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Aims High mobility group box 1 (HMGB1) is an abundant and ubiquitous nuclear DNA-binding protein that has multiple func-
tions dependent on its cellular location. HMGB1 binds to DNA, facilitating numerous nuclear functions including main-
tenance of genome stability, transcription, and repair. However, little is known about the effects of nuclear HMGB1 on
cardiac hypertrophy and heart failure. The aim of this study was to examine whether nuclear HMGB1 plays a role in the
development of cardiac hypertrophy induced by pressure overload.

Methods
and results

Analysis of human biopsy samples by immunohistochemistry showed decreased nuclear HMGB1 expression in failing
hearts compared with normal hearts. Nuclear HMGB1 decreased in response to both endothelin-1 (ET-1) and angioten-
sin II (Ang II) stimulation in neonatal rat cardiomyocytes, where nuclear HMGB1 was acetylated and translocated to the
cytoplasm. Overexpression of nuclear HMGB1 attenuated ET-1 induced cardiomyocyte hypertrophy. Thoracic trans-
verse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of HMGB1
(HMGB1-Tg) and wild-type (WT) mice. Cardiac hypertrophy after TAC was attenuated in HMGB1-Tg mice and the sur-
vival rate after TAC was higher in HMGB1-Tg mice than in WT mice. Induction of foetal cardiac genes was decreased in
HMGB1-Tg mice compared with WT mice. Nuclear HMGB1 expression was preserved in HMGB1-Tg mice compared
with WT mice and significantly attenuated DNA damage after TAC was attenuated in HMGB1-TG mice.

Conclusion These results suggest that the maintenance of stable nuclear HMGB1 levels prevents hypertrophy and heart failure by
inhibiting DNA damage.
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1. Introduction
Cardiac hypertrophy is associated with many forms of heart disease, in-
cluding ischaemic disease, hypertensive heart disease, and valvular sten-
osis, and is a major risk factor for the development of heart failure and
death.1,2 Despite advances in the treatment of heart failure, it is still
oneof the leading causesofdeath in industrialized countries.3 Therefore,
elucidation of the mechanisms underlying the progression of cardiac

hypertrophy to heart failure is important to develop effective therapeut-
ic strategies for the treatment of heart failure.4

High mobility group box 1 (HMGB1) is a nuclear DNA-binding
protein present in various types of cells, which functions in maintaining
nucleosome structure, and regulating gene transcription, replication,
and DNA repair.5,6 The high degree of conservation among species
and organs implies that HMGB1 plays a critical role in the modulation
of cellular functions. HMGB1 knockout mice die shortly after birth
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and show severe hypoglycaemia, indicating that HMGB1 is essential for
survival.7 Recent reports investigating the functions of HMGB1 have
mainly focused on the extracellular regulation of cells by HMGB1,8

because in addition to its nuclear activity, HMGB1 functions as a cyto-
kine.9 In inflammatory diseases such as sepsis, HMGB1 is translocated
fromthe nucleus to the cytoplasm and is actively secreted into the extra-
cellular environment, where it interacts with several surface molecules,
including the receptor foradvancedglycationend-products and Toll-like
receptors.9,10 Extracellular HMGB1 also regulates both inflammation
and regenerating processes.11 In the presence of tissue damage,
HMGB1 released from inflammatory cells and necrotic cells stimulates
monocytes/macrophages to secrete inflammatory cytokines amplifying
the inflammatory response. We have shown that coronary artery liga-
tion in transgenic mice with cardiac-specific overexpression of
HMGB1 (HMGB1-TG) resulted in enhanced angiogenesis, improved
survival, and restored cardiac function compared with wild-type (WT)
mice.12 In contrast, Andrassy et al.13 have shown that serum levels of
HMGB-1 are associated with infarct size and the degree of cardiac re-
modelling in patients with myocardial infarction.

It has been reported in recent years that DNA damage is involved
in the progression of heart failure.14 HMGB1 was discovered as a
chromatin-binding protein, and is known to adjust transcription and
indirectly adjust DNA damage.15 Previous studies have shown that
post-translational modification by acetylation of lysine residues is
crucial for the translocation of HMGB1 in hepatocytes and immune
cells.16,17 Because nuclear HMGB1 plays a critical role in the regulation
of DNA repair systems,15 mitochondrial functions,18 gene-specific
DNA-binding,19 and morphology in aging and neurodegenerative
disorders,20,21 it is suspected that translocation of HMGB1 from the
nucleus might modify cellular function. However, the role of nuclear
HMGB1 in cardiac hypertrophy and heart failure is not known. In the
present study, we examined the role of nuclear HMGB1 in protecting
the heart during pressure overload.

2. Methods
The methods/protocols used in the present study are detailed in the Supple-
mentary material online.

2.1 Materials and reagents
Endothelin-1 (ET-1) and angiotensin II (Ang II) were purchased from
Sigma-Aldrich Japan (Tokyo, Japan). The antibody against HMGB1 was
obtained from Shino-Test Corporation (Sagamihara, Japan). Antibodies
against acetyl-lysine and b-tubulin were obtained from Cell Signaling

Technology (Danvers, MA, USA). The anti-8-hydroxy-2′-desoxiguanosine
(8-OHdG) antibody was obtained from Nikken Seil (Tokyo, Japan), and
the anti-histone H3 antibody was obtained from MAB Institute, Inc.
(Sapporo, Japan). The anti-actinin was obtained from Sigma-Aldrich Japan
(Tokyo, Japan). The anti-platelet endothelial cell adhesion molecule was
obtained from Cedarlane Laboratories Limited (Ontario, Canada).
Primers for quantitative real-time reverse transcriptase–PCR were
designed on the basis of GenBank sequences [mouse atrial natriuretic
peptide (ANP), K02781; mouse brain natriuretic peptide (BNP), NM
008726; rat ANP, NM 012612.2; b- myosin heavy chain (b-MHC), AY
056464 and GAPDH, NM001001303]. Luciferase reporter constructs
(hANP/luc and BNP/luc) were generated, and were used to examined the
effect of nuclear HMGB1 on foetal gene expression.22,23 The pGEX-5X-1
plasmids were kindly provided by Ikuo Maruyama (Kagoshima University
Faculty of Medicine, Kagoshima, Japan).

2.2 Assessment of HMGB1 localization
in human heart samples
Samples of the ventricle of three patients with heart failure and three control
patients who were assessed to rule out cardiomyopathy and had normal
cardiac function were used in the study (Table 1). Written informed
consent was obtained from all the patients before the study. The protocol
was performed in accordance to the Helsinki Declaration and was approved
by the human investigations committee of our institution. Biopsy samples
were immediately washed in phosphate buffered saline (PBS) before being
snap-frozen in liquid nitrogen for immunofluorescent co-staining and bio-
mechanical measurements. Fresh frozen 20 mm tissue sections were
treated with a blocking agent prior to the addition of primary antibody at a
dilution of 1:100. Sections were then treated with goat anti-rabbit Alexa
Fluor 568 (Invitrogen, Carlsbad, CA, USA) at a dilution of 1:200. Samples
were counterstained with Phalloidin (Invitrogen) and 4′ ,6-diamidino-
2-phenylindole (DAPI) (Lonza, Walkersville, MD, USA). For analysis,
nuclear positive cells were counted (five random fields to yield �300 cardi-
omyocyte nuclei/section) and expressed as the percentage of the total
number of cardiomyocytes.

2.3 Cultured neonatal rat cardiomyocytes
Hearts were collected from1- to 2-day-old neonatal rat pups, promptly after
euthanasia by decapitation, and primary cultures of neonatal rat cardiomyo-
cytes were performed as described previously.24,25 After serum starvation,
neonatal rat cardiomyocytes were stimulated with ET-1 or Ang II, and
samples were collected to examine the expression levels of HMGB1 by
western blot analysis and ANP mRNA by quantitative RT–PCR. HMGB1
siRNA was purchased from Thermo Scientific Dharmacon (Lafayette, CO,
USA) and used to transfect cardiomyocytes by using GenomOne-Neo (Ishi-
hara Sangyo Kaisha, Osaka, Japan) according to the manufacturer’s instruc-
tions. ET-1 inducible ANP and BNP promoter activities were evaluated by
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Table 1 Characteristics of patients with heart failure and healthy controls

Age (years) Gender Status Aetiology of heart failure BNP (pg/mL) LVEF (%) LVDd (mm)

62 Male Normal — 40 74 43

55 Male Normal — 8 77 53

19 Male Normal — 31 79 50

82 Female Heart failure dHCM 376 36 48

71 Male Heart failure HHD 334 29 62

78 Female Heart failure dHCM 270 44 55

BNP, brain natriuretic peptide; LVEF, left-ventricular ejection fraction; LVDd, left-ventricular end-diastolic dimension; LVMI, LV mass index; dHCM, dilated phase of hypertrophic
cardiomyopathy; HHD, hypertensive heart disease.
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luciferase reporter gene assay with hANP/luc and BNP/luc, and the pRL-TK
vector (Promega, Madison, WI, USA).26,27 Expression vector transfection
was performed using Lipofectamine LTX plus (Invitrogen) according to
the manufacturer’s instructions. Transcriptional activities were calculated
from three separate assays performed in triplicate. Cardiomyocytes trans-
fected with pmax-GFP (Lonza) and an HMGB1 expression vector or
control vector for 24 h were incubated with or without ET-1 (100 nM) for
an additional 48 h for cell surface area measurements using Image J software
(US National Institutes of Health, Bethesda, MD, USA).

2.4 Pressure overload models
Eight to 10-week-old transgenic mice with cardiac-specific overexpression
of HMGB1 (HMGB1-Tg)12 and WT littermates were anaesthetized by intra-
peritoneal injection with a mixture of ketamine (80 mg/kg/h) and xylazine
(8 mg/kg/h), intubated, and artificially ventilated as previously described.
Pressureoverloadwas thenproducedby thoracic transverse aortic constric-
tion (TAC). Standard lead II ECG was recorded throughout the experiment,
and the adequacy of anaesthesia was monitored from the disappearance of
pedal withdrawal reflex. Cardiac function at 4 weeks after TAC or sham op-
eration was evaluated by transthoracic echocardiography using an FFsonic
8900 (Fukuda Denshi Co., Tokyo, Japan) equipped with a 13 MHz
phased-array transducer under anaesthesia with an intraperitoneal adminis-
tration of pentobarbital sodium (35 mg/kg). Adequacy of anaesthesia was
monitored at all times by assessment of skeletal muscle tone, respiration
rate and rhythm, and response to tail pinch. Left-ventricular fractional short-
ening (LVFS) was calculated as [(LVEDD2LVESD)/LVEDD] × 100 (%).
These mice and sham-operated ones were sacrificed by intraperitoneal in-
jection of ketamine (1 g/kg) and xylazine (100 mg/kg), and hearts were
rapidly excised. Mouse ANP and BNP mRNA levels were determined by
quantitative real-time RT–PCR. Myocardial sections from HMGB1-Tg and
WT mice were stained with anti-8-OHdG antibodies to evaluate the
degreeof DNA damage in the heart. The staining was visualized by treatment
with a solution of 3,3′-diaminobenzidine (Dako Cytomation Liquid
DAB Substrate Chromogen System, Dako Japan, Tokyo, Japan) for 40 s.
8-OHdG positive area was measured (five random fields to yield around
400 cardiomyocyte) using Image J software and expressed as fold increase
over HMGB1-TG TAC mice. Results were normalized by arbitrarily

setting the area of the 8-OHDG positive cells in HMGB1-TG TAC mice to
1.0. All experimental procedures were performed according to the animal
welfare regulations of Yamagata University School of Medicine, and the
study protocol was approved by the Animal Subjects Committee of Yama-
gata University School of Medicine. The investigation conformed to the
Guide for the Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication, 8th Edition, 2011).

2.5 Co-immunoprecipitaton and
immunoblotting
After samples were collected, protein extracts were prepared in modified
radio-immunoprecipitation assay 1 (RIPA) buffer. Immunoprecipitation
was performed with 1 mg of antibodies against acetyl-lysine or HMGB1 in
400 mg whole lysate protein or 150 mg nuclear protein. Normal rabbit or
mouse IgG was used as a negative control. Lysates were incubated with
anti-acetyl-lysine or HMGB1 overnight, and then incubated for 1 h with
protein A/G-agarose beads. Samples were washed four times with buffer
and subjected to western blot analysis.

2.6 Statistical analysis
Data are presented as means+ standard error of the mean (SEM). Differ-
ences between groups were evaluated using one-way analysis of variance
with post hoc Bonferroni test. Survival curves after TAC were generated
using the Kaplan–Meier method and compared using the log-rank test.
A P-value ,0.05 was considered statistically significant. Statistical analysis
was performed with a standard statistical program package (JMP version 8;
SAS Institute Inc., Cary, NC, USA).

3. Results

3.1 HMGB1 expression and localization
in human failing hearts
To investigate theexpressionand localizationofHMGB1 inhuman failing
hearts,myocardial samplesofpatientswith heart failureand healthy con-
trols (Table 1) were analysed by immunohistochemistry. HMGB1 was

Figure 1 Decreased nuclear HMGB1 in the failing heart. (A) Non-failing (left) and failing (right) human heart tissues were labelled with antibodies against
HMGB1 (red) and phalloidin (green). Nuclei were stained with DAPI (blue). Bars, 50 mm. (B) Quantification of nuclear HMGB1 immunofluorescence data.
Bars represent means+ SEM.
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localized in the nuclei of cardiomyocyte in control hearts (Figure 1A). On
the contrary, decreased nuclear staining and increased cytosolic staining
of HMGB1 were detected in the failing heart (Figure 1B). Comparison of
the percentage of HMGB1 positively stained nuclei in failing and non-
failing heart samples showed that nuclear HMGB1 expression was
clearly lower in failing hearts than in control hearts (Figure 1C) because
of the translocation of nuclear HMGB1 to the cytoplasm in failing
hearts. These findings suggested that nuclear localization of HMGB1 in
cardiomyocytes might be associated with cardiac dysfunction during
cardiac remodelling.

3.2 Translocation and acetylation of
HMGB1 induced by hypertrophic
stimulation
To confirm whether translocation of HMGB1 was observed during LV
remodelling, we evaluated the localization of HMGB1 in heart samples
of mice in which pressure overload was generated by TAC. Similar to
the observations in human failing heart samples, nuclear HMGB1 was

decreased after TAC (Figure 2A). HMGB1 is mainly expressed in the
nuclei of cardiomyocytes in sham mice. On the other hand, decreased
nuclear staining and increased cytosolic staining of HMGB1 were
observed in the cardiomyocytes after pressure overload (Supplemen-
tary material online, Figure S1A and B). However, HMGB1 expressions
in endothelial cells were similar between sham- and TAC-operated
mice (Supplementary material online, Figure S1B). Nuclear HMGB1 ex-
pression was decreased in neonatal rat cardiomyocytes after ET-1
(Figure 2B) or Ang II (Supplementary material online, Figure S2A) stimu-
lation, whereas cytosolic HMGB1 was increased compared with
without stimulation. To determine whether HMGB1 acetylation is asso-
ciated with the localization of HMGB1 in cardiomyocytes, neonatal rat
cardiomyocytes were stimulated with ET-1 or Ang II, and HMGB1
acetylation status was evaluated. ET-1 stimulation increased the acetyl-
ation of HMGB1, and in a time-dependent manner with a maximum at
48 h (Figure 2C and D). Ang II also induced HMGB1 acetylation as
shown in Supplementary material online, Figure S2B. These findings indi-
cated that nuclear HMGB1 translocated from the nucleus to the cyto-
plasm during cardiac remodelling.

Figure 2 Translocation of HMGB1 induced by pressure overload and hypertrophic stimulation. (A) Decrease in nuclear localization of HMGB1 after
pressure overload. Data are expressed as means+ SEM. †P , 0.05 vs WT TAC mice. (B) HMGB1 expression in the nucleus and cytoplasm of neonatal
rat cardiomyocytes after ET-1 (100 nM) stimulation. Data are expressed as means means+ SEM. †P , 0.05 vs control. (C) Lysates of neonatal rat cardi-
omyocytes treated with or without ET-1 were immunoprecipitated with an anti-acetyl-lysine antibody and immunoblotted against an anti-HMGB1 anti-
body. (D) Lysates of neonatal rat cardiomyocytes following stimulus with ET-1 (100 nM) were immunoprecipitated with an anti-acetyl-lysine antibody and
immunoblotted against HMGB1.
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3.3 The impact of nuclear HMGB1
on the cardiac foetal gene expression
To determine the impact of nuclear HMGB1 on cardiac hypertrophy,
foetal cardiac gene expression in cardiomyocytes was assessed using
HMGB1 siRNA. Specific siRNA against HMGB1 blocked its expression
by .70% (Supplementary material online, Figure S3A). ANP and BNP
promoter activities were increased by ET-1 stimulation in cardiomyo-
cytes. Moreover, co-transfection with HMGB1 siRNA enhanced ANP
and BNP promoter activities compared with control siRNA transfection
(Figure 3A), and increased ANP RNA expression (Supplementary mater-
ial online, Figure S3B), suggesting that loss of nuclear HMGB1 might be
associated with cardiomyocyte hypertrophy during ET-1 stimulation.

To confirm whether the maintenance of HMGB1 levels in the nucleus
could suppress the development of cardiomyocyte hypertrophy, the
HMGB1 construct was co-transfected with ANP or BNP promoter luci-
ferase constructs. Overexpression of HMGB1 significantly attenuated
ANP and BNP promoter activity after ET-1 stimulation (Figure 3B). Simi-
larly, the increase in ANP RNA expression after ET-1 stimulation was
also suppressed by HMGB1 overexpression (Supplementary material
online, Figure S4A). In addition, ET-1 induced hypertrophic changes in
cardiomyocytes were significantly attenuated by HMGB1 overexpres-
sion (Figure 3C, Supplementary material online, Figure S4B). These find-
ings implied that preservation of the expression of nuclear HMGB1
may suppress cardiomyocyte hypertrophy.

3.4 HMGB1 in the hypertrophic and heart
failure model
To examine the role of nuclear HMGB1 in the development of cardiac
hypertrophy and heart failure in vivo, cardiac-specific HMGB1 overex-
pressing (HMGB1-Tg) mice and WT mice were subjected to TAC or
sham surgery. The levels of acetylated and cytosolic HMGB1 were simi-
larly increased and cardiac nuclear HMGB1 was decreased after TAC in
WT and HMGB1-Tg mice compared with those undergoing sham
surgery (Figure 4A). Notably, nuclear HMGB1 levels after TAC were
higher in HMGB1-Tg mice than in WT mice, indicating that nuclear
HMGB1 levels were preserved in HMGB1-Tg mice (Figure 4A). To inves-
tigate the role of nuclear HMGB1 in protecting cardiomyocytes from
DNA damage in cardiac hypertrophy, we performed immunohisto-
chemical staining of TAC-operated hearts using an anti- 8-OHdG anti-
body (Figure 4B). Sham-operated mice did not show 8-OHdG positive
cardiomyocytes. On the other hand, in mice undergoing TAC,
8-OHdG expression was significantly increased in both HMTG1-TG
and WT mice, whereas the induction of 8-OHdG was suppressed in
HMGB1-Tg mice. Comparison of the relative 8-OHDG positively
stained cells in WT and Tg mice after TAC showed that 8-OHDG ex-
pression was clearly lower in Tg mice than in WT mice (Figure 4C).

At 4 weeks after the TAC operation, the increase in the weight of the
heart was significantly lower in HMGB1-Tg mice than in WT-mice
(Figure 5A). We next examined the mRNA expression of foetal cardiac

Figure 3 Protective effect of nuclear HMGB1 on ET-1 induced hypertrophy. (A) Increase in ANP and BNP promoter activity by HMGB1 SiRNA trans-
fection after ET-1 stimulation. Data represent means+ SEM from three independent experiments; †P , 0.05. (B) Suppressed ANP and BNP promoter
activity after ET-1 stimulation in HMGB1 vector transfected cardiomyocytes. Data represent means+ SEM; †P , 0.05. (C ) Effect of HMGB1 overexpres-
sion on the cell surface area of neonatal rat cardiomyocytes after ET-1 stimulation. Cardiomyocytes were transfected with pmax-GFP with either an
HMGB1 expression vector or a control vector, and incubated for 48 h with or without ET-1. Scale bar ¼ 20 mm.
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genes after TAC. The expressions of ANP, BNP, and b-MHC were sig-
nificantly up-regulated in the TAC group compared with the sham-
surgery group, and this up-regulation was significantly attenuated in
HMGB1-Tg mice (Figure 5B). Moreover, systolic dysfunction and left-
ventricular dilatation after TAC were attenuated in HMGB1-Tg mice
compared with WT-mice (Figure 5C, Supplementary material online,
Table). Furthermore, the survival rate after TAC was significantly
higher in HMGB1-Tg mice than in WT mice (Figure 5D).

4. Discussion
In the present study, we demonstrated the critical role of intracellular
HMGB1 in the development of cardiac hypertrophy and heart failure.
We found that cardiac HMGB1 was exported from the nucleus to the
cytoplasm in patients with heart failure. Our in vitro study showed that
nuclear HMGB1 was acetylated and translocated to the cytoplasm in
neonatal rat cardiomyocytes in response to ET-1 and Ang II stimulation.
We also demonstrated that loss of nuclear HMGB1 aggravated foetal
gene expressions induced by ET-1 stimulation. In contrast, this
up-regulation of gene expression was suppressed by HMGB1 overex-
pression. We further showed that preserved HMGB1 expression in
the nucleus attenuated DNA damage during pressure overload, and
abolished ventricular remodelling and cardiac dysfunction.

HMGB1, which is ubiquitously expressed in all vertebrate nuclei
with a uniquely conserved sequence among species, was identified as
a chromosomal protein with important structural functions in chroma-
tin organization.5,6 HMGB1 binds to double-stranded DNA and inter-
acts with other DNA-binding proteins, which facilitate chromatin
bending.28,29 On the other hand, HMGB1 released or secreted into
the circulation has attracted attention for its cytokine-like function
and involvement in the pathology of cardiovascular disease.8,12,30,31

Scaffidi et al.8 reported that HMGB1 secreted from inflammatory cells
and passively released from necrotic cells promoted inflammation. A
role for extracellular HMGB1 in the regulation of inflammation was pro-
posed based on its association with Toll-like receptor family members,
the interleukin-1 receptor, and the receptor for advanced glycation end-
products.10,16,32,33 However, the localization of HMGB1 in cardiomyo-
cytes and its potential role in the pathogenesis of human heart failure
have not been studied in detail. In the present study, HMGB1 localized
to the nucleus in the non-failing heart, as expected, whereas nuclear
HMGB1 levels decreased and cytosolic HMGB1 increased in the
failing human heart. These findings suggest that nuclear HMGB1 may
play an important role in the regulation of cardiomyocyte phenotype
in relation to the pathogenesis of human heart failure.

In addition to the mechanisms mediating the secretion of HMGB1
from necrotic cells, other pathways involved in the export of HMGB1

Figure 4 Preserved amounts of nuclear HMGB1 prevented DNA damage induced by pressure overload. (A) Acetylation and translocation of cardiac
HMGB1 from the nucleus to the cytoplasm after pressure overload. (B) Immunohistochemical staining of heart tissues with an anti-8-OHdG antibody
4 weeks after TAC and quantification of histological data (n ¼ 5). Scale bar, 50 mm. (C) Results were normalized by arbitrarily setting the area of the
8-OHDG positive cells in HMGB1-TG TAC mice to 1.0. Bars represent means+ SEM. (n ¼ 5). †P , 0.05 vs. WT TAC mice.
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from the nucleus have been reported.17 Prior studies have reported that
post-translational modification of HMGB1 including acetylation in cul-
tured cells modifies the binding of HMGB1 to DNA and its extranuclear
localization.17,34,35 Hyperacetylation of HMGB1 induced by lipopolysac-
charide and hydrogen peroxide triggers its translocation into the cyto-
plasm.17,36 In the present study, stimulation of cardiomyocytes with
ET-1 or Ang II and pressure overload in mice induced the acetylation
and translocation of nuclear HMGB1. To the best of our knowledge,
this is the first report of HMGB1 acetylation and translocation from
the nucleus in cardiomyocytes.

Whetherextracellular HMGB1 acts as a cardioprotective factor is the
subject of controversy, and the effect of nuclear HMGB1 under hyper-
trophic stimulation is also poorly understood. We showed that the ex-
pression of foetal genes induced by ET-1 was inhibited by HMGB1
overexpression. In addition, we showed that pressure overload-induced
foetal gene expression is attenuated in HMGB1-Tg mice compared with
WT mice. Oxidative stress induced by pressure overload contributes to
cardiacDNAdamageand DNArepair/synthesis in failinghearts with sys-
tolic dysfunction.37 Therefore, DNA damage is thought to be a key
pathogenic factor in ventricular dysfunction.14 A recent study showed
the involvement of intracellular HMGB1 in protecting against DNA

damage in the brain and in neurons.20,21 Nuclear HMGB1 was recruited
to sites of cellular oxidative DNA base damage, and cell-based experi-
ments and biochemical data suggested that HMGB1 plays a role in
base excision repair.15,20,21 In the present study, 8-OHdG induction
after TAC was significantly attenuated in HMGB1-Tg mice compared
with WT mice. Taken together, these findings indicate that nuclear
HMGB1 might prevent DNA damage during pressure overload, as
seen in the decrease in cardiac dysfunction in HMBG1-Tg mice.
HMGB1 translocation induced by hypertrophic stimulation might
cause DNA damage, increasing the severity of cardiac hypertrophy,
affecting foetal gene expression, and causing cardiac dysfunction.

There are several limitations in this study. In the present study, we
showed that maintenance of HMGB1-TG in cardiomyocyte and the
heart prevent cardiac dysfunction after pressure overload, however,
we did not show the direct link between reduced HMGB1 in the heart
and cardiac dysfunction in vivo study. To confirm this point, we might
need to evaluate cardiac function in cardiac-specific HMGB1 knockout
mice in the future study. However, we demonstrated that intranuclear
HMGB1 was reduced in failing heart, and HMGB1 silencing promoted
foetal gene expressions. Therefore, the findings of this study suggest a
novel approach to the investigation of the pathogenesis of heart

Figure5 Suppression ofDNA damage induced bypressure overload in HMGB-1 Tgmice. (A) Left-ventricular transverse sections in WTand HMGB1-Tg
mice at 4 weeks after TAC, and heart weight: body ratios in TAC or sham-operated mice. Data are mean+ SEM from eight mice for each group. *P , 0.05
and **P , 0.01 vs. sham-operated mice of the same strain; †P , 0.05 vs. TAC-operated Tg mice. (B) Quantitative analyses of ANP, BNP, andb-MHC gene
expression in WT and HMGB1-Tg mice at 4 weeks after TAC. Data are mean+ SEM from eight mice for each group. *P , 0.05 and **P , 0.01 vs.
sham-operated mice of the same strain; †P , 0.05 vs. TAC-operated Tg mice. (C) Data showing echocardiographic measurements in WT and
HMGB1-Tg mice at 4 weeks after TAC or sham surgery. IVS, interventricular wall thickness; LVEDD, left-ventricular end-diastolic dimension; LVESD, left-
ventricular end-systolic dimension; %LVFS, left-ventricular fractional shortening. Data are mean+ SEM from eight mice for each group. *P , 0.05 vs.
sham-operated WT mice; †P , 0.05 vs. TAC-operated WT mice. (D) Survival curves in WT and HMGB1-Tg mice after TAC.
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failure, and nuclear HMGB1 may be a potential novel therapeutic target
for the prevention of heart failure.

5. Conclusions
We demonstrated that nuclear HMGB1 was decreased in association
with human heart failure and preserved amounts of nuclear HMGB1
could prevent cardiac hypertrophy and improve survival in a pressure
overload heart failure model.
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Supplementary material is available at Cardiovascular Research online.
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