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Five new polyketides (2–6) and ten known compounds (1 and 7–15) were obtained from

the fermentation products of the endophytic fungus Cladosporium sp. OUCMDZ-302

with the mangrove plant, Excoecaria agallocha (Euphorbiaceae). The new structures of

2–6 were established on the basis of ECD, specific rotation and spectroscopic data as

well as the chemical calculation. Compound 7 showed cytotoxicity against H1975 cell

line with an IC50 value of 10.0µM. Compounds 4 and 8–10 showed radical scavenging

activity against DPPH with the IC50 values of 2.65, 0.24, 5.66, and 6.67µM, respectively.

In addition, the absolute configuration of compound 1 was solidly determined by X-

ray and sugar analysis of the acidic hydrolysates for the first time as well as those of

compounds 8–10 in this paper.

Keywords: Cladosporium sp., mangrove fungus, Excoecaria agallocha, polyketides, anti-oxidation

INTRODUCTION

Mangrove plants and endophytic fungi are two principal sources of new and bioactive natural
products (Zhang et al., 2006; Wu et al., 2008). Excoecaria agallocha (Euphorbiaceae), also known
as blind-your-eye, is mainly used to treat sores and stings. More than 72 cytotoxic diterpenoids
have been identified from E. agallocha, structurally belonging to labdane (Konishi et al., 1999, 2003;
Anjaneyulu and Rao, 2000; Annam et al., 2015), isopimarane/ent-isopimarane (Anjaneyulu et al.,
2003; Wang and Guo, 2004; Kang et al., 2005; Wang et al., 2005; Gowri Ponnapalli et al., 2013),
atisane/ent-atisane (Konishi et al., 2000; Wang et al., 2009), ent-kaurane (Anjaneyulu et al., 2002;
Li et al., 2010), and beyerane-type (Anjaneyulu et al., 2002).

In our ongoing investigations of new and bioactive compounds from endophytes associated
with mangrove plants (Lin et al., 2008; Lu et al., 2009, 2010; Wang et al., 2012; Kong
et al., 2014; Zhu et al., 2018), an endogenous fungal strain OUCMDZ-302 identified as
Cladosporium sp., was isolated from the surface-sterilized stems of E. agallocha. The secondary
metabolites of the genus Cladosporium were mainly reported as polyketides derivatives, such as
macrolides (Jadulco et al., 2001; Zhang et al., 2001; Shigemori et al., 2004), α-pyrones (Jadulco
et al., 2002), α-pyridone (Ye et al., 2005), and binaphthyl derivatives (Sakagami et al., 1995).
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Herein we report five new polyketides (2–6) (Figure 1)
isolated from the EtOAc extract of Cladosporium sp.
OUCMDZ-302, along with the ten known structures
(Figure S36 and Table S1), (2R)-7-O-α-D-ribofuranosyl-
5-hydroxy-2-methylchroman-4-one (1) (Hu et al., 2017),
7-O-α-D-ribosyl-5-hydroxy-2-propylchromone (7) (Zhao et al.,
2015), 3-(2,3-dihydroxy phenoxy)butanoic acid (8) (Dai et al.,
2009), (2S,4S)-4-methoxy-2-methylchroman-5-ol (9) (Wu et al.,
2010), (2S,4S)-2-methylchroman-4,5-diol (10) (Teles et al.,
2005), (±)-5,7-dihydroxy-2-methyl chroman-4-one (11) (Rao
et al., 1994), (±)-5-hydroxy-2-methylchroman-4-one (12) (Dai
et al., 2006), 1-(2,6-dihydroxyphenyl) ethanone (13) (Dhami
and Stothers, 1965), 1-(2,6-dihydroxyphenyl)-1-butanone (14)
(Huang et al., 2005), and 2-butyryl-3,5-dihydroxycyclohex-
2-enone (15) (Igarashi et al., 1993). Compound 7 showed
inhibitory activity against H1975 cell line with an IC50 value of
10.0µM. Compounds 4 and 8–10 exhibited radical scavenging
activity against DPPH with IC50 values of 2.65, 0.24, 5.66, and
6.67µM, respectively. In addition, the absolute configurations of
compounds 8–10 were resolved and that 1 was solidified in this
paper.

MATERIALS AND METHODS

General Experimental Procedures
The NMR, ECD, [α]D, UV and IR spectra were recorded on JEOL
JNM-ECP 600, JASCO J-810, JASCO P-1020 digital, Beckman
DU R© 640 and Nicolet NEXUS 470 spectrophotometers,
respectively. ESI-MS, EI-MS and GC-MS were measured on Q-
TOF ULTIMA GLOBAL GAA076 LC, VG Autospec-3000 and
Agilent 6890/5973 spectrometers, respectively. Semipreparative
HPLC and chiral separation was performed on a YMC-pack
ODS-A column [10 × 250mm, 5µm, 4 mL/min] and a
CHIRALPAK IA column [20× 250mm, 5µm, 10mL/min]. TLC
was performed on plates precoated with silica gel GF254 (10–
40µm). The column chromatography (CC) was performed over
silica gel (200–300 mesh, Qingdao Marine Chemical Factory,
Qingdao, China) and Sephadex LH-20 (Amersham Biosciences,
Sweden), respectively. The seawater for the cultural medium of
Cladosporium sp. OUCMDZ-302 was collected from Yellow Sea
near Qingdao.

Fungal Material
The strain Cladosporium sp. OUCMDZ-302 was isolated from
the surface sterilized stems of the mangrove plant E. agallocha
grown in Wenchang, Hainan, China. Briefly, the stems were
washed with tap water and sterile distilled water in sequence.
The stems with clean surface were further sterilized in a sequence
of 75% ethanol for 2min, 0.1% of HgCl2 for 3min, and sterile
distilled water. The outer bark was removed, and the inner bark
was cut into small pieces that were then placed on a potato
dextrose agar (PDA) plate and cultured at 28◦C for 3 days. A
single colony was transferred to PDA media and was identified
according to its morphological characteristics (Figure S35) by
Prof. Kui Hong, Wuhan University. A voucher specimen is
deposited in our laboratory at −80◦C. The working strain was
prepared on PDA slants and stored at 4◦C.

Fermentation and Extraction
The producing fungal strain Cladosporium sp. OUCMDZ-302
was inoculated into a 500mL cylindrical flask containing 100mL
of seawater consisting of 2% maltose, 2% mannitol, 1% glucose,
1% monosodium glutamate, 0.3% yeast extract, 0.1% corn flour,
0.05% KH2PO4, 0.03% MgSO4· 7H2O (pH 6.5) and cultured
at 28◦C for 48 h on a rotary shaker at 120 rpm. The seed
culture was transferred into three hundred and fifty 500mL
conical flasks (200 mL/flask) containing the same medium,
and performed at 28◦C for 7 days on rotary shakers at 160
rpm. The whole fermentation broth (70 L) was filtered through
cheese cloth to separate the mycelia from filtrate. The filtrate
was concentrated to about one-quarter of the original volume
under reduced pressure and then extracted three times with
equal volumes of ethyl acetate (EtOAc) and concentrated to
dryness. The mycelia were extracted three times with acetone and
concentrated to an aqueous solution. The aqueous solution was
subsequently extracted three times with equal volumes of EtOAc
and concentrated. Both EtOAc extractions were combined to give
45 g of the extract.

Isolation
The extract (45 g) was separated into eight fractions (Fr.1–Fr.8)
on a silica gel column (8.5 × 15 cm, 200–300 mesh) using a step
gradient elution with CHCl3-petroleum ether (V/V 0:100–100:0,
4 L) and thenMeOH–CHCl3 (V/V 0:100–100:0, 16 L). Fr.1 (5.4 g)
was separated on a silica gel column (4.5×10 cm, 200–300 mesh)
eluted with CHCl3-petroleum ether (V/V, 1: 1, 3L) to give 12

(1g). Fr.3 (0.3 g) was further purified by semipreparative HPLC
(60% MeOH/H2O) to give 10 (7mg, tR 4.97min). Fr.4 (4.3 g)
was separated into two subfractions by column chromatography
over silica gel (RP-18) eluting with gradient H2O-MeOH (50–
100%). Fr.4-1 (1.4 g) was separated by Sephadex LH-20 (3 ×

75 cm, MeOH, 300mL) to obtain three fractions (130mL, Fr.4-
1-1; 90mL, Fr.4-1-2; 80mL, Fr.4-1-3). Fr.4-1-2 (140mg) was
purified by semipreparative HPLC (30% MeOH/H2O) to yield
5 (1mg, tR 8.24min), 13 (30mg, tR 20.20min), and 15 (5mg,
tR 18.15min). Fr.4-1-3 (190mg) was purified by semipreparative
HPLC (30% MeOH/H2O, 0.15% CF3CO2H) to give 4 (15mg,
tR 16.76min) and 8 (30mg, tR 14.41min). Fr.4-2 (360mg) was
purified by semipreparative HPLC (50% MeOH/H2O) to give 6
(10mg, tR 12.28min), and 14 (24mg, tR 18.12min). Fr.5 (1.1 g)
was separated into two subfractions by a silica gel column (2.6
× 10 cm, 200–300 mesh) eluted with MeOH–CHCl3 (V/V 1:40,
1L). Fr.5-1 (40mg) was purified by semipreparative HPLC (25%
MeOH/H2O) to give 3 (3mg, tR 6.76min), and Fr.5-2 (80mg)
was purified by semipreparative HPLC (50%MeOH/H2O, 0.15%
CF3CO2H) to give compounds 11 (5mg, tR 6.78min). Fr.6 (2.8 g)
was separated into two subfractions by a silica gel column (4.5
× 10 cm, 200–300 mesh) eluted with CHCl3-petroleum ether
MeOH–CHCl3 (V/V 1:25, 2L). Fr.6-1 (110mg) was purified by
semipreparative HPLC (60% MeOH/H2O) to give 9 (10mg,
tR 10.28min). Fr.6-2 (340mg) was purified by semipreparative
HPLC (50% MeOH/H2O) to give 7 (18mg, tR 13.55min) and
the mixture of 1 and 2 (70mg, tR 5.56min). The mixture of 1
and 2 were further purified by a chiral column (Chiralpak IA,
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FIGURE 1 | The structure of compounds 1–6.

MeOH–MeCN–EtOH 40:40:20) to yield compound 1 (35.4mg,
tR 8.22min) and 2 (23.7mg, tR 4.69min).

ECD, [α]D and Coupling Constant
Calculation
Calculations for ECD and [α]D were performed in HyperChem
7.5 and Gaussian 03 (Frisch et al., 2004; Chen et al., 2016; Jin
et al., 2018). Karplus formula was used to compute the coupling
constant (3J) from the proton-proton torsion angle (Haasnoot
et al., 1980).

Cytotoxic Assays
Cytotoxicities of compounds 1–14 against HL-60 and K562 cell
lines were assayed by the MTT method (Mosmann, 1983), while
those for BEL-7402, A549, HeLa, and H1975 cell lines were tested
by SRB (Skehan et al., 1990)methods. Adriamycin was used as the
positive control with the IC50 values of 0.02, 0.21, 0.48, 1.32, 0.32,
and 0.38, respectively.

Anti-oxidant Activities
The anti-oxidant activities of compounds 1–14were evaluated by
DPPH assay in vitro (Wang et al., 2007). Vitamin C was used as
the positive control with an IC50 value of 3.29µM.

Antimicrobial Assays
The antimicrobial activities of compounds 1–14 against E.
coli, E. aerogenes, P. aeruginosa, B. subtilis, and C. albicans
were evaluated by an agar dilution method (Zaika, 1988).
Ciprofloxacin lactate and ketoconazole was used as the positive
controls for bacteria and fungi with MIC values of 4.0, 0.5, 32.0,
16.0, 4.1µg/mL, respectively.

RESULTS AND DISCUSSION

Identification of Compounds
Compounds 1 and 2 were first isolated as an isomeric mixture
whose molecular formula was determined to be C15H18O8

by HRESIMS at m/z 327.1068 [M+H]+ (calcd 327.1080),
indicating seven degrees of unsaturation. An interpretation

of the 1D (Table 1, Figures S1–S3) and 2D NMR (Figure 2
and Figures S4–S6) spectra established a pentose moiety and
a benzopyrane moiety similar to those of 5,7-dihydroxy-2-
methylchroman-4-one (11) (Rao et al., 1994). The upfield shift
of C-7 (−1.5 ppm) and the key HMBC correlations between
the anomeric proton (δH−1′ 5.66/5.68) and C-7 (δ 165.1/165.0)
indicated that 1 and 2 were 7-O-pentosides of 11. Acidic
hydrolysis of the mixture of 1 and 2 with 2 M HCl yielded
(±)-11 and D-ribose that was identified by GC-MS analysis of
the reaction products with L-cysteine methyl ester and Me3SiCl
(Figures S33, S34) (Deyrup et al., 2007). These data indicated
that 1 and 2 are a pair of epimers at C-2. Separation of 2-epimeric
mixture of 1 and 2was achieved on a chiral column usingMeOH-
MeCN-EtOH as eluent. And then, NMR data of optically-pure
1 (Figures S7, S8) and 2 (Figures S9, S10) were obtained. X-
ray single crystal diffraction of 1 revealed the α-glycosidic bond
and 2R-configuration (Figure 3). The ECD Cotton effects of
compounds 1 and 2 were opposite in sign (Figure 4), confirming
the opposite configuration of C-2. Thus, the structures of 1 and
2 were unambiguously elucidated as (2R)- and (2S)-7-O-α-D-
ribofuranosyl-5-hydroxy-2-methylchroman-4-one, respectively.
This is the first time that to solidify the absolute configuration
of compound 1, although it was reported last year (Hu et al.,
2017).

The molecular formula of compound 3 was determined to be
C10H12O4 based on the HRESIMS peak at m/z 195.0659 [M–
H]− (calcd 195.0657), indicating five degrees of unsaturation.
The NMR data (Table 1, Figures S11–S14) was similar to those
of 10 (Teles et al., 2005), except for the upfield methylene
signal at δH/C 1.50 & 1.88/38.0 that was replaced by the one
of an oxygenated methine at δH/C 3.45/69.8. This was further
supported by the 1H-1H COSY from H-9 (δ 1.31) to H-4 (δ
4.48) through H-2 (δ 4.14) and H-3 (δ 3.45) (Figure 2 and
Figure S15), and the key HMBC correlations of H-9 to C-3 (δ
69.8) and H-3 to C-4a (δ 111.2) (Figure 2 and Figure S16). In
order to confirm the relative configuration, we calculated the
coupling constant of H2-H3 and H3-H4 for the four possible
relative configurations 3A–3D (Figure 5). The computational 3J
value of 3A was most near to the measured result (Table 3).
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TABLE 1 | 1H (600 MHz) and 13C (150 MHz) NMR Data of Compounds 1–4 in DMSO-d6.

No. 1 2 3 4a

δC δH(J in Hz) δC δH(J in Hz) δC δH(J in Hz) δC δH(J in Hz)

2 73.9, CH 4.61(ddq, 12.3, 6.3,

3.1)

74.0, CH 4.61(ddq, 12.3, 6.3,

3.1)

69.0, CH 4.14 dq(6.6, 0.8) 40.7, CH2 2.79 (dd, 16.5, 8.8)

2.63 (dd, 16.5, 3.3)

3 42.5, CH2 2.80 (dd,17.2, 12.3)

2.65 (dd, 17.2, 3.1)

42.6, CH2 2.81 (dd, 17.2,12.3)

2.64

(dd,17.2, 3.1)

69.8, CH 3.45 brs 73.4, CH 4.47 (m)

4 197.3, C 197.3, C 62.6, CH 4.48 (d, 2.2) 19.5, CH3 1.34 (d, 6.6)

4a 102.9, C 102.9, C 111.2, C

5 162.6, C 162.7, C 158.3, C

6 96.6, CH 6.11 (d, 2.2) 96.7, CH 6.11 (d, 2.2) 107.1, CH 6.18(dd, 8.3, 1.1)

7 165.1, C 165.1, C 128.8, CH 6.91(dd,8.3, 8.2)

8 95.6, CH 6.10 (d, 2.2) 95.6, CH 6.09 (d, 2.2) 106.8, CH 6.32(dd, 8.2, 1.1)

8a 162.9, C 162.9, C 156.1, C

9 20.4, CH3 1.40 (d, 6.3) 20.4, CH3 1.40 (d, 6.3) 17.5, CH3 1.31 (d, 6.6)

1’ 99.9, CH 5.67 (d, 4.5) 99.9, CH 5.65 (d, 4.5) 143.9, C

2’ 71.5, CH 4.07 (m) 71.5, CH 4.07(m) 136.6, C

3’ 69.2, CH 3.91 (dd, 6.3, 3.9) 69.2, CH 3.91 (m) 145.5, C

4’ 86.6, CH 3.94 (dd, 7.6, 3.9) 86.6, CH 3.94 (m) 110.7, CH 6.70 (dd, 7.7, 2.2)

5’ 61.4, CH2 3.47 (m) 61.5, CH2 3.46(m) 119.0, CH 6.68 (t, 7.7)

6’ 113.0, CH 6.52 (dd, 7.7, 2.2)

CH3O- 52.5, CH3 3.78 (s)

aMeasured in CDCl3 and δC−1 was 174.0.

The absolute configuration was established by calculation of
the specific rotation. The measured [α]D value of 3 (−53.6) is
consistent with the calculated one for (2S,3S,4R)-3 (−100) and
opposite to the calculated one for (2R,3R,4S)-3 (+102). Thus,
the structure of 3 was identified as (2S,3S,4R)-2-methylchroman-
3,4,5-triol.

Compound 4 showed the molecular formulae of C11H14O5

based on HRESIMS peaks at m/z 225.0767 [M–H]− (calcd
225.0763), indicating five degrees of unsaturation. The 1D
(Figures S17–S19) and HMQC (Figure S20) NMR spectra of 4
displayed three sp2 methines and four sp2 quaternary carbon
signals, one sp3 oxygenated methine signals, one sp3 methylene
signals and two methyl group (including one methoxy). The
1D NMR data (Table 1) of 4 were almost identical to those
of 8 [Figure S1; (Dai et al., 2009)] except for an additional
methoxy (δH/C 3.78/52.5) and the upfield shift for carbonyl
carbon (−3.5 ppm), indicating that 4 is the methyl ester of
8. This was confirmed by analysis of 1H-1H COSY correlation
(Figure S21) and the key HMBC between the methoxy protons
at δH 3.78 and the carbonyl carbon at δC−1 174.0 (Figure 2
and Figure S22). The specific rotations of both 4 ([α]D +14.4)
and 8 ([α]D +8.2) were opposite to the synthetic analog, R-
3-(3-methoxyphenyloxy)butanoic acid ([α]D −31.2) (Kawasaki
et al., 2008), indicating both 4 and 8 as S-configuration.
The S-configuration of 4 was also backed by the coincidence
of experimental and calculated ECD curves (Figure 6). Thus,
the structure of compounds 4 and 8 were established as
methyl (3S)-3-(2,3-dihydroxyphenyloxy) butanoate and (3S)-3-
(2,3-dihydroxyphenyloxy)butanoic acid, respectively.

TABLE 2 | 1H (600 MHz) and 13C (150 MHz) NMR Data of Compounds 5 and 6

in DMSO-d6.

Position 5 6a

δC δH(J in Hz) δC δH(J in Hz)

1 19.1, CH3 1.01 (d, 6.1) 61.9, CH2 3.65 (dt, 6.0, 2.2)

2 69.7, CH 3.46 (m) 36.0, CH2 2.31 (m)

3 75.1, CH 3.77 (dd, 6.0, 6.0) 129.4, CH 5.52 (dt, 15.4, 6.6)

4 130.2, CH 5.81 (dd, 15.4, 6.0) 130.2, CH 5.56 (dt, 15.4, 6.6)

5 136.1, CH 6.18 (dd, 15.4, 9.9) 40.1, CH2 2.15 (ddd, 14.3, 7.7,

6.6); 2.27 (m)

6 137.0, CH 6.34(ddd,17.0,

10.4, 9.9)

70.4, CH 3.69 (m)

7 116.2, CH2 5.03 (dd, 10.4, 1.7)

5.17 (dd, 17.0, 1.7)

40.2, CH2 2.24 (ddd,14.3, 7.7,

7.1) 2.31 (m)

8 130.5, CH 5.70 (dt, 14.8, 7.6)

9 134.2, CH 6.14 (dd, 14.8, 10.4)

10 136.9, CH 6.33

(ddd,17.0,10.4,10.4)

11 116.1, CH2 4.14 (d,17.0) 5.02

(d,10.4)

aMeasured in CDCl3.

The molecular formula of compound 5 was determined as
C7H12O2 based on the HREIMS peak at m/z 128.0845 [M]+

(calcd 128.0837), corresponding to two degrees of unsaturation.
The IR spectrum showed hydroxy groups at 3442 cm−1 and
double bonds at 3080 and 1646 cm−1. The 1D NMR spectra
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FIGURE 2 | Key HMBC (→ ) and 1H–1H COSY (–) correlations of 1–6.

FIGURE 3 | Final X-ray Drawing of compound 1.

FIGURE 4 | ECD curve of compounds 1 and 2.

(Table 2, Figures S23–S25) of 5 showed two double bonds
one of which is terminal, two oxygenated methines and one
methyl group (Table 1). These groups were connected to the
full structure of CH2 =CH–CH=CH–CH (OH)–CH (OH)–
CH3 on the basis of 1H-1H COSY correlations from the
methyl (δH 1.01) to the methylene (δH 5.03/5.17) through the
two oxygenated methines (Figure 2 and Figure S26). The large

FIGURE 5 | Four possible relative configurations of compound 3.

TABLE 3 | The calculated 3JH−2,H−3 and 3JH−3,H−4 values of compound 3 for

the four possible relative configurations.

H-2, H-3 H-3, H-4

Dihedral angle (◦) 3J value (Hz) Dihedral angle (◦) 3J value (Hz)

3 0.8 2.2

3A 66.2 3.1 83.8 1.4

3B 173.0 8.0 166.8 7.4

3C 59.2 3.9 42.6 5.8

3D 37.4 6.2 9.0 7.1

value of 3JH−4,H−5 (15.4Hz) corresponded to E-14 double
bond. The large 3JH−2,H−3 value (6.0Hz) and the downfield
methyl carbon signal (δC−1 19.1) indicated an anti-conformation
(Jarvis et al., 1996; Zhang and O’doherty, 2005; Nilewski et al.,
2009), corresponding to threo-configuration of 2,3-diol (Zheng
et al., 2010). In order to confirm the relative configuration of
compound 5, 3JH−2,H−3 of threo-5 and erythro-5were computed.
The results showed that the predicted 3JH−2,H−3 values of threo-
5 (5.5Hz) matched with the measured one (6.0Hz) while the
calculated one of erythro-5 (3.8Hz) was inconsistent, indicating
threo- configuration. The direction of the specific rotation
of 5 ([α]D −6.8) were similar to the structurally related t-
butyl (6S,7S)-6,7-dihydroxyocta-2,4-dienoate ([α]D −23) (Zhang
and O’doherty, 2005), and opposite to t-butyl (6R,7R)-6,7-
dihydroxyocta-2,4-dienoate ([α]D +22.9) (Zhang and O’doherty,
2005). The structure of 5 was thus deduced as (2S,3S,4E)-hepta-
4,6-diene-2,3-diol.

The molecular formula of compound 6 was determined to be
C11H18O2 based on the HREIMS peak at m/z 182.1305 [M]+

(calcd. 182.1307), indicating three degrees of unsaturation. The
EIMS of 6 illustrated in Figure 7 indicates the existence of
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FIGURE 6 | Measured and calculated ECD spectra for compound 4.

FIGURE 7 | EI fragments of 6.

-CH2OH, -C6H9O, and -C5H9O moieties. The 1H (Figure S27)
and 13C (Figure S28) NMR spectra and DEPT (Figure S29)
and HMQC (Figure S30) experiments of 6 revealed 11 signals
including three double bonds one of which is terminal,
one oxygenated methine, four methylenes one of which is
oxygenated. The 1H-1H COSY (Figure S31) correlations from
H-1 (δ 3.65) to H-11 (δ 4.14/5.02) in sequence established the
structure, CH2 =CH–CH=CH–CH2-CH(OH)–CH2-CH=CH–
CH2-CH2OH, which was supported by HMBC correlations
(Figure S32). The large values of 3JH−3,H−4 (15.4Hz) and
3JH−8,H−9 (14.8Hz) suggested that both13 and18 double bonds
were E-configurations. The direction of specific rotation of 6
([α]D +2.0) is similar to that of (S)-dodeca-3,5-diene-1,7-diol
([α]D +56) (Zhang and Kyler, 1989), suggesting S-configuration
at C-6. Thus, the structure of 6 was deduced as (3E,8E,6S)-
undeca-3,8,10-triene-1,6-diol.

The relative configurations of compounds 9 and 10 were
determined as (–)-trans-4-methoxy-2-methylchroman-5-ol (Wu
et al., 2010) and (–)-trans-2-methyl chroman-4,5 -diol (Teles
et al., 2005), respectively. The absolute configuration of
compound 9 was determined by quantum chemical ECD
calculation. The measured ECD of 9 was coincident with the
calculated ECD of (2S,4S)-9 and opposite to ECD of (2R,4R)-9
(Figure 8). Thus, compound 9 was established to be (2S,4S)-4-
methoxy-2-methyl chroman-5-ol. The similar sign of the specific
rotations of 9 and 10 ([α]22D −2.0 vs. [α]22D −6.0, MeOH)
suggests the same absolute configuration. Therefore, compound
10 was determined to be (2S,4S)-2-methylchroman-4,5-diol. The

FIGURE 8 | Measured and calculated ECD spectra for compound 9.

absolute configurations of compounds 9 and 10 were determined
for the first time in this study.

(2R)-7-O-α-D-Ribofuranosyl-5-hydroxy-2-methylchroman-
4-one (1): White amorphous powder; [α]23D +198.9 (c 0.1,
MeOH); UV (MeOH) λmax (log ε) 204 (3.62), 278 (3.55), 320
(2.77) nm; ECD (MeOH) λmax (1ε) 211 (+14.21), 284 (−3.51),
327 (+3.42); IR (KBr) νmax 3,416, 1,646, 1,573, 1,354, 1,295,
1,195, 1,155, 1,076, 1,029 cm−1; 1H and 13C NMR (Table 1);
HRESIMS m/z 327.1068 [M+H]+ (calcd for C15H19O8

327.1080).
(2S)-7-O-α-D-Ribofuranosyl-5-hydroxy-2-methylchroman-

4-one (2): White amorphous powder; [α]23D +118.6 (c 0.1,
MeOH); UV (MeOH) λmax (log ε) 204 (3.62), 278 (3.55), 320
(2.77) nm; ECD (MeOH) λmax (1ε) 211 (−10.04), 284 (+9.40),
330 (−2.13); IR (KBr) νmax 3,416, 1,646, 1,573, 1,354, 1,295,
1,195, 1,155, 1,076, 1,029 cm−1; 1H and 13C NMR (Table 1);
HRESIMS m/z 327.1068 [M+H]+ (calcd for C15H19O8

327.1080).
(2S,3S,4R)-2-Methylchroman-3,4,5-triol (3): Colorless oil;

[α]23D −53.6 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 200 (3.25),
270 (2.26) nm; IR (KBr) νmax 3,429, 2,356, 1,627, 1,4,01, 1,090
cm−1; 1H and 13C NMR (Table 1); HRESIMS m/z 195.0659
[M–H] − (calcd. for C10H11O4: 195.0657).

Methyl (3S)-3-(2,3-dihydroxyphenyloxy)butanoate (4):
Colorless oil; [α]23D +14.4 (c 0.1, MeOH); UV (MeOH) λmax

(log ε) 200 (3.32), 270 (2.19) nm; IR (KBr) νmax 3,409, 2,356,
1,706, 1,606, 1,481, 1,202, 1,063, 1,010 cm−1; 1H and 13C NMR
(Table 1); HRESIMSm/z 225.0767 [M–H]−(calcd. for C11H13O5

225.0763)
(2S,3S,4E)-Hepta-4,6-diene-2,3-diol (5): Colorless oil; [α]23D

−6.8 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 200 (3.09), 217
(3.38) nm; IR (KBr) νmax 3442, 3080, 1646, 1540, 1023, 446 cm−1;
1H and 13C NMR (Table 2); EIMS m/z (%): 129 (45), 256 (8),
111 (26), 97 (51), 83 (69), 82 (38); HREIMS m/z 128.0845 [M]+

(calcd. for C7H12O2 128.0837).
(3E,8E,6S)-Undeca-3,8,10-trien-1,6-diol (6): Colorless oil;

[α]23D +2.0 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 200 (2.86),
218 (3.16) nm; IR (KBr) νmax 3,390, 2,927, 1,715, 1,421, 1,047,
973 cm−1; 1H and 13C NMR (Table 2); EIMS m/z (%): 181
(8), 164 (9), 151 (14), 129 (17), 115 (16), 97 (31), 85 (28), 71
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FIGURE 9 | Possible biosynthetic pathway of the compounds 1–15.

(53), 67(88), 53(10); HREIMS m/z 182.1305 [M]+ (calcd. for
C11H18O2 182.1307).

X-ray Crystallographic Data of 1
Compound 1 was obtained as a colorless monoclinic crystal
with molecular formula of C15H18O8 from MeOH and H2O.
Space group P21, a = 7.0121(7) Å, b = 10.6659(11) Å,
c = 9.8560(8) Å, α = 90.00◦, β = 95.3230(10)◦, γ =

90.00◦, V = 733.95(12) Å3, Z = 2, Dcalcd = 1.476 mg/m3,
µ = 0.121 mm−1, F(000) = 344, crystal size 0.42 ×0.30
×0.21mm. A total of 3413 unique reflections (2θ<50◦= were
collected on a CCD area detector diffractometer with graphite
monochromated Mo-Ka radiation (λ = 0.71073 Å). The
structure was solved by direct methods (SHELXS-97) and
expanded using Fourier techniques (SHELXL-97). The final
cycle of full-matrix least squares refinement was based on 2053
unique reflections (2θ <50◦) and 210 variable parameters and
converged with unweighted and weighted agreement factors of
R1 = 0.0421, Rw = 0.0981 and R = 0.0374 for I>2sigma(I)
data. Crystallographic data (excluding structure factors) for
structure 1 in this paper have been deposited in the Cambridge
Crystallographic Data Centre as supplementary publication
number CCDC 883328 [fax: +44 (0)-1223-336033 or e-mail:
deposit@ccdc.cam.ac.uk].

Biogenetic Origin
These compounds were postulated to be biosynthesized by
the polyketide pathway from acetyl coenzyme A (Figure 9).
The acetyl-CoA units underwent condensation, cyclization,
dehydration and hydrogenation to produce compounds 11 and
12. Compound 11 formed compounds 1 and 2 by glycosidation.
(S)-12 underwent oxidation and reduction to yield compound
3. The reduction of (S)-12 produced compound 10 that was
transformed to compound 9 followed by methylation. (S)-12 was
subjected to Baeyer-Villiger oxidation followed by methanolysis
and hydrolysis to yield compounds 4 and 8, respectively.
Compounds 5 and 6 were formed from different lengths
of acetyl-CoA units by condensation, reduction, dehydration,
and decarboxylation. The condensation of acetyl-CoA units
followed by cyclization and reduction formed compound 15

that was transformed to compound 14 after enolization and
dehydration.

Biological Activity
Compounds 1–14 were tested for cytotoxic effects on the
HL-60, BEL-7402, K562, A549, HeLa, and H1975 cell lines,
DPPH scavenging activity, and antimicrobial activities against
E. coli, E. aerogenes, P. aeruginosa, B. subtilis, and C.
albicans. As the results, compound 6 was cytotoxic to
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H1975 cell line with an IC50 values of 10.0µM, while
compounds 4 and 8–10 showed DPPH radical scavenging
activity with the IC50 values of 2.65, 0.24, 5.66, and 6.67µM,
respectively. None of the compounds exhibit antimicrobial
activities.

CONCLUSIONS

Five new polyketides were isolated and identified from
the fermentation of the mangrove fungus Cladosporium sp.
OUCMDZ-302 with Excoecaria agallocha. The new compound 4

showed DPPH radical scavenging activity with an IC50 value of
2.65µM.
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