et al., 2014a).

ASTRAL solves this problem using a dynamic programming

algorithm. Each internal node of an unrooted tree divides the set of

leaves into three parts, defining a tripartition (Supplementary

Fig. S14), and vice versa, such tripartitions define nodes in an un-

rooted tree. We use XjYjZ to denote a tripartition and use triparti-

tions and internal nodes interchangeably. Each tripartition also

defines some number of quartet topologies that will be induced by

any tree that includes that tripartition as a node (Supplementary Fig.

S14). Mirarab et al. (2014a) presented a formula for calculating the

number of shared induced quartet trees between two given

tripartitions. Let T ¼ A1jA2jA3 and T 0 ¼ B1jB2jB3 be two triparti-

tions and let Cij ¼ jAi \ Bjj for i; j 2 f1; 2;3g. The number of quar-

tets shared by T and T0 is as follows:

QIðT;T 0Þ ¼ QIðCÞ ¼
X

ða;b;cÞ2G3

FðC1a;C2b;C3cÞ (1)

where G3 gives the set of all permutations of {1, 2, 3} and F is given

by:

Fða;b; cÞ ¼
a

2

 !
bcþ a

b

2

 !
cþ ab

c

2

 !
¼ abcðaþ bþ c� 3Þ

2

Mirarab et al. (2014a) defined an overall score for a tripartition:

wðTÞ ¼
X
g2G

X
T 02N ðgÞ

QIðT;T 0Þ (2)

where NðgÞ is the set of internal nodes in g. Mirarab et al. (2014a)

showed that the WQ score of the species tree can be computed

by summing w(T) for all nodes in the tree and then dividing this

sum by 2 (every gene tree quartet will be counted twice).

The ability to score a tripartition of the species tree in isolation

from others using the w function allows us to use dynamic program-

ming to maximize the WQ score. The dynamic programming starts

from the set L of all leaves and recursively divides it into smaller

subsets, each time finding the division that maximizes the score. To

solve the problem exactly, all ways of dividing a subset need to be

considered (this is exponential). However, we can restrict the search

space by defining a set X of bipartitions of taxa and restricting our

search to tripartitions derived from X. Let X0 ¼ fA : AjL� A 2 Xg
(thus, X0 is the set of both parts from all bipartitions in X). In the

constrained search, we divide a subset into two parts only when

both parts appear in X0. Thus, the recursion in the dynamic pro-

gramming becomes:

VðAÞ ¼ max
A0;A�A02X0

fVðA0Þ þ VðA�A0Þ þwðA0jA� A0jL� AÞg

where V(A) gives the score for an optimal subtree on A, and w is

defined in Equation (2). Note that bipartitions that we allow in the

species tree we construct are restricted to those found in the set X.

ASTRAL-I, by default, sets X to the set of bipartitions observed in

the input gene trees. Mirarab et al. (2014a) proved that using this

set X ensured statistical consistency for ASTRAL. However,

the proof relies only on the fact that the set X contain all the biparti-

tions in the input gene trees, and so any set X that contains those

bipartitions (and perhaps others) also maintains statistical consist-

ency. Thus,

Theorem 1: Let X0 denote the set of bipartitions found in the in-

put gene trees. If X0 � X, then using ASTRAL with the set X is stat-

istically consistent under the multi-species coalescent model.

3 ASTRAL-II

ASTRAL-II has three new features: (i) it uses a faster algorithm to

compute w, (ii) it searches a larger space by expanding the set X

using heuristics and (iii) it can handle polytomies in its input.

3.1 Running time improvement
The score w (Equation 2) needs to be calculated for each tripartition

and OðjXj2Þ such tripartitions need to be scored. ASTRAL-I com-

putes w in Oðn2kÞ time for each tripartition, but in ASTRAL-II, we

use a better algorithm that uses only O(nk) time. In ASTRAL-I, we
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sum over O(nk) input gene tree nodes, and, for each node, we first

calculate C and then compute QI using Equation (1). We represent

subsets of taxa as bitsets, which results in O(n) running time for cal-

culating C; therefore, calculating each w requires Oðn2kÞ. In

ASTRAL-II, instead of looking at tripartitions in input gene trees,

we do a post-order traverse of all gene trees (rooted arbitrarily) and

calculate the score using the algorithm shown in Algorithm 1.

Algorithm 1. Weight calculation: The Input is a gene tree g and

a tripartition XjYjZ. Each part (e.g. X) is a bitset indexed by the

species (thus, X½u� is 1 if leaf u is in X and otherwise is 0). QI is

defined as in Eq. 1. Function WEIGHT is called for all g 2 G and

results are summed to compute w defined in Eq. (2).

function WEIGHT (g;XjYjZ) w 0 and S empty stack

for u 2 postOrderðgÞ do

if u is a leaf then

ðx; y; zÞ  ðX½u�;Y½u�;Z½u�Þ
else

ðC11;C12;C13Þ  pull from S

ðC21;C22;C23Þ  pull from S

ðx; y; zÞ  ðC11 þ C21;C12 þ C22;C13 þC23Þ
ðC31;C32;C33Þ  ðjXj � x; jYj � y; jZj � zÞ
w wþQIðCÞ

push (x, y, z) to S

Algorithm 2. Computing similarity matrix: leafCount gives the

number of leaves under a node and is easily precomputed.

function GETSIMILARITY (G)
S Zerosðn� nÞ
for g 2 G and u 2 postOrderðgÞ do

for l 2 LeftðuÞ do

for r 2 RightðuÞ do

S½l; r� ¼ S½r; l� ¼ S½r; l� þ
n� leafCountðuÞ

2

 !

Algorithm 3. Additions to X using greedy consensus:

See detailed descriptions of functions in Supplementary

Table S3. greedyðG; t; bÞ returns the greedy consensus of G,
including only branches with frequency � t; if b is true,

polytomies in the consensus are randomly resolved.

updateX(t) adds bipartitions from tree t to the set X; when

edges in t are labeled with a frequency label (e.g. frequencies

in the greedy consensus), it returns the maximum label of

any new bipartition added to X. clusters(p) returns the taxon

partitions defined by an unrooted node p. upgma(S, C) runs

the UPGMA algorithm using the similarity matrix S; when C

is given, UPGMA starts by groups defined in C.

randSample(p) selects a random taxon from each subtree

around a node p and resolve(p, r) resolves polytomy p

according to a tree r on such a sampling. Operator ( restricts

a tree or a matrix to a subset. pectinate(O) returns a pectin-

ate tree based on O, an ordered list of taxa. sortBy sorts a

list of taxa based on their decreasing similarity to a given

taxon. Constants: THS ¼ 0; 1
100 ;

1
50 ;

1
20 ;

1
10 ;

1
4 ;

1
3

� �
; MIT¼10;

RWD¼2 and FRQ ¼ LTH ¼ 1
100.

function ADDBYGREEDY (G; S)

for t 2 THS do

gc greedyðG; t; FalseÞ
for p 2 polytomiesðgcÞ do

updateXðupgmaðS; start ¼ clustersðpÞÞÞ
c 0 and max MIT

while c<max do

c cþ 1

sample randSampleðpÞ
r greedyðG(sample; 0;TrueÞ
mt updateXðresolveðp; rÞÞ
if mt � FRQ then max maxþ RWD

updateXðresolveðp;upgmaðS(sampleÞÞÞ
if t � LTH and c < MIT then

for s 2 sample do

r pectinateðsortByðS; s; sampleÞ
updateXðresolveðp; rÞÞ

This algorithm, for each traversal node u, computes the number

of taxa under u that are shared with each side of the tripartition

being scored. This is done using a O(1) calculation that sums the

same quantities already calculated for the children of u. At the

leaves, we simply need to find which side of the tripartition includes

that leaf, which can also be done in O(1) using bitsets. Thus, we eas-

ily compute the C matrix in O(1) and therefore, calculating w for

each tripartition requires O(nk) running time. Thus,

Theorem 2: The running time of ASTRAL-II is OðnkjXj2Þ.

3.2 Additions to X
We use following heuristic strategies to add bipartitions to the set X.

3.2.1 Similarity matrix

We define the similarly between a pair of taxa as the number of

quartet trees induced by gene trees where the pair appear on the

same side of the quartet. We compute a similarity matrix by travers-

ing all nodes of input gene trees, rooted arbitrarily (Algorithm 2).

For each node u, we look at all pairs of leaves chosen each from one

of the children of u. For each such pair, we add
y

2

� �
to their simi-

larity score, where y is the number of leaves outside the subtree

below u. This will process each pair of nodes in each of the input k

genes exactly once and would therefore require Oðn2kÞ computa-

tions. The final score can be normalized by the number of input

quartet trees that include any pair (not shown in Algorithm 2). We

use the similarity matrix to calculate a UPGMA tree and add all its

bipartitions to X. This matrix is also used in our next heuristics.

3.2.2 Greedy

The greedy consensus of a set of trees is obtained by starting from a

star tree and adding bipartitions from input trees in the decreasing

order of their frequency if they do not conflict with previous biparti-

tions. This process ends when no remaining bipartition has frequency

above a given threshold or when the tree is fully resolved. We estimate

the greedy consensus of the gene trees with various thresholds

(Algorithm 3). For each polytomy in each consensus tree, we resolve

the polytomy in multiple ways and add bipartitions implied by those

resolutions to the set X. First, we resolve the polytomy by applying
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UPGMA to the similarity matrix, starting from clusters defined by the

polytomy. Then, we sample one taxon from each side of the polytomy

randomly and use the greedy consensus of the gene trees restricted to

this subsample to find a resolution of the polytomy (randomly resolv-

ing remaining polytomies). We repeat this process at least 10 times,

but if the subsampled greedy consensus trees include new bipartitions

that are sufficiently frequent (�1%), we do more rounds of random

sampling (we increase the number of iterations by two). For each ran-

dom subsample around a polytomy, we also resolve it by calculating

an UPGMA tree on the subsampled similarity matrix. Finally, for the

two first greedy threshold values and the first 10 random subsamples,

we also use a third strategy that can potentially add a larger number

of bipartitions: for each subsampled taxon x, we resolve the polytomy

as a pectinate tree by sorting the remaining taxa according to their

similarity with x (in decreasing order).

3.2.3 Gene tree polytomies

When gene trees include polytomies, we also add new bipartitions to

set X. We first compute the greedy consensus of the input gene trees

with threshold 0, and if the greedy consensus has polytomies, we re-

solve them using UPGMA; we repeat this process twice to account

for random tie-breakers in the greedy consensus estimation. Then,

for each gene tree polytomy, we use the two resolved greedy consen-

sus trees to infer a resolution of the polytomy, and we add the

implied resolutions to set X.

3.3 Multifurcating input gene trees
Although true gene trees are assumed to be fully resolved (binary),

in some cases, estimated ML trees produce polytomies. Extending

ASTRAL to inputs that include polytomies requires solving the WQ

tree problem when each node of the input defines not a tripartition

but a multi-partition of the set of taxa. We start by a basic observa-

tion: every resolved quartet tree induced by a gene tree maps to two

nodes in the gene tree regardless of whether the gene tree is binary

or not (Supplementary Fig. S14). In other words, induced quartet

trees that map to only one node of the gene tree are unresolved.

When maximizing the quartet support, these unresolved gene tree

quartet trees are inconsequential and need to be ignored. Now, con-

sider a polytomy of degree d, which divides the set of taxa into d

parts. Any selection of three parts around the polytomy defines a tri-

partition. Any selection of two taxa from one part of this tripartition

and one taxon from each of the remaining two parts induces a

resolved quartet tree, and each resolved quartet tree maps to exactly

two nodes in our multifurcating tree. Thus, all the algorithmic as-

sumptions of ASTRAL remain intact, as long as for each degree d

node in an input gene tree, we treat it as a collection of
d

3

� �
tripar-

titions. Thus, for a tripartition T ¼ A1jA2jA3 and a multi-partition

M ¼M1j . . . jMd, we let Cij ¼ jAi \Mjj for all i 2 f1;2; 3g and

j 2 f1; . . . ; dg and we generalize Equation (1) to:

QIðT;MÞ ¼ QIðCÞ ¼
X

ða;b;cÞ2P3

FðC1a;C2b;C3cÞ (3)

where P3 is the set of all ordered subsets of size 3 from f1; . . . ; dg.
Extending Algorithm 1 to compute Equation (3) is straightforward.

In the presence of polytomies, the running time analysis can

change because analyzing each polytomy requires time cubic in its

degree and the degree can increase with n. It is not hard to see that

the worst case is when all gene trees have a polytomy with d ¼ n
2; in

this case, the running time is Oðn3kjXj2Þ.

3.4 Statistical consistency

Theorem 3: ASTRAL-II is statistically consistent under the multi-

species coalescent model.

Proof: The changes made to ASTRAL-I to develop ASTRAL-II

affect the running time, enlarge the search space and allow it to ana-

lyze gene trees with polytomies. Under the multi-species coalescent

model, all gene trees are binary. As shown in Theorem 1, as long as

the set X contains all the bipartitions in the input gene trees,

ASTRAL is statistically consistent. The theorem follows.

4 Experimental setup

4.1 Simulation procedure
We used SimPhy (https://github.com/adamallo/SimPhy) to simulate

species trees and gene trees (produced in mutation units) and then

used Indelible (Fletcher and Yang, 2009) to simulate nucleotide se-

quences down the gene trees with varying length and model param-

eters. We estimated gene trees on these simulated gene alignments,

which we then used in coalescent-based analyses.

We simulated 11 model conditions, which we divide into two

datasets, with one model condition appearing in both datasets. We

used SimPhy to simulate species trees according to the Yule process,

characterized by the number of taxa, maximum tree length and the

speciation rate (this combination defines a model condition). In six

model conditions (forming Dataset I), we fixed the number of taxa to

200 and varied tree length (500K, 2 M and 10 M generations) and

speciation rates (1e-6 and 1e-7 per generation). The tree length im-

pacts the amount of ILS, with lower length resulting in shorter

branches, and therefore higher levels of ILS (Supplementary Fig. 1a).

Speciation rate impacts whether speciation events tend to happen

close to the tips (1e-06) or close to the base (1e-07). Different tree

shapes (i.e. combinations of tree length and speciation rate) produce

different levels of ILS starting from relatively low [roughly 10% dis-

tance between true gene trees and the species tree, measured by the

Robinson–Foulds (RF) distance; Robinson and Foulds (1981)] and

going up to very high (roughly 70% RF). In the remaining model

conditions (forming Dataset II), we fixed the tree shape to 2 M/1e-06

and set the number of taxa to 10, 50, 100, 200, 500 and 1000.

Thus, the model condition with 200 taxa and the 2 M/1e-6 tree shape

appears in both datasets.

For each model condition, we simulated 50 species trees, form-

ing 50 replicates. On each species tree, 1000 gene trees were simu-

lated according to the multi-species coalescent model with the

population size fixed to 200 000 (a reasonable value for verte-

brates). SimPhy uses various rate parameters and rate heterogeneity

modifiers to convert gene tree branch lengths to mutation units,

introducing deviations from molecular clock and rate heterogeneity

between genes (see Supplementary Table S1 for parameters; simula-

tion scripts available at http://www.cs.utexas.edu/users/phylo/soft-

ware/astral/).

We simulated indel-free gene alignments using Indelible and

under the GTRþC model. First, for each replicate, two parameters,

l and r, were drawn uniformly from ð5:7;7:3Þ and ð0; 0:3Þ respect-

ively. Then, the sequence length for each gene in that replicate was

drawn from a log-normal distribution with l and r parameters

(thus, average sequence length is uniformly distributed between

300 bp and 1500 bp). GTRþC parameters were drawn from

Dirichlet distributions that had parameters estimated using ML

from a collection of real biological datasets (details given in the

Supplementary Material).
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4.2 Gene tree estimation
Previous studies (Liu et al., 2011) have shown that FastTree-II (Price

et al., 2010) is generally as accurate at estimating the tree topology

as more extensive ML heuristics such as RAxML (Stamatakis 2014),

while being much faster. In our simulation studies, we used FastTree

to estimate the 550 000 gene trees ranging from 10 to 1000 species.

Figure 1b shows the distribution of gene tree estimation error and

demonstrate that we have simulated wide-ranging levels of gene tree

error. The tree error was impacted by tree shape parameters; more

ILS and deeper speciation lead to higher levels of gene tree error.

Moreover, average gene tree estimation error varied across repli-

cates, and gene tree error varied considerably among the 1000 genes

in each replicate; the number of taxa had only a small impact on

gene tree estimation error (Supplementary Fig. S1).

FastTree can output polytomies when sequence alignments can-

not distinguish between competing tree resolutions. We removed

any gene tree where more than 50% of the internal nodes were pol-

ytomies. This pruning left fewer than 500 genes for three replicates

of the 200 taxon/500 K/1e-06 and 50-taxon model conditions, two

replicates of the 100-taxon model condition and one replicate of the

10-taxon model condition. Those nine replicates (out of 550) were

removed from our analyses.

4.3 Species tree methods
We run all methods given a maximum of 4 days of running time

and 24 GB of memory. We compare ASTRAL-I to ASTRAL-II and

ASTRAL-II to NJst and CA-ML run using FastTree. MP-EST only

finished for datasets with at most 100 taxa within time limits.

Because of its running time, we ran MP-EST once (one random

seed number) for each analysis. NJst, ASTRAL-I and MP-EST

could not handle polytomies; therefore, we randomly resolved pol-

ytomies in inputs of these methods. We also ran ASTRAL-II on

gene trees with randomly resolved polytomies and observed no dif-

ferences with ASTRAL-II run on gene trees with polytomies

(Supplementary Fig. S12). Thus, differences between ASTRAL-II

and other methods are not due to the random resolutions of

polytomies.

4.4 Evaluation criteria
We evaluate methods in terms of species tree error and we also

evaluate running time for coalescent-based methods. Species tree

error is measured using the standard RF distance. Running time of

summary methods is measured on a heterogeneous condor cluster

and gives the wall clock running time.

5 Simulation results

We start by comparing ASTRAL-II with ASTRAL-I in terms of ac-

curacy and running time (RQ1). We next focus on ASTRAL-II and

compare it to other coalescent-based methods (RQ2) and then com-

pare it to CA-ML (RQ3). This question leads us to a more in depth

analysis of the effects of gene tree estimation error on the accuracy

of various methods (RQ4). Finally, we evaluate the impact of col-

lapsing low support branches in input gene trees on the accuracy of

ASTRAL-II (RQ5).

5.1 RQ1: ASTRAL-I versus ASTRAL-II
5.1.1 Search space

ASTRAL-II adds extra bipartitions to the search space, which

allows it to explore a larger search space; this tends to increase the

accuracy of ASTRAL-II over ASTRAL-I. In our simulations, the

extent of the improvement depended on the model condition

(Table 1). In Dataset I, with the lowest level of ILS or with the me-

dium ILS level and recent speciation, both ASTRAL-I and

ASTRAL-II had extremely low error (Supplementary Fig. S2) and

no substantial improvements were detected by the addition of

extra bipartitions (Table 1). With 2M length and deep speciations,

ASTRAL-II improved upon ASTRAL-I substantially, with im-

provements ranging from 3.5% with 1000 genes to 10.1% with 50

genes. Most dramatic differences were observed on the high ILS

conditions, where ASTRAL-I performed extremely poorly

(Supplementary Fig. S2), but ASTRAL-II reduced the error by

about 40% (Table 1). Results on Dataset II showed that the effect

of adding extra bipartitions also depended on the number of taxa

in expected ways (Table 1). With this fixed tree shape, ASTRAL-I

was as accurate as ASTRAL-II for up to 200 taxa, but with 500

taxa or more, ASTRAL-II had a substantial advantage (as large as

9%). As expected, the advantage of ASTRAL-II was larger with

few genes and reduced with more genes.

The improvements obtained by ASTRAL-II are due to additions

to the search space. We therefore asked whether the heuristic

approaches used to add bipartitions to set X are sufficient or im-

provements could be obtained by further expanding X. To answer

this question, we tested the impact of adding all the bipartitions

from the species tree to the set X and compared ASTRAL-II with

and without these extra bipartitions (see Supplementary Figs S2 and

S3). We saw no significant differences between ASTRAL-II with and

without these potentially new bipartitions (P¼0.77 according to a

two-way analysis of variance test), indicating that the accuracy of

ASTRAL-II is very unlikely to be improved further by expanding the

search space.
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Fig. 1. Characteristics of the simulation. (a) RF distance between the true spe-

cies tree and the true gene trees (50 replicates of 1000 genes) for Dataset I.

Tree height directly affects the amount of true discordance; the speciation

rate affects true gene tree discordance only with 10 M tree length. The

number of taxa has a modest effect on the discordance (see Supplementary

Fig. S13). (b) RF distance between true gene trees and estimated gene trees

for Dataset I. See also Supplementary Figure S1 for inter- and intra-replicate

gene tree error distributions
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Fig. 2. Comparison of methods with respect to species tree topological accuracy. (Top) Two hundred taxa and varying tree shapes and number of genes.

(Bottom) Varying number of taxa and genes and tree shaped fixed to 2 M/1e-6. ASTRAL-II is always at least as accurate as NJst and MP-EST

Table 1. Reductions in species tree error obtained by ASTRAL-II compared with ASTRAL-I

Dataset I [200 taxa, varying tree shape (columns) and number of genes (rows)]

10e-6 (recent) 10e-7 (deep)

10 M 2 M 500 K 10 M 2 M 500 K

50 0.2 6 0.2 0.7 6 0.3 37.9 6 1.0 1.7 6 0.6 10.1 6 0.9 38.7 6 0.9

200 0.0 6 0.1 0.2 6 0.1 41.0 6 1.1 0.7 6 0.3 7.4 6 0.7 41.4 6 1.0

1000 0.0 6 0.0 0.2 6 0.1 39.2 6 1.2 0.0 6 0.0 3.5 6 0.7 41.4 6 1.1

Dataset II [2M/1e-6 shape, varying the number of taxa (columns) and genes (rows)]

10 50 100 200 500 1000

50 0.3 6 0.3 0.0 6 0.1 0.3 6 0.2 0.7 6 0.3 6.0 6 0.6 9.3 6 0.6

200 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.2 6 0.09 3.9 6 0.5 8.3 6 0.5

1000 0.0 6 0.0 0.1 6 0.1 0.0 6 0.0 0.2 6 0.08 1.7 6 0.4

We report results using the difference in RF percentage; values above 0.0% indicate ASTRAL-II is more accurate.
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5.1.2 Running time

With 200 taxa and lower levels of ILS, ASTRAL-I and ASTRAL-II

had similar running times (Supplementary Fig. S2), but ASTRAL-II

was faster with increased ILS (3 versus 7.5 h of median run time).

Note that ASTRAL-II searches a larger tree space than ASTRAL-I.

With small numbers of taxa, the two versions had close running

times, but as the number of taxa increased, the running time of

ASTRAL-II increased more slowly (Supplementary Fig. S3). For

500 taxa, ASTRAL-II was twice as fast as ASTRAL-I (a median of

5 versus 10 h), whereas ASTRAL-I did not complete on 1000 taxa

and 1000 genes.

5.2 RQ2: ASTRAL-II versus other coalescent methods
We refer to ASTRAL-II as ASTRAL henceforth.

Completion within time constraints ASTRAL completed on all

model conditions, MP-EST completed only on datasets with at most

100 taxa and NJst completed on all model conditions except for the

condition with 1000 genes and 1000 taxa.

Dataset I ASTRAL was more accurate than NJst in all model

conditions, except 1e-07/500 K where the two methods had identical

accuracy (Fig. 2). Overall, the differences between ASTRAL-II and

NJst were statistically significant (P < 1e� 05), according to a two-

way analysis of variance test, and the relative performance of the

methods was significantly impacted by the speciation rate

(P¼0.026) but not by the number of genes or tree length. ASTRAL

was faster than NJst, in some cases by an order of magnitude and in

other cases by smaller margins (Supplementary Fig. S4).

Dataset II On 10-taxon datasets, all methods had high accuracy

(Supplementary Table S2). On 50- and 100-taxon datasets, MP-EST

was able to finish, but it was the least accurate of all the methods.

ASTRAL was more accurate than NJst for all conditions except for

50 taxa with 50 genes (Supplementary Table S2); however, differ-

ences were generally small when the number of taxa was 200 or less

and more substantial with more taxa. Overall, differences between

ASTRAL and NJst were significant (P¼0.0007) and were signifi-

cantly impacted by the number of taxa (P¼0.0004) but not the

number of genes. ASTRAL was also faster than NJst, especially with

more genes and more taxa (Fig. 3). For example, on 500 taxa and

1000 genes, ASTRAL typically finished in 2–10 h, whereas NJst

required 12–30 h (Supplementary Fig. S5). MP-EST was by far the

slowest method, but its running time was not impacted by the num-

ber of genes.

5.3 RQ3: ASTRAL-II versus CA-ML
5.3.1 Dataset I

Interestingly, the relative accuracy of CA-ML and ASTRAL was sig-

nificantly impacted by tree length (P < 1e� 05), speciation rate

(P¼0.00004) and the number of genes (P < 1e� 05). With lower

levels of ILS (10M and 2 M) and recent speciation, CA-ML and

ASTRAL had close accuracy, but CA-ML tended to be better with

more genes and ASTRAL was better with fewer genes

(Supplementary Table S1, Fig. 2). With deep speciation and lower

ILS, CA-ML was substantially more accurate than ASTRAL, but

increasing the number of genes reduced the gap. At the high ILS lev-

els, ASTRAL was much more accurate than CA-ML for all number

of genes and for both recent and deep speciation.

5.3.2 Dataset II

Overall, differences between ASTRAL and CA-ML were not signifi-

cant (P¼0.2), but the relative accuracy seemed to be impacted by

the number of genes (P¼0.06). Regardless of the number of taxa,

which did not impact relative accuracy (P¼0.2), CA-ML was

slightly more accurate with 1000 genes and ASTRAL was slightly

more accurate with fewer genes (Supplementary Table S2, Fig. 2).

5.3.3 Running time

We ran CA-ML and ASTRAL-II on different platforms and hence

cannot make direct running time comparisons. Nevertheless, we

provide our running time numbers to give a general idea. CA-ML

using FastTree on 200-taxon model conditions with 1000 genes

took roughly 2 h, whereas ASTRAL-II took roughly one hour to esti-

mate the species tree and estimating gene trees also took about

1.5 h. In general, therefore, the running times of ASTRAL-II and

CA-ML are relatively close on this dataset.

5.4 RQ4: effect of gene tree error
In RQ3, we observed that under some conditions, CA-ML was

more accurate than ASTRAL, a pattern that we attribute to high

levels of gene tree error present in our simulations. When true

(simulated) gene trees are used instead of the estimated gene trees,

the accuracy of ASTRAL is outstanding, regardless of the model

condition (see Fig. 4 and Supplementary Fig. S6), and ASTRAL is

always more accurate than CA-ML. Thus, the fact that CA-ML is
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more accurate than ASTRAL under lower levels of ILS is related to

estimation error in the input provided to ASTRAL.

In our ASTRAL and NJst analyses, gene tree error had a positive

correlation with species tree error (Supplementary Fig. S7), with cor-

relation coefficients that were similar for ASTRAL and NJst. The

error of CA-ML also correlated with gene tree error (obviously the

relationship is indirect; for example, short alignments impact both

CA-ML and gene tree error), but the correlation was weaker than

the correlation observed for coalescent-based methods

(Supplementary Fig. S8). Interestingly, the correlation between gene

tree estimation error and species tree error was typically higher with

fewer genes.

To further investigate the impact of the gene tree error, we div-

ided replicates of each model condition into three categories: aver-

age gene tree estimation error below 0.25 is low, between 0.25 and

0.4 is medium and above 0.4 is high. We plotted the species tree ac-

curacy within each of these categories (see Fig. 5 for one model con-

dition, but also see Supplementary Figs S9 and S10 for other model

conditions). The relative performance of ASTRAL and NJst is typic-

ally unchanged across various categories of gene tree error, but

increasing gene tree error tends to increase the magnitude of the dif-

ference between ASTRAL and NJst. Furthermore, MP-EST seemed

to be more sensitive to gene tree error than either NJst or ASTRAL

(Supplementary Fig. S10).

The relative performance of ASTRAL and CA-ML depended on

gene tree error. For those model conditions where CA-ML was

generally more accurate than ASTRAL (e.g. 2 M/1e-07), ASTRAL

tended to outperform CA-ML on the replicates with low gene tree

estimation error (Fig. 5). Consistent with this observation, we noted

that ASTRAL was impacted by gene tree error more than CA-ML

(Supplementary Fig. S9).

5.5 RQ5: collapsing low support branches
ASTRAL-II can handle inputs with polytomies. Although we have

not done bootstrapping to get reliable measures of support, we do

get local SH-like branch support from FastTree-II. We collapsed low

support branches (10%, 33% and 50%) and ran ASTRAL on the re-

sulting unresolved gene trees. We measured the impact of contract-

ing low support branches on the RF rate: the median delta RF (error

before collapsing minus error after collapsing) is typically zero

(Supplementary Fig. S11), never above zero but in a few cases below

zero (signifying that accuracy was improved in those few cases).

However, these differences are not statistically significant

(P¼0.36). Since this analysis was performed using SH-like branch

support values instead of bootstrap support values (or other ways of

estimating support values), further studies are needed.

6 Biological results

The evolution of angiosperms, and the placement of Amborella tri-

chopoda Baill., is one of the challenging questions in land plant evo-

lution. One hypothesis recovered in some recent molecular studies

(e.g. Drew et al. 2014; Qiu et al. 2000; Wickett et al. 2014; Zhang

et al. 2012) is that A.trichopoda Baill. is sister to the rest of angio-

sperms, followed by water lilies (i.e. Nymphaeales). In particular, a

recent analysis of 104 plant species based on entire transcriptomes

recovered this relationship both with concatenation and ASTRAL-I,

using various perturbations of the dataset (Wickett et al., 2014). A

competing hypothesis is that Amborella is sister to water lilies, and

this whole group is sister to other angiosperms (Drew et al., 2014;

Goremykin et al., 2013). Xi et al. (2014) examined this question

using a collection of 310 genes sampled from 42 angiosperms and 4

outgroups. They observed that CA-ML produced the first hypothesis

and MP-EST produced the second hypothesis, and they argued that

these differences are due to the fact that CA-ML does not model

ILS, whereas MP-EST does.

We obtained alignments for these 310 genes from Xi et al.

(2014) and estimated gene trees using RAxML under GTRþC
model with 200 replicates of bootstrapping and 10 rounds of ML

(RAxML was used because running time was not an issue on this

relatively small dataset). We ran MP-EST and ASTRAL and

obtained two different trees (Fig. 6). Reproducing Xi et al. (2014)

results, MP-EST recovered the sister relationship of Amborella and

Nymphaeales with 100% support. However, ASTRAL, just like
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CA-ML, recovers Amborella as sister to other angiosperms, with

75% support. Although the exact position of Amborella is debated,

our analysis shows that the differences between CA-ML and

MP-EST results cannot be simply attributed to the fact that CA-ML

does not consider ILS.

7 Discussion and conclusion

Our wide-ranging simulation results show that ASTRAL-II, unlike

the other methods we studied, can analyze datasets with up to 1000

taxa and 1000 genes within reasonable running times. However,

future studies need to compare ASTRAL-II to divide-and-conquer

approaches (e.g. Bayzid et al., 2014; Zimmermann et al., 2014) that

enable slower coalescent-based methods to scale to large datasets.

ASTRAL-II was more accurate than other coalescent-based methods

and was more accurate than CA-ML, unless ILS levels were low and

gene tree error was high. Although the angiosperm biological data-

set we studied was relatively small (46 species), our simulations

show that upcoming multi-gene datasets with large numbers of

species can be accurately analyzed using ASTRAL-II.

On the angiosperm dataset, ASTRAL recovered the relationship

supported by CA-ML and a large number of recent studies, whereas

MP-EST recovered an alternative topology, also supported by some

previous analyses. There are several possible reasons for the differ-

ences between the two methods, including the possibility that root-

ing gene trees (required by MP-EST but not by ASTRAL) by

Selaginella can be problematic for some genes or that the impact of

the gene tree estimation error is different for the two methods. We

also note that ASTRAL is a non-parametric method that does not

estimate branch lengths, and it is possible that non-parametric meth-

ods are less sensitive to gene tree estimation error than parametric

methods (like MP-EST).

ASTRAL was more accurate than CA-ML, except when gene

tree estimation error was high and ILS levels sufficiently low. These

results suggest that CA-ML should not be rejected, even though it is

not statistically consistent under the multi-species coalescent model.

Conversely, proofs of consistency of standard summary methods as-

sume gene trees estimated without error (Roch and Warnow, 2015),

and this assumption limits the relevance of consistency results in

practice. Improving gene tree estimation is crucial for coalescent-

based species tree estimation, as observed in the literature (e.g.

Mirarab et al. 2014b, c; Patel et al. 2013); however, the requirement

to use recombination-free regions complicates this pursuit as recom-

bination-free ‘c-genes’ can be very short, especially with increased

numbers of taxa (Gatesy and Springer, 2014). Future studies need to

study the impact of using shorter gene sequence alignments, and

conversely the presence of recombination events within genes, used

as input to coalescent-based species tree estimation methods.
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