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ABSTRACT
Myocardial recovery is characterized by a return toward normal structure and function 
of the heart after an injury. Mechanisms of myocardial recovery include restoration and/
or adaptation of myocyte structure and function, mitochondrial activity and number, 
metabolic homeostasis, electrophysiological stability, extracellular matrix remodeling, 
and myocardial perfusion. Myocardial regeneration is an element of myocardial recovery 
that involves the generation of new myocardial tissue, a process which is limited in adult 
humans but may be therapeutically augmented. Understanding the mechanisms of 
myocardial recovery and myocardial regeneration will lead to novel therapies for heart 
failure.
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THE DIFFERENCE BETWEEN MYOCARDIAL 
RECOVERY AND MYOCARDIAL 
REGENERATION

Myocardial recovery is characterized by a return toward 
normal structure and function of the heart after an 
injury.1 A dramatic example of such recovery is seen 
when an acute occlusion of an epicardial coronary artery 
is successfully reversed by timely endovascular therapy.2 
Initially, the stunned myocardium is dysfunctional from 
the pathophysiology induced by ischemia-reperfusion. 
However, within hours to days, partial or even full recovery 
of myocardial function may be observed. Partial recovery 
of myocardial function is commonly observed in patients 
whose heart failure is optimally treated medically with 
angiotensin-converting enzyme inhibitors, angiotensin 
receptor antagonists (with or without a neprilysin inhibitor), 
beta-adrenergic antagonists, and aldosterone antagonists.3 
Mechanisms of myocardial recovery include restoration 
and/or adaptation of myocyte structure and function,4-7 
mitochondrial activity and number,8-10 metabolic 
homeostasis,11 electrophysiological stability,12 extracellular 
matrix remodeling,13 and myocardial perfusion.

Most recently, the sodium-glucose cotransporter 2 
(SGLT2) inhibitors have been shown to reduce the risk of 
major adverse cardiovascular events in patients with heart 
failure.14 These agents may have an effect on cardiovascular 
recovery by reversing aberrations in the uptake and/
or metabolism of glucose, long-chain fatty acid, and 
amino acids. In addition, they may restore mitochondrial 
homeostasis, thereby reducing the accumulation of 
deleterious metabolites. Finally, these drugs may promote 
nutrient-deprivation signaling and improve iron disposition, 
which are impaired in heart failure.

Myocardial regeneration can play a role in myocardial 
recovery. Myocardial regeneration involves the generation 
of new myocardial tissue, a process that is limited in 
adult humans but might be therapeutically augmented. 
Myocardial regeneration may include myocyte proliferation, 
angiogenesis, and extracellular matrix generation and may 
be enhanced by resident or circulating stem cells.6 In addition, 
infiltrating M2 macrophages facilitate the resolution of 
inflammation, modulate the generation of extracellular 
matrix, and enhance the proliferation of myocytes and 
vascular cells.15 Experimental efforts to therapeutically 
enhance myocardial regeneration include the intravascular 
or intramyocardial administration of human stem cells,16 
the use of small molecules or genetic therapies to stimulate 
myocyte proliferation, and the use of bioengineered 
tissue.17,18 What follows are some insights into myocardial 
regeneration that we and others have gained in studies of 
animal and human models of myocardial regeneration.

MYOCARDIAL RECOVERY: INSIGHTS ON 
LEFT VENTRICULAR ASSIST DEVICES

LEFT VENTRICULAR ASSIST DEVICES AND 
MYOCARDIAL RECOVERY
Heart failure (HF) currently affects approximately 6.5 
million adults in the United States (US), with direct costs 
of $21 billion.19 Strategies to regenerate or recover the 
failing heart are heavily investigated. Recent success 
in pharmacological development with sodium-glucose 
cotransporter (SGLT) inhibitors indicates that significant 
opportunities exist for therapeutic advances in medical 
therapy.20 However, for end-stage HF patients, heart 
transplantation remains the best option to improve cardiac 
function and quality of life.21,22 Due to the limited number 
of donor hearts and existing risk factors and comorbidities, 
this option is not immediately available for most patients.23

Accordingly, implantation of mechanical circulatory 
support (MCS) devices, including left ventricular assist 
devices (LVADs), can be used for cardiac support as a 
bridge to transplantation, although their use has declined 
in recent years.24 Indeed, MCS has also been approved 
as a destination therapy without intended bridging to 
transplantation by the US Food and Drug Administration 
since 201025 for advanced HF patients, which has increased 
the overall use of MCS. Intriguingly, with LVAD support, 
the native heart undergoes structural and functional 
improvement with so-called “reverse remodeling.”26-28 
While the mechanisms by which mechanical unloading 
leads to myocardial recovery are still under investigation, 
the possibility of myocardial recovery from heart failure is 
evident. Understanding the endogenous mechanisms of 
this recovery may facilitate pharmaceutical, biological, or 
cellular therapies to augment these recovery mechanisms 
and transform HF therapies.

HISTOLOGICAL AND MOLECULAR HALLMARKS 
OF RECOVERY
At the time of LVAD implantation, the apical core that is 
removed can be harvested for study (pre-LVAD tissue). 
Later, when the patient undergoes LVAD explant and 
allograft transplantation, the native heart can be harvested 
(post-LVAD tissue) and compared to the pre-LVAD tissue 
in the same patient (paired samples). Although complete 
cardiac recovery by LVAD implantation is rare,29 varied 
degrees of functional and structural improvement are 
observed in the post-LVAD heart.28,30 We and others have 
observed a reduction in myocyte size (ie, a regression of 
the abnormal myocyte hypertrophy), as well as a reduction 
in interstitial fibrosis and an increase in capillary density 
(Figure 1), particularly in those patients with nonischemic 
heart failure.
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Drakos and colleagues used global RNA-seq and 
phosphopeptide profiling in LVAD responders, nonresponders, 
and healthy donors to identify unique transcriptional and 
phosphoproteomic markers associated with recovery.31 
They observed 29 transcripts and 93 phosphopeptides 
in patients with HF, which distinguished those patients 
that were likely to have the most improvement in cardiac 
function and structure after LVAD implantation. These 
markers were consistent with differential regulation of cell 
cycle and extracellular matrix/focal adhesions. Whether 
these pathways are potential mediators of recovery, or 
merely markers, remains to be resolved.

In a subsequent study that performed scRNA-seq 
studies of similar patient samples, Amrute et al. identified 
cell-type specific signatures during recovery, most 
prominently in macrophages and fibroblasts.32 Within 
these cell types, inflammatory signatures were negative 
predictors of recovery, whereas downregulation of RUNX1, 
a regulator of cell differentiation, was associated with 
recovery. In silico and murine studies confirmed a role for 
RUNX1 downregulation in macrophages and fibroblasts as 
a potential determinant of recovery. Thus, RUNX1 might 
be a novel therapeutic target to enhance heart recovery. 
Although the studies by Drakos and Amrute are of interest, 
their findings need confirmation in light of the small 
numbers of patients involved and the heterogeneity of 
the samples, together with confounding variables such as 
those introduced by the complexity of tissue collection.

MYOCARDIAL RECOVERY AND 
REGENERATION: INSIGHTS FROM PRE-
CLINICAL MODELS

MOUSE MODEL OF MYOCARDIAL RECOVERY
We have mimicked the phenomenon of post-LVAD recovery 
in a murine model of HF.33 In this model, the HF is induced 
by infusions of angiotensin II and L-NAME (an inhibitor of 
nitric oxide synthase; NOS) together with high salt intake. 
The mice develop HF after 5 weeks based on clinical and 
echocardiographic criteria. Histology reveals interstitial and 
perivascular fibrosis. After the withdrawal of the infusions 
and high-salt diet, the animal recovers as evidenced by 
echocardiography and histological analysis. Findings from 
transcriptional profiling (bulk RNA-seq) are consistent with 
an endothelial-to-mesenchymal transition during the 
induction of HF, which is reversed during the recovery phase.

This model of HF and HF recovery is quite different from 
the murine myocardial infarction (MI) model in which 
recovery is limited.34 Our model is more consistent with the 
recovery that can be observed in patients with nonischemic 
HF.35 That said, this murine model is imperfect in that the 
duration of human nonischemic cardiomyopathy is much 
longer and because LVAD recipients are treated with 
components of guideline-directed medical therapy (GDMT). 
Nevertheless, our murine model replicates processes that 
appear to be involved in recovery from human HF, including 
normalization of myocyte structure and function, and 

Figure 1 Left ventricular tissue from heart failure patients supported by LVAD demonstrates a decrease in fibrosis compared to that seen 
in their pre-LVAD sample (paired patient samples used). This decrease is accompanied by a reduction in fibroblast cell count per HPF 
and a concomitant increase in EC number. The decrease in fibrosis (blue) is visually evident using Masson’s Trichrome staining. LVAD: left 
ventricular assist device; HPF: high-power field; EC: endothelial cells (original figure)
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reduced interstitial fibrosis. Additionally, in unpublished 
data, we have observed recovery of the microvasculature 
in the murine model and in the post-LVAD human heart, 
which may enhance myocardial perfusion and HF recovery.

MODELS OF MYOCARDIAL REGENERATION: 
LESSONS FROM DEVELOPMENT
Regeneration of myocardial tissue after injury has not 
been observed in the adult human heart. In contrast, such 
regeneration after injury is observed in lower vertebrates. 
Furthermore, myocardial regeneration can be observed in 
mammals at an early stage of development (ie, postnatal 
mice and pigs). Although myocardial regeneration does 
not occur in adult mammals, it is useful to study this 
process in post-natal mammals and lower vertebrates 
as the pathways mediating such regeneration might be 
therapeutically exploited in humans for recovery from 
myocardial injury and HF.

In lower vertebrates, including teleost fish and urodeles, 
regeneration of the heart is possible throughout adulthood.6 
However, mammals lose their ability to regenerate the 
heart soon after birth.36 In mice, this regenerative window 
is within 1 week post-postpartum. At later time points, 
regenerative capacity is rapidly lost, and a fibrotic rather 
than a regenerative response is dominant.37 In swine, 
this regenerative window is further narrowed to 2 days 
post-partum.38,39 However, a pig study from Zhao et al. 
suggested that the regenerative window can be extended 
if there is an early injury to the heart (in this case, an apical  
resection). The investigators observed that this early injury 
facilitated a more complete recovery from an MI-induced 
1 month later.40 This observation suggests that mechanisms 
can be activated to extend the regenerative window in 
mammals. In humans, a few case reports demonstrated 
complete cardiac recovery after massive MI occurring in 
the neonatal period.41-43 This suggests that the shift from 
hyperplastic to hypertrophic growth of cardiomyocytes 
during the adaptation to the oxygen-rich environment 
post-partum fundamentally changes their ability for 
damage repair.44, 45

A metabolic mechanism may underlie the regenerative 
difference between the fetal/neonatal and adult heart. The 
cardiomyocyte (CM) metabolism switched from glycolysis 
to fatty acid oxidation quickly after birth. The mitochondria 
production of reactive oxygen species from elevated 
oxidative phosphorylation is believed to contribute to the CM 
cycle arrest that limits cardiomyogenesis in adults. A study 
conducted by Cardoso et al. demonstrated that inhibiting 
fatty acid oxidation could extend the regenerative period in 
neonatal mice. Additionally, another study suggested that 
the knockout of cardiac-specific pyruvate dehydrogenase 
kinase 4, an enzyme that suppresses glucose utilization 

via mitochondrial pyruvate dehydrogenase, promotes 
cardiomyocyte proliferation following MI in adult mice.46

A recent study by Li et al. reported a similar role of 
fatty acid oxidation inhibition of cardiac regeneration 
but focused on another essential enzyme, carnitine 
palmitoyltransferase (Cpt1b).47 Cpt1b is the rate-limiting 
enzyme for fatty acid oxidation. When this enzyme was 
knocked out in CM, the adult mice exhibited very little scar 
formation in the ischemia-reperfusion model and showed 
significantly greater functional recovery. The authors 
further demonstrated the metabolic alteration in the KO 
mice results in an accumulation of α-ketoglutarate (α-
KG) and α-KG-dependent activation of H3K4 demethylase 
KDM5, prompting heart regeneration by reducing CM 
maturity and enhancing CM proliferation.

Other strategies repressing oxidative phosphorylation 
targeting Pkm2,48 Pitx2,49 and SDH50 are also reported 
to facilitate cardiac regeneration post-injury. A 
better understanding of the mechanisms facilitating 
regeneration in young mammals may permit us to 
therapeutically modulate these mechanisms to enhance 
true cardiovascular regeneration in adults.

INJURY MODELS TO STUDY CARDIOVASCULAR 
REGENERATION
Different models have been generated to elucidate 
intrinsic regenerative mechanisms that might facilitate 
heart failure treatment (Figure 2). To induce neonatal 
cardiac regeneration, injury methods including apical 
resection, left anterior descending artery ligation (LAD), 
and cryoprobe-induced infarction are being explored.51,6,52 
Compared with cryoinjury,53 apical resection37 and coronary 
artery ligation-induced myocardial infarction54 are reported 
to render better regenerative responses in mouse pups.55 
The use of proteomics, epigenomics, and spatiotemporal 
transcriptional profiling have identified novel regulators 
that promote cardiac regeneration. For example, Wang et 
al. used transcriptomic analysis and histone mark H3K27ac 
ChIP-seq to compare the regenerative responses in mice 
that undergo LAD within (P1) or out of the regenerative 
window (P8). This study identified an RNA-binding 
protein, IGF2BP, secreted by macrophages, to be critical in 
promoting cardiovascular proliferation.56 The same group 
later conducted snRNA and snATAC-seq to perform similar 
comparisons and identified a macrophage-secreted factor 
CLCF1 in facilitating cardiovascular proliferation.57

ENGINEERED HEART TISSUE TO MODEL 
REGENERATION
To mimic human cardiac diseases in vitro or ex vivo, 
3-dimensional (3D) culture-based cardiac tissue models 
that integrate bioengineering and stem cell technology 
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have facilitated progress in this field.58-60 The engineered 
heart tissue (EHT) can be generated as a 3D cell culture 
of human CMs together with non-myocytes grown in 
extracellular matrix hydrogel.59 Typically, the myocytes 
and non-myocytes are differentiated from human-induced 
pluripotent stem cells (iPSCs). Yamanaka and colleagues 
have previously shown that forced expression of four 
transcriptional factors (Oct4, Sox2, KLF4, and cMyc;OSKM) 
could generate iPSCs from somatic cells.61-64 These iPSCs can 
be differentiated into any cell type, including cardiovascular 
cells. When the myocytes and non-myocytes are placed in 
the hydrogel matrix, they self-assemble into a myocardial 
tissue with immature electrophysiological and contractile 
properties.

With electrical excitation,65 relatively more mature 
CMs can be induced in the EHT to be used for histological 
and functional analysis.66 EHT has thus been used 
for drug screening67 and further in patient-specific 
pathophysiology.68,69 As EHT incorporates multiple 
cell types including cardiomyocytes, fibroblasts, and 
endothelial cells,70 studying the signal exchanges among 
different cell types in the cardiac microenvironment could 
be useful.71 Although the current methodologies only use 
patient-derived iPSC, which will be further differentiated 
into CMs,72 it is possible that more cell types that directly 
derive from patients could be incorporated into this model 
to better mimic the in-situ environment during disease. 
(See Figure 2).

MOLECULAR DETERMINANTS OF 
CARDIOVASCULAR REGENERATION
A strategy arising from the study of regeneration in young 
mammals is to reactivate fetal transcriptional programs 
to combat heart injury in adults. Chen et al.73 generated a 
transgenic animal in which cardiomyocytes could express the 
pluripotency factors OSKM in a doxycycline (Dox) inducible 
manner. The hypothesis is that transient induction of the 
pluripotency factors in the CMs might “turn back the clock” to 
a less mature CM that may be more capable of cell division in 
response to an injury. Indeed, the authors found that a short-
term (6 days) administration of Dox induced OSKM in the CMs 
of the transgenic animal. The expression of these pluripotency 
factors in the CMs caused their partial dedifferentiation and 
cell-cycle reentry without causing neoplasms or hyperplasia. 
When applying this reprogramming strategy during different 
stages after LAD ligation, they observed increased CM 
proliferation, reductions in cardiac fibrosis, and improved 
cardiac function. Thus, the adult murine myocardium is 
capable of greater regeneration and repair with transient 
expression of the pluripotency factors in the CMs.

In addition to playing an essential role in extracellular 
matrix deposition and fibrosis,74 fibroblasts may be 
reprogrammed into various cell types during cardiovascular 
regeneration.75,76 A study from Ye et al. reported a 
method to reprogram human cardiac fibroblasts (CF) 
into iPSC in vitro. The fibroblast-derived iPSCs were 
then differentiated in vitro into cardiomyocytes (iCM) 

Figure 2 Models of cardiovascular regeneration and recovery. Neonatal mice have the intrinsic ability to regenerate the heart within 1 
week of birth. Apical resection of LAD artery ligation and cryoprobe are used to create cardiac injuries. Depending on the methods and 
timing of the injury, the neonatal heart will regenerate to a variable degree, with some amount of fibrosis. In adult mice, heart failure is 
induced by the administration of angiotensin II, L-NAME (NOS inhibitor), and HS water. After cessation of these agents, cardiac chamber 
size and function recover, along with increased vascularization and reduced fibrosis. In humans, LVAD implantation facilitates heart 
recovery, and the paired tissue obtained from LVAD implantation (pre-LVAD) and from the native heart at the time of transplantation 
(post-LVAD) are useful for studying the cellular and molecular events during heart failure recovery. Image created with BioRender.com. 
LAD: left anterior descending; NOS: nitric oxide synthase; HS: high salt; LVAD: left ventricular assist device; AII: angiotensin II; NOSi: NOS 
inhibitor; HFR: recovery from heart failure
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of exceptionally high purity.77 The iCM were grown in 
sheets of beating cardiomyocytes. In a murine model 
of MI (ligation of the left anterior descending coronary  
artery), the sheets of human iCM were applied to the 
surface of the ischemic myocardium. An improvement in 
heart function (by echocardiography) was likely due to the 
increased vascularization and reduced apoptosis observed 
in the murine myocardium in the vicinity of the cell therapy.

Another approach to regenerate the myocardium 
would be to generate induced cardiac progenitor cells 
(iCPC) from fibroblasts using specific transcriptional 
factors for cardiovascular lineage. Such iCPC are similar to 
early cardiac progenitors in the developing heart, which 
differentiate into cardiac myocytes as well as smooth 
muscle and endothelial cells.78,79 Injection of such cells 
into the heart could theoretically regenerate the primary 
cells composing myocardial tissue, and may thus be a 
superior cell therapy to CMs alone. Yet another approach 
is to directly reprogram fibroblasts into CM in vivo using a 
CM lineage-directing cocktail or by exogenous expression 
of transcription factors.80 A study from Cao et al. reported 
nine small compounds that in combination could induce 
functional CMs from fibroblasts.81 A recent study from 
Zhou et al. used adeno-associated virus subtype 5 (AAV5) 
to deliver MYOCD and ASCL1 (Achaete-scute family bHLH 
transcription factor 1), and miR-133, to directly reprogram  
cardiac fibroblasts to CMs in rats post MI.82 A single 
intramyocardial dose of the AAV5 therapy significantly 
improved heart recovery post-MI.

Several transcriptional factors are reported to be 
essential in mediating the direct reprogramming from 
fibroblast to CM, including GATA4 (GATA Binding Protein 
4), MEF2C (myocyte-specific enhancer factor 2C), TBX5 
(T-box transcription factor 5),83 MESP1 (Mesoderm Posterior 
BHLH Transcription Factor 1), MYOCD (myocardin),84,85 
EZH2 (enhancer of zeste homolog 2),86 and TBX20 (T-box 
transcription factor 20).87 Investigators have used different 
combinations of these transcription factors, typically 
delivered by viral vectors, to achieve reprogramming of 
fibroblasts to CMs in vitro. Alternatively, small molecules 
or miRNA that can increase the expression of cardiac 
transcription factors also can induce reprogramming of 
fibroblasts to cardiac myocytes. Such reprogramming is of 
low efficiency, and the cardiac myocytes that are derived 
from this reprogramming are not electrophysiologically 
mature. Fibroblasts that are reprogrammed to CMs ex 
vivo must be transplanted into the heart, generally in a 
hostile environment characterized by ischemia and/or 
inflammation. An alternate approach is to deliver such 
reprogramming factors directly to the injured myocardium 
in order to reprogram resident fibroblasts into cardiac 
myocytes. Of interest, the induced cardiac myocytes 
generated by in vivo reprogramming appear to be more 

mature in their contractile and electrophysiological 
properties. However, the reprogramming is not highly 
efficient nor effective in the hostile environment of 
myocardial ischemia. In addition, cardiac arrhythmias 
could be promoted by incomplete reprogramming of the 
cells, or due to their dysfunction in a hostile environment.88

Another approach to cardiovascular repair is to ablate 
cells that may be contributing to disease processes. 
In seminal work from Rurik and colleagues, an in vivo 
CAR-T strategy was applied to a murine model of cardiac 
fibrosis. They used CD5-targeted lipid nanoparticles to 
transfect T-cells with a chimeric antigen receptor directed 
at activated cardiac myofibroblasts. The treatment was 
shown to selectively ablate fibroblast activation protein 
expressing fibrotic cells,89 reduce cardiac fibrosis, and 
improve cardiac function.

Endothelial cells compose one of the largest non-
myocyte cell populations in the heart90 and play a key 
role in tissue repair.91 Mesenchymal to endothelial cell 
transition (MEndoT) could expand the microvasculature 
and improve perfusion, and by doing so play a role in 
cardiac regeneration. However, the role of MEndoT in 
endothelial cell repopulation92 after MI is controversial. One 
paper from Ubil et al. used Col1a2-CreERT: R26R-tdTomato 
mice fibroblast cell lineage tracing mice and observed the 
contribution of the Col1a2+ lineage cells to endothelial 
VE-Cadherin+ endothelial cells.92 However, another work 
using more extensive lineage tracing studies reported 
contrary results showing that the preexisting endothelial 
cells, but not fibroblasts, modulate the neovascularization 
after MI.93

Whereas the role of MEndoT in recovery from MI is 
controversial, more evidence suggests that this process 
plays a role in other models of HF. In a transverse 
aortic constriction-induced cardiac hypertrophy model, 
MEndoT-originated cells appear to contribute to the 
neovascularization response.94 In another model of 
ischemic disease (murine hindlimb ischemia), lineage 
tracing and single-cell transcriptional studies clearly 
show that a subset of fibroblasts undergoes MEndoT to 
contribute to revascularization of the limb.95 In this case, 
the transdifferentiation of fibroblasts to endothelial cells is 
dependent upon inflammatory signaling and a metabolic 
switch.62,95-98 We have reported that a metabolic switch 
from oxidative phosphorylation to glycolysis is required for 
angiogenic transdifferentiation.99 This Warburg-like effect 
is associated with the upregulation of citrate synthesis in 
the mitochondria and its export to the nucleus. There, it 
is converted to acetyl-CoA to support histone acetylation 
and increased DNA accessibility, which facilitates cell 
fate transitions such as MEndoT. Harnessing endogenous 
MEndoT capacity could be a potential strategy to enhance 
tissue recovery in cardiovascular diseases.100, 101
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CONCLUSION

Observations in our patients and animal models 
convincingly show that myocardial regeneration and 
myocardial recovery are possible in heart failure. Insights 
into the mechanisms underlying regeneration and 
recovery will lead to new pharmacological, cellular, and/or 
molecular therapies for heart failure.

KEY POINTS

•	 Myocardial recovery is characterized by a return toward 
normal structure and function of the heart after an injury.

•	 Myocardial regeneration is a crucial process that can 
facilitate the recovery of heart muscle.

•	 Preclinical mouse models and iPSC-based cellular 
reprogramming and engineered heart tissue 
are valuable tools to study the mechanisms of 
cardiovascular regeneration.

•	 Mesenchymal to endothelial transition involve critical 
chromatin reconfiguration mediated by epigenetic 
and metabolic regulations, representing a promising 
mechanism for cardiovascular regeneration.
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