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Adverse drug reactions (ADRs) are one of the major causes of morbidity and mortality

worldwide. It is well-known that individual genetic make-up is one of the causative

factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs)

are distributed throughout the entire human genome and every patient has a distinct

genetic make-up which influences their response to drug therapy. Cytochrome P450

2B6 (CYP2B6) is involved in the metabolism of antiretroviral, antimalarial, anticancer,

and antidepressant drugs. These drug classes are commonly in use worldwide and

face specific population variability in side effects and dosing. Parts of this variability

may be caused by single nucleotide polymorphisms (SNPs) in the CYP2B6 gene

that are associated with altered protein expression and catalytic function. Population

variability in the CYP2B6 gene leads to changes in drug metabolism which may result

in adverse drug reactions or therapeutic failure. So far more than 30 non-synonymous

variants in CYP2B6 gene have been reported. The occurrence of these variants

show intra and interpopulation variability, thus affecting drug efficacy at individual

and population level. Differences in disease conditions and affordability of drug

therapy further explain why some individuals or populations are more exposed to

CYP2B6 pharmacogenomics associated ADRs than others. Variabilities in drug efficacy

associated with the pharmacogenomics of CYP2B6 have been reported in various

populations. The aim of this review is to highlight reports from various ethnicities that

emphasize on the relationship between CYP2B6 pharmacogenomics variability and

the occurrence of adverse drug reactions. In vitro and in vivo studies evaluating the

catalytic activity of CYP2B6 variants using various substrates will also be discussed.

While implementation of pharmacogenomic testing for personalized drug therapy has

made big progress, less data on pharmacogenetics of drug safety has been gained in
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terms of CYP2B6 substrates. Therefore, reviewing the existing evidence on population

variability in CYP2B6 and ADR risk profiles suggests that, in addition to other factors, the

knowledge on pharmacogenomics of CYP2B6 in patient treatment may be useful for the

development of personalized medicine with regards to genotype-based prescription.

Keywords: drug metabolism, adverse drug reaction, cytochrome P450 2B6, genetic polymorphism, drug safety,

pharmacogenetics, pharmacogenomics, personalized medicine

INTRODUCTION

Adverse drug reactions (ADRs) are globally one of the major

causes of morbidity and mortality (Giardina et al., 2018; Patel
and Patel, 2018). According to the World Health Organization
(WHO), ADR is a noxious and unintended response to a

medication (Agency, 2017). ADRs can range from mild to
severe causing ∼6.5% of all visits to the emergency department
and longer duration of hospitalization (Giardina et al., 2018;

Patel and Patel, 2018; Schurig et al., 2018). Drug clearance
may vary up to 10-fold between two individuals of the same
weight taking the same drug dosage (Stingl et al., 2013). This
variation can be influenced by pathophysiological, physiological,

or environmental factors. However, genetic polymorphisms in
drug transporters, drug targets and most importantly drug
metabolizing enzymes have been emphasized over the years as
one of the major factors causing variability in drug response
(Weinshilboum, 2003; Evans and Relling, 2004).

The cytochrome P450 (CYPs) enzymes are involved in phase
I drug metabolism. Variability in patient exposure and response
to various medication have been associated to genetic variants in
genes that code for CYP enzymes (Lynch and Price, 2007; Zanger
and Schwab, 2013). The human genome harbors 18 CYP families
divided into 41 subfamilies encoding 57 genes. Specifically,
CYP1, CYP2, and CYP3 families catalyze the biotransformation
ofmany xenobiotic agents.CYP2B6 is the only gene in the human
CYP2B subfamily encoding a functional enzyme (Nebert et al.,
2013).

The CYP2B6 gene which consists of nine exons is located
on chromosome 19 at position 19q13.2. It is highly expressed
in the liver, and to a certain extent in the extrahepatic tissues
such as brain, kidney, digestive tract and the lungs (Lonsdale
et al., 2013). CYP2B6 is a polymorphic cytochrome P450 enzyme
with many single nucleotide polymorphisms (SNPs) encoding
thirty-eight variants. These variants are referred as star alleles
on the Pharmacogene Variation website with designated clinical
function as normal, decrease, increase, no or uncertain function
(Thorn et al., 2010). Compared to other well-studied phase I
enzymes such as CYP2D6, CYP2C19 and CYP2C9, CYP2B6 at
first had been thought to play a minor role in human drug
metabolism (Desta et al., 2021). However, with the increase in
techniques to evaluate its regulation, relative hepatic expression
and function, it became evident that CYP2B6 constitutes up
to 10% of the functional CYP enzymes in the liver. It is
involved in the metabolism of 10–12% of all drugs commercially
available in the market (Hanna et al., 2000; Rendic, 2002) and
accounts for the metabolism of 4% of top 200 drugs in the
market (Zanger et al., 2008). Specifically, it is fully or partially

involved in the catalytic biotransformation of at least 90 drugs.
Table 1 shows selected drug substrates which are metabolism
by CYP2B6.

Interestingly, variability in the expression and function of the
CYP2B6 enzyme alters the metabolism of these substrates leading
to altered pharmacokinetics and therapeutic efficacy. Abnormal
drug efficacy associated with patient CYP2B6 genotype has been
reported in various populations (Sarfo et al., 2014; Kharasch
and Greenblatt, 2019; Chaivichacharn et al., 2020). The scope
of this review is to report the evidence on ADRs of CYP2B6
substrates and elucidate possible functional mechanisms of the
influence of CYP2B6 polymorphisms on enzyme function and
ADRs. Population disparity in the use of CYP2B6 substrates and
consequent exposure to substrate-related ADRs are discussed.
Serious ADRs due to high-risk pharmacogenetic variants might
be avoided by the use of preemptive genotyping (Dolgin,
2011; Bielinski et al., 2014; Kim et al., 2017; Bank et al.,
2019) and the use of pharmacogenetic testing has greatly
improved the lives of many patients (Lonsdale et al., 2013;
Drozda et al., 2018). The knowledge on pharmacogenomics
of CYP2B6 in patient treatment may be useful for the
development of personalized medicine with regards to genotype-
based prescriptions.

FACTORS THAT INFLUENCE CYP2B6
EXPRESSION AND FUNCTION

A significant interindividual variability in the mRNA expression,
protein levels and activity of CYP2B6 has been reported in human
liver microsomes (Ekins et al., 1998; Lang et al., 2001; Hesse
et al., 2004). This variability is caused by the following factors;
transcriptional regulation involving inhibition or induction of
CYP2B6 expression via the constitutive androstane receptor
(CAR) and/or pregnane X receptor (PXR) (Wang et al., 2003a),
inductive expression via glucocorticoid receptor (GR) (Lee et al.,
2003; Wang et al., 2003b), inhibition of CYP2B6 by cytokines
through CAR and PXR (Aitken and Morgan, 2007; Liptrott
et al., 2009), induction of CYP2B6 by estrogen via the estrogen
responsive element (ERE) (Faucette et al., 2004; Lo et al., 2010)
and most importantly genetic polymorphism in the CYP2B6
gene itself (Lang et al., 2001). Developmental regulation (age),
gender and disease condition are other confounders of CYP2B6
differential expression and function (Pearce et al., 2016). It is
estimated that genetic polymorphisms and/or gene regulation are
the major factors that impact variability in CYP2B6 expression
and function.
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TABLE 1 | Drug substrates known for metabolism by the CYP2B6 enzyme.

Therapeutic class Substratea Reaction (type)b Other CYPsc References

Antiretroviral Efavirenz 8-hydroxylation (major reaction) CYP3A4, 3A5, 1A2, 2A6 Patel and Patel, 2018

Nevirapine Hydroxylation (major reaction) CYP3A4 3A5, 2C9, 2D6 Giardina et al., 2018

Antimalarial Artemether Demethylation (minor reaction) CYP3A4, 3A5 Agency, 2017

Artemisinin Unknown (major reaction) CYP3A4 Agency, 2017

Anticancer Cyclophosphamide 4-hydroxylation (major reaction)

N-dechloroethylation (minor reaction)

CY2C19, 3A4, 2E1 Stingl et al., 2013; Schurig

et al., 2018

Ifosfamide 4-hydroxylation N-dechloroethylation

(major reaction)

CYP3A4, 2C9, 2C19, 2C8 Stingl et al., 2013

Tamoxifen 4-hydroxylated (minor reaction) CYP2D6, 3A4, 2C9, 2C19 Weinshilboum, 2003; Evans

and Relling, 2004

Antidepressants Bupropion Hydroxylation (major reaction) CYP3A4, CYP2D6, Lynch and Price, 2007;

Zanger and Schwab, 2013

Esketamine N-demethylation (major reaction) CYP3A4, 2C9, 2C19 Lonsdale et al., 2013;

Nebert et al., 2013

Vortioxetine Hydroxylation (minor reaction) CYP2D6, 3A4/5, 2C19, 2C9,

2A6, 2C8

Thorn et al., 2010

Amitriptyline N-demethylation (minor reaction) CYP2C9, 2C19, 1A2, 3A4, 2D6,

2B6, 2C8

Desta et al., 2021

Fluoxetine N-demethylation (minor reaction) CYP2D6, 2C9, 3A4 Rendic, 2002

Mianserin N-demethylation (minor reaction) CYP3A4, 2C19, 1A2 Hanna et al., 2000

Sertraline N-demethylation (minor reaction) CYP3A4, 2C19, 2D6, 2C9 Zanger et al., 2008; Sarfo

et al., 2014

Anticonvulsants Phenytoin Oxidation (minor reaction) CYP1A2, 2A6, 2C19, 2C8, 2C9,

2D6, 2E1, CYP3A4

Kharasch and Greenblatt,

2019

S-mephenytoin N-demethylation (minor reaction) CYP2C9, 2C19 Chaivichacharn et al., 2020

Carbamazepine 3-hydroxylation (minor reaction) CYP3A4, CYP2C8, CYP3A5 Bank et al., 2019

Valproic acid 4, 5-hydroxylation (minor reaction) CYP2C9, 2A6, 3A5 Kim et al., 2017

Anxiolytics, anticonvulsants Diazepam N-demethylation (minor reaction) CYP2C19, 3A4, 3A5, 2C9 Bielinski et al., 2014

Clotiazepam N-demethylation (minor) reaction CYP3A4, 2C18, 2C19, Dolgin, 2011

Clobazam N-demethylation (minor reaction) CYP3A4, 2C19 Drozda et al., 2018

Temazepam N-demethylation (minor reaction) CYP2C19, 3A4 Bielinski et al., 2014

Anesthetics Kitamine N-demethylation (major reaction) CYP3A4, 2C9 Lonsdale et al., 2013

Propofol 4-hydroxylation (major reaction) CYP2C9 Hesse et al., 2004; Zanger

and Schwab, 2013

Opioid Methadone N-demethylation (major reaction) CYP3A4, 2C19, 2C9, 2C8, 2D6, Ekins et al., 1998; Lang

et al., 2001

MAOI Selegiline N-demethylation (major reaction) CYP2C19, 3A4, 1A2, 2D6, 2C9 Wang et al., 2003a,b

Antiplatelet Clopidogrel Oxidation (minor reaction) CYP1A2, 2B6, 2C19, 2C9, 3A4 Lee et al., 2003

Smoking cessation agent Nicotine N-demethylation (minor reaction) CYP2A6, 3A4 Aitken and Morgan, 2007;

Liptrott et al., 2009

Analgesics Tramadol N-demethylation (minor reaction) CYP2D6, 3A4, Faucette et al., 2004; Lo

et al., 2010

Diclofenac 5-hydroxylation (minor reaction) CYP2C8, 2C19, 2C9 Pearce et al., 2016

Gastro-intestinals Loperamide N-demethylation (minor reaction) CYP219, 3A4, 2D6, 2C8, Lewis and Lake, 1997

Steriod Testosterone Hydroxylation (minor reaction) CYP3A4, 2C9, 2C19 Ekins et al., 2008

Anticoagulant Coumarin Aromatic hydroxylation (minor

reaction)

CYP2A6, 1A1, 1A2, 3A4 Xie et al., 2003

SERM Ospemifene Hydroxylation (minor reaction) CYP3A4, 2C9, 2C19, Hidestrand et al., 2001

aAccording to the drug Bank (https://go.drugbank.com/categories/DBCAT002619) and online literature.
bCYP2B6 is either the major enzyme or the minor enzyme in the biotransformation of the drug. The type of metabolic reaction according to the information from Pharmacogenomics

Knowledge base (PharmGKB) website, drug bank and online literature.
cOther cytochromes that are involve in the metabolism of the drug, taken from PharmGKB website, drug bank and online literature.

SERM, Selective estrogen receptor modulators.

MAOI, Monoamine oxidase inhibitors.
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SUBSTRATES OF CYP2B6

Previous investigations revealed diversity in the structure among
CYP2B6 substrates (Lewis and Lake, 1997). They also confer
differences in the site of metabolism (Lewis and Lake, 1997).
Typically substrates of CYP2B6 are hydrophobic small molecules,
neutral or weak bases, very lipophilic with one or two hydrogen-
bond acceptors (Ekins et al., 2008). Table 1 indicates that
CYP2B6 catalyzes demethylation, hydroxylation and oxidation
reactions to form active or inactive metabolites (Hidestrand
et al., 2001; Xie et al., 2003; Ekins et al., 2008; Zhang et al.,
2017). Substrates of CYP2B6 are found in ∼23 different
therapeutic classes (Table 1). It is predicted that CYP2B6 is the
major catalytic enzyme in the biotransformation of important
drugs commonly used worldwide. In combination with other
cytochromes, CYP2B6 also plays a minor role in the metabolism
of other xenobiotics. Notably, common metabolism of drugs
is mediated by CYP2B6, CYP2C19, and CYP3A4 in terms of
metabolism of clinically relevant therapeutics (Table 1). The
CYP2B6 enzyme confers stereoselectivity, showing higher KM

for certain enantiomers such as S-efavirenz, S-mephenytoin, S-
fluoxetine, S-ifosfamide, S-methadone, S-ketamine, S-bupropion
(Coles and Kharasch, 2008; Ekins et al., 2008; Rakhmanina and
van den Anker, 2010). CYP2B6 variants are substrate specific
in their metabolic function. Thus, evaluating the impact of
each enzyme variant on the metabolism of a specific substrate
is of clinical importance (Ariyoshi et al., 2011). For example,
recombinant CYP2B6∗6 showed a decreased metabolism for
both efavirenz and cyclophosphamide, while CYP2B6∗4 showed
increased metabolic activity toward efavirenz but less efficient
metabolic activity toward cyclophosphamide (Ariyoshi et al.,
2011).

CYP2B6 ALLELE VARIABILITY ACROSS
POPULATIONS

Wide variability in CYP2B6 allelic frequencies is reported across
populations. There exists intra and interethnic variability in the
frequency of CYP2B6∗6 and CYP2B6∗18 variants. For example,
at global level, the minor allele frequency of the CYP2B6∗6
ranged from 0.33 to 0.5 in African Americans and Africans,
0.10–0.21 in Asians, 0.14–0.27 in Caucasians and 0.62 in Papua
New Guineans (Zanger and Schwab, 2013; Rajman et al.,
2017). Furthermore, allele frequency at the global level may not
represent intraethnic differences within a specific population
(Table 2). Though the CYP2B6∗6 allele is more frequent in
Africans and people of African descent, large intraethnic
variability within these populations is observed (Rajman et al.,
2017). For instance, the frequency of CYP2B6∗6 in the Nigerian
Yoruba population was reported to be 42%, Kenya Kikuyu 34%
and Tswana of Bostwana 22% (Table 2). Also, the frequency of
CYP2B6∗9 (G516T) which forms part of the CYP2B6∗6 variants
was reported to be 55% in the Congolese, 20% in South African
Xhosa and 37% in the Cameroonian population (Table 2).
CYP2B6∗4 is more frequent in the African, American, and Asian
compared to the European population (Table 2). Meanwhile

CYP2B6∗2 is more frequent in the European and African
compare to the Asian population (Table 2). This differences are
associated with CYP2B6 functional variability and the occurrence
of substrate specific ADR.

POPULATION DISPARITY IN THE USE OF
CYP2B6 SUBSTRATES AND CONSEQUENT
EXPOSURE TO SUBSTRATE-SPECIFIC
ADVERSE DRUG REACTION (ADR)

Efavirenz and Nevirapine
Efavirenz (EFV) is classified as an effective non-nucleoside
reverse transcriptase inhibitor used in the treatment of HIV
infection1,2. As part of the highly active antiretroviral therapy,
EFV is used in combination with other nucleoside reverse
transcriptase inhibitors (NRTIs)1,2. EFV, which is presented in
the form of 600mg once daily or in a reduced dose of 400mg oral
tablets, is metabolized mainly by hepatic CYP2B6. EFV therapy
is limited due to its narrow therapeutic window, thus, there exist
a small difference between therapeutic and toxic doses. ADRs
which are linked to the use of EFV includes increased risk of
neurotoxicity, neuropsychiatric disorders, sleep disorders, high
cholesterol level and drug induced liver disease (Cohen et al.,
2009; Yimer et al., 2011; Aminkeng et al., 2014; Sarfo et al., 2014;
Dhoro et al., 2015).

CYP2B6 genotype is a strong predictor of high systemic
exposure to EFV in HIV infected patients. Table 3 presents
studies on associations between CYP2B6 genotype and the
occurrence of CYP2B6 substrate related ADRs in various
ethnicities. According to reports across ethnicities, patients
harboring the CYP2B6∗6 (516G>T, 785A>G) and the
CYP2B6∗18 (983T>C) variants experience reduced metabolism
of EFV and increased exposure to the drug (Table 3). Patients
with the homozygote 516TT and/or 785GG genotype as well as
those with the 983CC genotype (poor metabolizers) experience
significant increase in EFV plasma concentration and reduced
clearance (Table 3). High exposure to EFV increases the risk of
ADRs in these patients (Gounden et al., 2010; Mukonzo et al.,
2013; Sarfo et al., 2014). Amongst all CYP2B6 substrates, EFV
is the most studied drug with diverse forms of ADRs reported
from various ethnicities. EFV is among top drugs causing ADRs
in HIV patients in Africa, some part of Eastern Europe, and Asia
(Manosuthi et al., 2013; Birbal et al., 2016; Rajman et al., 2017).

Nevirapine (NVP) based antiretroviral therapy is also used
as a first line regimen for HIV infection. Its usage is limited
due to side effects including hepatotoxicity, fever, Steven-Johnson
syndrome and toxic epidermal necrolysis (Ciccacci et al., 2013;
Aminkeng et al., 2014). In addition to other factors such as
weight and gender, CYP2B6 genotype influences patient response
to NVP (Srivastava et al., 2010; Rajman et al., 2017; Yoon
et al., 2020). These variants, CYP2B6 516G>T and 983T>C
(CYP2B6∗18) also impact patient exposure to NVP as reported

1Drugbank. Available online at: https://go.drugbank.com/drugs/DB00625.
2FDA. Available online at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/

2019/210649Orig1s000TOC.cfm.
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TABLE 2 | Selected studies revealing variability in allele frequency of CYP2B6 alleles in different ethnicities.

Country/region/population N CYP2B6*2 CYP2B6*4 CYP2B6*6 CYP2B6*9 References

Europe

German 430 5.3 4 32.1 28.6 Giardina et al., 2018; Patel and Patel, 2018

Spaniard 360 - 6.2 21.5 1.4 Agency, 2017

Swiss 226 3.9 24.8 26 Giardina et al., 2018; Schurig et al., 2018

British 270 3.7 2.2 28.15 28.6 Stingl et al., 2013

Ukraine 102 - - _ 25 Weinshilboum, 2003

Turkish 344 - 6.4 25.3 2 Giardina et al., 2018

Africa - - -

West Africa 153 4 42 - 50 Evans and Relling, 2004

Congo 418 - - - 55U Lynch and Price, 2007

Ghana 800 - - - 48 Zanger and Schwab, 2013

Botswana 570 - - 22 Nebert et al., 2013

Mozambique 360 5.7 41 - 42.6U Lonsdale et al., 2013

Nigeria (Hausa) 100 - - 42 - Thorn et al., 2010

Nigeria (Igbo) 100 - - 38 - Thorn et al., 2010

Nigeria (Yoruba) 100 - - 42 - Thorn et al., 2010

Tanzania 256 - - - 36U Desta et al., 2021

Ethiopia 285 - - - 31.4U Rendic, 2002

Kenya (Kikuyu) 102 - - 34 - Thorn et al., 2010

Kenya (Luo) 100 - - 37 - Thorn et al., 2010

Kenya (Maasai) 152 - - 35 - Thorn et al., 2010

Zimbabwe (San) 64 - - 40 - Thorn et al., 2010

Zimbabwe (Shona) 100 - - 38 - Thorn et al., 2010

Cameroon 75 - - - 37U Hanna et al., 2000

South Africa 163 - - - 36U Hanna et al., 2000

South Africa (Venda) 81 - - 36 Thorn et al., 2010

South Africa (Xhosa) 109 - - - 20U Zanger et al., 2008

South Africa (MA) 67 - - - 23U Zanger et al., 2008

Uganda Bantus 58 - - 25.9 - Sarfo et al., 2014

Asia - - -

Thai 100 6 3.6 - 32U Kharasch and Greenblatt, 2019

Chinese 567 2.8 3.2 - 25.9U Chaivichacharn et al., 2020

Japanese 530 4.7 9.3 16.4 - Bank et al., 2019

Han Chinese 386 9.1 18.4 1.8 Giardina et al., 2018

Malaysian Malay 196 0.8 7.6 25.4 4.6 Kim et al., 2017

Malaysian Chinese 165 1.3 6.4 13.9 10.2 Kim et al., 2017

Malaysian Indian 63 4.1 9.9 18.5 5.9 Kim et al., 2017

South Indians 135 - - - 44 Bielinski et al., 2014

Koreans 374 - - 16.4 - Dolgin, 2011

Indonesia (Timorian) 109 - 56.8 41.7 46.9 Drozda et al., 2018

Taiwanese 68 - 11.8 16.2 0 Hesse et al., 2004

Mongolian 200 - 9 21 - Ekins et al., 1998; Giardina et al., 2018

Papa New Guinea 172 0 0 65 0 Lang et al., 2001

America - - - -

Columbian Mestizo 250 4.4 15.2 18 14.4 Wang et al., 2003a

Central American Mestizo 362 - 7.3 23.1 2.3 Wang et al., 2003a

Chilean Mestizo 438 - - 35 - Wang et al., 2003a

Hispanic–American 77 3 35 - 37 Evans and Relling, 2004

African American 85 2 37 - 36 Evans and Relling, 2004

U In the manuscript, it is referred to as CYP2B6*6 but according to the Pharmacogene Variation Consortium (Pharmvar) website it should be CYP2B6*9, CYP2B6*6 is a combination of

CYP2B6*4 & CYP2B6*9. (-) Allele not verified.
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TABLE 3 | CYP2B6 polymorphisms and adverse drug reactions reported amongst patients in various ethnicities.

Substrate Subjects N CYP2B6 genotype Predicted functional

effect on CYP2B6

enzyme activity

Patient exposure to

the drug

Frequency of

allelic variants

(%)

Population Adverse drug reaction References

Efavirenz HIV/TB 185 CYP2B6*6/*6 ↓ Activity Higher exposure 45 Zimbabwe Central nervous system adverse

events(CNS) including insomnia, severe

headaches, vivid nightmares, drowsiness,

ataxia, dystonia and dizziness.

Patel and Patel,

2018

HIV, TB-HIV

co-infected patient

353 CYP2B6 516TT ↓ Activity Higher exposure 31.6 Ethiopians Anti-retroviral and anti-tuberculosis drug

induced liver injury in TB-HIV co-infected

patients.

Agency, 2017;

Giardina et al.,

2018

HIV 285 CYP2B6 516TT ↓ Activity Higher exposure 31 Ethiopians Higher risk of drug induced liver injury

(DILI)

Agency, 2017;

Schurig et al.,

2018

HIV 800 CYP2B6 516TT ↓ Activity Higher exposure 48 Ghanaian Neuropsychiatric toxicity Stingl et al.,

2013

HIV 134 CYP2B6*6/*6 ↓ Activity Higher exposure 8.2 Thai Increase risk of hepatotoxicity Weinshilboum,

2003; Evans

and Relling,

2004; Lynch

and Price, 2007

HIV/AIDS 1,147 CYP2B6 G516TT ↓ Activity Higher exposure 38, 21.9 Mixed

population

European

American,

African

American,

Hispanics

Central nervous system toxicity Zanger and

Schwab, 2013

HIV/AIDS 373 CYP2B6 516TT ↓ Activity Higher exposure 30, 37 Mixed

population

(Black & White)

Central nervous system related effects

and 131 patients withdrew from therapy

within the first 3 months

Nebert et al.,

2013

HIV 197 CYP2B6 516TT ↓ Activity Higher exposure 30 Ugandans Neuropsychiatric symptoms. High

incidence of vivid dream, sleepwalking,

insomnia and tactile hallucination

Thorn et al.,

2010; Lonsdale

et al., 2013

HIV/TB patients 473 CYP2B6 516GT

CYP2B6 516TT

↓ Activity Higher exposure 35.5 Tanzanians Development of efavirenz based HAART

liver injury

Agency, 2017;

Desta et al.,

2021

HIV adults 142 CYP2B6 516GT

CYP2B6 516TT

↓ Activity Higher exposure 32 South Africans High efavirenz level associated with

severed sleep disturbance

Rendic, 2002

(Continued)
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TABLE 3 | Continued

Substrate Subjects N CYP2B6 genotype Predicted functional

effect on CYP2B6

enzyme activity

Patient exposure to

the drug

Frequency of

allelic variants

(%)

Population Adverse drug reaction References

HIV 80 CYP2B6 516GT

CYP2B 516TT

↓ Activity Higher exposure 43 South

Africans

Higher EFV concentration and early

neuropsychiatric side effects (presence of

hallucinations or psychotic episodes)

Hanna et al.,

2000

HIV 191 CYP2B6 516GT,

CYP2B6 516TT

↓ Activity Higher exposure 49 Mixed

population

(Caucasian 162,

African 23,

Asiantic four,

others two)

CNS related symptoms such as

disturbances in consciousness, mood

disorders, headaches, sleep disturbances,

cognitive and attention disturbances,

eating disturbances and dizziness

Zanger et al.,

2008

HIV/AIDS 1330 CYP2B 516GT/TT ↓ Activity Higher exposure 77, 25 Mixed

population

African ancestry

(372), European

ancestry (958)

Increase in cholesterol levels, Increased

risk of neurotoxicity, CNS depression and

neuropsychiatric disorders, Increased risk

of fatigue and sleep disorder and

Increased risk of hepatotoxicity and

drug-induced liver injury

Sarfo et al.,

2014

HIV 32/90 CYP2B6 516TT ↓ Activity Higher exposure 32 Mixed

population

Increased likelihood of central nervous

system disease

Kharasch and

Greenblatt,

2019

HIV 235 CYP2B6 516TT ↓ Activity Higher exposure 26 Swiss Neuropsychological toxicity Chaivichacharn

et al., 2020

HIV patients 105 CYP2B6*1/*18,

CYP2B6*18/*18

↓ Activity Higher exposure 5.1 Mozambicans Associated with severe cutaneous

adverse event such as Steven-Johnson

syndrome and toxic epidermal necrolysis

Bank et al.,

2019

Nevirapine HIV 672 CYP2B6*18 ↓ Activity Higher exposure 18 Malawians

Ugandans

Hypersensitivity such as nevirapine

induced-Stevens–Johnson syndrome

(SJS)

Kim et al., 2017

HIV 105 CYP2B6 516TT

CYP2B6 983CC

↓ Activity Higher exposure 55.6

18.5

Mozambicans Patients with Nevirapine-induced

SJS/toxic epidermal necrolysis (TEN)

Bank et al.,

2019

Cyclophosphamide non-Hodgkin’s

lymphoma

567 CYP2B6 516TT

CYP2B6 785AG (*4)

↓ Activity Reduce exposure to

4-hydroxycy-

cyclophosphamide

25.9

32

Chinese Lower risk of grade 2–4 toxicities and

poor treatment outcome

Bielinski et al.,

2014

Breast Cancer 230 CYP2B6*2 CYP2B6*4

CYP2B6*5

CYP2B6*9

↑ Activity High exposure 227

15

30

Mixed

population

(European 97,

South Asian 2,

East Asian < 1)

Leucopenia and neutropenia associated

with dose delay

Hesse et al.,

2004; Dolgin,

2011; Drozda

et al., 2018

Breast cancer Case report CYP2B6*7 ↑ Activity Higher exposure to

4-hydroxycy-

cyclophosphamide

18.4 Han Chinese Severe and prolonged hepatotoxicity Ekins et al.,

1998; Dolgin,

2011; Drozda

et al., 2018

(Continued)
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TABLE 3 | Continued

Substrate Subjects N CYP2B6 genotype Predicted functional

effect on CYP2B6

enzyme activity

Patient exposure to

the drug

Frequency of

allelic variants

(%)

Population Adverse drug reaction References

Chronic

lymphocytic

leukemia (CLL)

428 CYP2B6*1/*6

CYP2B6*6/*6

↓ Activity Reduced exposure 22 UK clinical trial Decrease risk of drug toxicity. Toxicity

included neutropenia, thrombocytopenia,

anemia, mucositis, and alopecia

Lang et al.,

2001

Leukemia patients

on stem cell

transplant

107 CYP2B6*4

CYP2B6*2

CYP2B6*6 (donor

GG genotype)

↑ activity Higher exposure 53

16, 50

Mixed

population

Oral mucositis, (*4), hemorrhagic cystitis

(*2),Veno-occlusive disease of the

liver (*6),

Wang et al.,

2003a

Methadone Breast cancer 166 CYP2B6 516GT,

CYP2B6516TT

↓ Activity High exposure 27 Brazilian High risk of severe levels of asthenia and

arthralgia Ekins et al.,

1998; Wang

et al., 2003b

Fatalities cases

due to methadone

380 CYP2B6*9 CYP2B6*5 ↓ Activity High exposure 27 Caucasians Methadone fatalities Lee et al., 2003;

Wang et al.,

2003b; Liptrott

et al., 2009

Opioid dependent

males

148 CYP2B6*6 ↓ Activity High exposure 25.4 Malays Lower pain threshold, increase severity

of pain Lee et al.,

2003; Liptrott

et al., 2009

↓, Decrease; ↑, Increase.
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by few studies from different ethnicities (Uttayamakul et al.,
2010; Calcagno et al., 2012; Vardhanabhuti et al., 2013; Mhandire
et al., 2015; Giacomelli et al., 2018). A reduced metabolic
activity of the CYP2B6 enzyme leading to increased exposure
of the patient and subsequent ADRs are observed (Yoon et al.,
2020) (Table 3). NVP induced hypersensitivity reactions in HIV
patients (Ciccacci et al., 2010; Carr et al., 2014). The variant
allele of CYP2B6∗18 and CYP2B6∗4 were associated with the
occurrence of Stevens-Johnson syndrome (SJS) among HIV
patients (Ciccacci et al., 2013; Carr et al., 2014). Studies suggest
dose reduction in patients harboring CYP2B6 poor metabolizer
variants (Schipani et al., 2011; Morales-Pérez, 2021).

Interestingly, the use of EFV and NVP for HIV treatment is
variable among populations. Highly active antiretroviral therapy
(HAART) that includes EFV or NVP is mostly used in low and
middle income countries (LMICs) including countries in Africa,
Asia and some part of Eastern Europe (Gokengin et al., 2018;
Ndashimye and Arts, 2019). Some studies have examined the
reasons for such disparity in the use of EFV. It was observed
that countries with higher income had greater access to novel
drugs and new drug classes as first-line treatment than countries
with low income (Gokengin et al., 2018; Ndashimye and Arts,
2019). Althoughmost HAART regimens are given free to patients
in all countries, the high level of donor dependency in LMICs
might be a major obstacle to accessibility to new, expensive,
more quality and less toxic drugs (Gokengin et al., 2018).
The high cost of new first-line drugs with better tolerability
and lower toxicity influences the choice of treatment regimen,
with high income countries (HICs) choosing regimens that
include new drugs compared to LMICs who depend on cheaper
regimens (Gokengin et al., 2018). We observe an association
between countries depending on cheaper drugs (EFV) and a high
frequency of CYP2B6∗6 which enhances the risk of EFV related
ADRs in these populations (Africans, Papua New Guineans
and African Americans with low income/incomplete insurance
coverage). Intraethnic variability of CYP2B6 alleles within the
African population, further indicates differences in the risk
profiles of occurrence of CYP2B6∗6 and CYP2B6∗9-EFV-related
ADRs between these African countries. This genomic diversity of
African populations has been observed for many genes (Rajman
et al., 2017) and highlights the potential error in generalizing
the likely response to medicines of populations on the African
continent (Ampadu et al., 2016). HIV infected individuals in
LMICs are more likely to suffer from EFV-related ADRs than
those in HICs.

Even though many LMICs have transited from the use of
EFV and NVP to the use of the HIV-1 integrase inhibitor
dolutegravir (DTG) which is assumed to be less expensive and
less toxic (Vitoria et al., 2018), DTG has its own limitations as
confirmed by the U.S. Food and Drug Administration (FDA).
DGT may be unsuitable for patients with hepatitis B and C
infection due to elevated levels of hepatic enzyme (Vitoria et al.,
2018). Risk of hypersensitivity reactions and development of
renal failure may be observed (Vitoria et al., 2018). New-onset
or worsening hepatic or renal toxicity with longer cumulative
exposure is a potential risk (Vitoria et al., 2018). In pregnancy,
there are concerns that the baby may be harmed, thus women

are recommended to take effective birth control while on the
drug (Vitoria et al., 2018; Zash et al., 2019; Alhassan et al.,
2020). Weight gain was observed in patients treated with DTG
compared to EFV in clinical trials performed in sub-Saharan
Africa and studies in Europe and North America. Therefore, long
term use of DTG is still under concern (Kouanfack et al., 2019;
Bourgi et al., 2020; Sax et al., 2020). A recent communication in
December 2020 by Siedner et al. found that patients with drug
resistant mutation in the reverse transcriptase are unlikely to
benefit from the HIV integrase inhibitor DTG (Siedner et al.,
2020). That implies EFV andNVPmight still be in use for specific
group of patients (Vitoria et al., 2018).

The occurrence of other diseases, including hepatitis and
liver disease, are more common among HIV patients in LMICs
(Labarga et al., 2007; Su et al., 2018). Unfortunately, much care
is not given to HIV patients who have comorbid conditions,
thus increasing the risk of ADRs amongst these patients (Labarga
et al., 2007; Wu et al., 2017; Su et al., 2018). For example,
patients with liver disease and hepatitis may experience enhanced
hepatotoxicity due to EFV (Agbaji et al., 2013; Wu et al.,
2017; Nampala et al., 2018; Su et al., 2018). Certain preexisting
conditions, such as mild psychiatric disorder, may be exacerbated
by EFV. Patients in LMICs may be vulnerable to ADRs not just
because of the choice of regimen or their CYP2B6 genotype, but
also because of comorbidity conditions. As such individualized
prescriptions taking into account the pharmacogenetic profile,
patient vulnerability caused by comorbid disease, and the toxicity
profile of the drug will help to reduce ADR amongst these group
of individuals in any part of the world.

Cyclophosphamide
Cyclophosphamide (CP) is an anticancer agent that is widely
used in the treatment of pediatric and adult malignancies.
CP is also known as an antirheumatic and anti-inflammatory
drug (Brummaier et al., 2013; Sevko et al., 2013). CP is
a prodrug that requires enzymatic bioactivation to produce
its therapeutic function (Raccor et al., 2012). The formation
of 4-hydroxycyclophosphamide (4-OHCP) is catalyzed by
CYP2B6, CYP2C9, CYP2C19, CYP3A4 and CYP3A5. CYP2B6
and CYP2C19 confer the highest metabolic activity for the
bioactivation of CP (Roy et al., 1999; Griskevicius et al., 2003;
Raccor et al., 2012).

There is a significant variation in the plasma levels of CP
ranging from 1.0 to 12.6 L/h (Batey et al., 2002; de Jonge
et al., 2005). According to in vitro studies, it is clear that
genetic polymorphisms in CYP2B6 gene and interindividual
differences in the CYP2B6 enzymatic activity are associated
with variability in CP efficacy (Roy et al., 1999; Xie et al.,
2003; Hofmann et al., 2008). Very limited clinical studies have
evaluated the impact of CYP2B6 variants on patient exposure
to CP, instead, many studies have investigated the influence of
patient genotype on therapeutic outcome or treatment efficacy
of CP. However, Shu et al., showed a significant association
between CYP2B6 genotype and exposure to 4-OHCP amongst
567 patients with non-Hodgkin lymphoma (Table 3). Reduced
expression and catalytic activity of CYP2B6 protein was found
among homozygous and heterozygous carriers of CYP2B6∗6,
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∗29, and ∗30 (Table 3). Patients with the 785G allele (∗6) showed
the worst treatment response (Shu et al., 2017). In breast cancer
patients, a higher incidence of dose delay due to toxicity was
observed among carriers of the CPY2B6 ∗2 and ∗5 (Bray et al.,
2010). Furthermore, CYP2B6∗2, ∗4, ∗8, and ∗9 alleles where
associated with worse treatment outcome (Bray et al., 2010). In
another study, an association was observed between CYP2B6∗6
allele and inferior treatment response in patients with chronic
lymphocytic leukemia. Patients harboring at least one CYP2B6∗6
allele were less likely to achieve complete response to CP and
fludarabine combination therapy due to impaired cytoreduction
(Johnson et al., 2013).

Decreased risk of drug toxicity (neutropenia,
thrombocytopenia, anemia, mucositis and alopecia) was
observed in carriers of CYP2B6 ∗1/∗6 and CYP2B6∗6/∗6
genotypes (Table 3). Considering the fact that CYP2B6∗6 is a
decreased function allele, these patients seem to experience less
toxicity and impaired cytoreduction due to the inability of the
variant enzyme with reduced activity to convert CP to the active
anticancer metabolite which is also responsible for toxicity. A
significant association was observed between CYP2B6 785A>G
(∗4) and shorter progression free survival (Falk et al., 2012)
in patients with multiple myeloma. Patients with the 785GG
genotype had the worse outcome compared to patients with the
wild type allele. In another study involving lymphoma patients
who were placed on high dose CP prior to hematopoietic stem
cell transplant, patients with the CYP2B6∗1/∗5 genotype had a
higher 2 years relapse and decrease overall survival than patients
with the wild type genotype (Bachanova et al., 2015). Though
the CYP2B6∗5 variant is designated as normal function, in vitro
studies of CP revealed reduced conversion of CP in human liver
microsomes and recombinant expressed CYP2B6∗5 variants
confer 50% decrease in the formation of 4-OHCP compared
to the wild type enzyme (Helsby et al., 2010; Raccor et al.,
2012). Most recently, CP related toxicity was associated with
CYP2B6 variants in patients with leukemia after HLA-identical
hematopoietic stem cell transplantation (Rocha et al., 2009).
Donor CYP2B6∗6 was associated with Veno-occlusive disease of
the liver meanwhile recipient CYP2B6∗2 and ∗4 were associated
with hemorrhagic cystitis and oral mucositis correspondingly
(Rocha et al., 2009). High risk of severe levels of asthenia
and arthralgia was observed amongst breast cancer women
with CYP2B6 516GT and 516TT genotype placed on FAC-D
combination therapy (Paula et al., 2020). Some studies also
evaluated the role of CYP2C19 variants alongside with CYP2B6
in the efficacy and toxicity of cyclophosphamide. Even though
few studies could not find any association between CYP2B6
or CYP2C19 and treatment outcome and/or toxicity of CP,
differences in the study design, ethnicity, physiological or disease
condition as well as power of the studies might have a role in
the experimental outcome. However, it appears that these two
pharmacogenes (CYP2B6 & CYP2C19) play a significant role in
the bioactivation and efficacy of CP.

Variability in CYP2B6 polymorphisms between populations
indicates that cancer patients in various ethnicities will respond
variably to CP therapy. For example, CYP2B6∗9 and CYP2B6∗2
variants which are associated with toxicity and worse treatment

outcome were not detected among 172 individuals from Papua
New Guinea (Mehlotra et al., 2006; Bray et al., 2010), thus,
cancer patients in this region are less likely to experience
CYP2B6 pharmacogenetic associated-CP toxicity. Meanwhile,
in Mozambique and Germany, patients are more likely to
experience toxicity and worse treatment outcome due to the
frequency of CYP2B6∗9 (42.6 and 28.6%) in these populations
(Tables 2, 3). Furthermore, reduced CP toxicity and impaired
cytoreduction are likely to occur in populations with high
frequency of CYP2B6∗6 (Tables 2, 3).

According to research, the number of cancer survivals vary
between and within countries. These differences are partly due to
limited access to high quality and effective treatment in some part
of the world (Newton et al., 2010; Eniu et al., 2019). CP is included
in the WHO list of essential medicine (Bazargani et al., 2015).
However, the majority of cancer patients living in LMICs have
limited access to essential medicine and sometimes imported
medication are either counterfeits or of poor quality (Fernandez
et al., 2011; Ruff et al., 2016). Cancer care is not included in
most resource limited settings due to high cost, as such, patients
have to pay for cancer treatment out of their pocket (Eniu et al.,
2019). In Asia, the number of death in a year ranged from 12% in
Malaysia to 45% in Myanmar amongst cancer patients and those
with low income were at risk of adverse outcomes even at early
disease stages (ACTION Study Group, 2017). Important barriers
to availability and affordability of anticancer drugs include lack of
governmental reimbursement, allocation of healthcare budgets,
generic and biosimilar products as well as the right to patent
(Renner et al., 2013; Eniu et al., 2019). Therefore, patients in these
regions are likely to experience drug resistance, treatment failure
and more ADRs than those in HICs (Newton et al., 2010).

Additionally, increase number of adverse outcome is expected
to occur in Africa, Asia and some parts of Europe, where
other diseases such as HIV, tuberculosis and hepatitis are found
amongst cancer patients who are self-sponsored without any
health care coverage and reduced compliance to medication
due to lack of funds and timely treatment (ACTION Study
Group, 2017; Eniu et al., 2019). Therefore, in addition to
other confounders, increased accessibility to essential medicine,
availability of health care coverage, special care for patients with
comorbidity and genotyping of patients may improve therapy.

Bupropion
Bupropion, generally used as an antidepressant, was later
recommended as a non-nicotine treatment for smoking
cessation. It is approved for treatment of nicotine dependence in
patients with tobacco use disorder (Jorenby et al., 1999; Schnoll
and Lerman, 2006). It acts by increasing dopaminergic and
noradrenergic transmission via the blockage of neurotransmitter
reuptake at the synapse thereby antagonizing the effects of
nicotine acetylcholine receptor leading to nicotine withdrawal
(Paterson et al., 2007). Also, bupropion is prescribed alone or
in combination with other antidepressants for treatment of
major depressive disorder and seasonal affective disorder. It
is used as an adjunctive medication to reverse antidepressant-
associated sexual dysfunction and to improve the efficacy of other
antidepressants in partial or non-responders (Fava et al., 2005).
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Both bupropion and the active metabolite S-hydroxybupropion
are responsible for the antidepressant and smoking cessation
effect of bupropion (Zhu et al., 2012; Laib et al., 2014).

In vitro studies revealed variability in the rate of metabolism
of S-bupropion by various CYP2B6 variants (Wang et al.,
2020). Studies from different ethnicities show that the CYP2B6
allelic variants ∗4, ∗6, and ∗18 are associated with altered
bupropion metabolism (Kirchheiner et al., 2003; Zhu et al., 2012;
Benowitz et al., 2013). Depending on the patient’s genotype,
they can experience either increased or decreased exposure to
the active metabolite hydroyxbupropion compared to wild type
(Kirchheiner et al., 2003; Benowitz et al., 2013). Reportedly,
patients harboring at least one reduced function allele had
reduced exposure to the active metabolite and a lower clearance
of the parent drug (Kirchheiner et al., 2003). Meanwhile, those
with at least one increased function allele have increased exposure
to hydroxyl active metabolites and a higher clearance of the
parent drug (Kirchheiner et al., 2003).

Some studies have linked patient genotype to the efficacy
of bupropion as a smoking cessation agent. In a smoking
cessation trial involving 326 Europeans, a significant rate of
abstinence was observed among patients with the CYP2B6∗1/∗6
and CYP2B6∗6/∗6 genotype (Lee et al., 2007). The CYP2B6∗4
variant allele was associated with lower success rate in bupropion
therapy. Specifically, patients with the AA genotype (wild type)
succeeded in ceasing smoking compared to those with the
variant genotype 785AG and 785GG (Tomaz et al., 2015). The
increase function alleles might have led to higher clearance
of the drug as well as reduced efficacy. In another clinical
trial, bupropion drug gene interaction indicated that individuals
with at least one T allele of CYP2B6∗5 (1459CT, TT) and
DRD2-Taq1 A2/A2 genotype had higher odds of abstinence
(David et al., 2007). There are some differences in experimental
outcome, for example, in a clinical trial involving 540 African
American light smokers, a direct association between CYP2B6
genotype and smoking cessation was not observed, according
to the authors, poor adherence amongst the participants
might have led to the observed results. Most studies did
not assess the impact of CYP2B6 polymorphisms on the
antidepressant effect of bupropion. Instead, many focused on the
CYP2B6 pharmacogenetics of bupropion in smoking cessation
(Pharmgkb, 2000; Clark et al., 2012).

Compared to HICs, mental health in LMICs is still
limited with low number of clinical trials and extremely
low number of patients receiving treatment (Sankoh et al.,
2018; Chibanda et al., 2020). Individuals with serious mental
health problems in Nigeria cannot have access to health
care due to the limited number of resources and mental
health staff (Chibanda et al., 2020). Approximately, 300
psychiatric doctors serve a population of about 200 million
people. Currently, these issues are being addressed by the
Nigerian government via the forthcoming Mental Health and
substance abuse bill (Brathwaite et al., 2020; Ugochukwu
et al., 2020). Another study involving 683 prescriptions and
case records of patients who were placed on antidepressants
showed that tricyclic antidepressants were the most prescribed
drugs (61.3%), followed by selective serotonin re-uptake

inhibitors (38.7%) in Nigeria (Oyinlade, 2017). Amitriptyline
hydrochloride, fluoxetine, clomipramine, escitalopram, and
imipramine hydrochloride are the antidepressants found on the
WHO list of essential medicine for Nigeria (WHO, 2017)3. In
Zimbabwe, a research made in 2017 indicated that psychiatrists
sometimes experience shortage of drugs which results in relapse
among patients (Kidia et al., 2017). The antidepressants available
were old generation drugs with many side effects (Kidia et al.,
2017). According to one of the psychiatrists, more attention is
being given to people with HIV than those with mental health,
furthermore mental health policies were never implemented
because of inadequate funding (Kidia et al., 2017). The African
Mental Health Research Initiative group aims to create awareness
and strengthen the mental health sector via research and capacity
building in Sub-Saharan Africa (Chibanda et al., 2020; Langhaug
et al., 2020).

The Global Health Observatory (GHO) data indicates the
availability of bupropion in various countries (GHO/WHO,
2007). In some countries bupropion is available in the pharmacy
with prescription. In others, it is found in general stores without
prescription (Langhaug et al., 2020). Meanwhile, for some
countries, data for the use of bupropion is not available. For
example, GHO data shows that in Germany, France, Australia,
Canada, United States of America, Congo, and India bupropion
is available in pharmacies with prescription, whereas in Nigeria,
it is found in general stores without prescription, in Malaysia,
Ukraine, Zimbabwe, and Cameroon, GHO 2012 data shows
that bupropion was present in pharmacy with prescription. In
Hungary, Algeria, Tanzania, Mali, no data was available from
2007 to 2018 (GHO/WHO, 2007). Compared to HICs, the
shortage of medication faced in LMIC is likely to increase relapse
and the use of old drugs with more side effects can aggravate
ADRs among patients.

Though bupropion is cost effective and widely used in most
countries, its application as a smoking cessation agent is still
very limited in some LMICs. The MPOWER tobacco control
measures put in place by theWorld Health Organization (WHO)
in 2005 have greatly helped many countries to discourage the
use of tobacco and to help users quit tobacco addiction4.
MPOWER measure is a tobacco free initiative established by
WHO for defeating the global tobacco epidemic via Monitoring
tobacco use, Protecting people from tobacco use, Offering help
to quit, Warning about dangers of tobacco, Enforcing bans
on advertising and sponsorship and Raising taxes on tobacco
in all parts of the world (Batini et al., 2019). According to a
recent report by Batini et al., the application of the MPOWER
measures vary across continents and countries with a marked
discrepancy observed between LMICs, and HICs, where cost,
governmental buy in and resources influence implementation
of the various measures (Batini et al., 2019). Using the African
continent as an example, authors report that pharmacotherapy
for smoking cessation is scarce in Nigeria with few pharmacies

3WHO. Available online at: https://digicollections.net/medicinedocs/#/d/

s19018en.2010.
4WHO. Tobacco Free Initiative. Available online at: https://www.who.int/tobacco/

mpower/en/.
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offering nicotine replacement therapy. In Zimbabwe, there are
currently no smoking cessation services in the public sector
except for private sectors, which is offered at very high cost
(NRT 130USD/week, varenicline 250USD/month). In Tanzania,
nicotine replacement therapy is available and smoking cessation
therapy has been introduced into the methadone clinic in Dar
es Salaam (Batini et al., 2019). However, the use of non-nicotine
therapy such as bupropion is still lacking in these countries.

Depression seems to coexist with many diseases that are
common in both high and LMICs. In Sub Saharan Africa,
depression is common among HIV patients and people with
disability (Mayston et al., 2020). In India, high prevalence
of depressive episodes were found among diabetic patients
(Kanwar et al., 2019). In a comparison between Ethiopian
and German cancer patients, depression and anxiety were
found in both groups, but a little higher among uneducated
Ethiopian patients (Wondie et al., 2020). Considering the fact
that some HIV and cancer patients in LMICs are not able to
afford treatment, depression might be high among these group
of patients. It is well-established that CYP2B6 genotype is a
significant contributor to variability in hydroxybupropion and
bupropion levels, influencing the efficacy of bupropion therapy
in smoking cessation patients. Knowledge on CYP2B6 genotype
in consideration with other factors might give a clue on patients
who are likely to benefit from therapy. Constant supply of
bupropion could help to reduce relapse among patients in most
LMICs. Treatments of other comorbidities that are risk factors
of depression have the potential to improve therapy and reduce
the number of depressive patients worldwide. There is need to
create awareness in the area of mental health via research and
innovation, including capacity building, training more mental
health staff and psychiatric doctors in LMICs.

Ketamine
Ketamine is a World Health Organization Essential Medicine
widely used for perioperative, acute and chronic pain, and
sedation. It is used either solely or in combination with
opioids for the management of acute post-operative and
chronic refractory pain (Laskowski et al., 2011). Its use in
the management of status epilepticus, bipolar disorder, suicidal
behavior, major depressive disorder and treatment resistant
depression has been demonstrated (Yeh et al., 2011; Synowiec
et al., 2013; Pizzi et al., 2017; Borsato et al., 2020). Ketamine
acts as a non-competitive antagonist of the N-Methyl-D-
aspartic acid receptor blocking its action, thereby preventing the
development and chronification of pain (Noppers et al., 2010).
CYP2B6 is among other enzymes (CYP2C9, CYP3A4) involved
in the hepatic N-demethylation of ketamine to norketamine
(Yanagihara et al., 2001; Hijazi and Boulieu, 2002; Portmann
et al., 2010; Desta et al., 2012; Palacharla et al., 2018). Although
ketamine has a large therapeutic window, its use is limited due
to low efficacy and huge interindividaul variability in treatment
response including ADRs that require cessation of therapy
(Kvarnström et al., 2004; Noppers et al., 2010; Laskowski et al.,
2011; Hardy et al., 2012; Perez-Ruixo et al., 2020). Ketamine
has been associated with increased blood pressure, alteration
of speech, muscular discoordination, euphoria, hallucination,

loss of consciousness, seizure, nausea, out of body experience,
hypothermia, traffic accident or drowning and irrational behavior
(Iyalomhe and Iyalomhe, 2014; Lonnée et al., 2018; Gajewski
et al., 2020).

Variability in the expression and catalytic activity of CYP2B6
variant enzymes results in differences in the hepatic clearance of
ketamine (Wang et al., 2018). Individual differences in hepatic
blood flow leading to differences in patient clearance of the drug
has also been implicated (Yanagihara et al., 2001). The presence
of the CYP2B6∗6 allele led to a decrease in the intrinsic clearance
of ketamine of up to 89% in human liver microsomes and
55% in cDNA-expressed CYP2B6 protein in vitro (Yanagihara
et al., 2001). The CYP2B6∗1/∗1 (wildtype) genotype confers
a 6-fold higher clearance of both enantiomers of ketamine
compared to the CYP2B6∗6/∗6 genotype (Li et al., 2013). In
a study involving patients with chronic opioid-refractory pain,
the plasma clearance of ketamine was lower in patients with
CYP2B6∗6/∗6 and CYP2B6∗1/∗6 genotype compared to patients
with CYP2B6∗1/∗1 genotype (Li et al., 2015). Although there
were no direct associations between the genotype of the patients
and the occurrence of ADRs, drowsiness and hallucination
were more often observed in patients with lower clearance
than those with higher clearance. The authors hypostatized that
higher plasma concentrations due to reduced clearance may have
predisposed patients to ketamine ADRs. In vitro studies further
demonstrate that CYP2B6 variants confer variability in the
metabolism of ketamine. S-ketamine metabolism ranged from
CYP2B6∗1 (wildtype) > CYP2B6∗4 > CYP2B6∗26, CYP2B6∗19,
CYP2B6∗17, CYP2B6∗6 > CYP2B6∗5, CYP2B6∗7 > CYP2B6∗9,
respectively (Wang et al., 2018). This indicates that patients
harboring different CYP2B6 variants will respond differently to
the drug (Borsato et al., 2020). Genetic variations in CYP2B6
and other CYPs including CYP3A4 might result in different
plasma concentration of ketamine and its metabolites. Therefore,
knowing the genotype of the patient prior to prescription could
help to address individual needs and reduce ADRs.

There is a huge difference in availability and application of
anesthesia between high and LMICs as reviewed by Dolman et al.
Factors influencing these differences include limited physician
anesthesiologists and nurse anesthetists, insufficient anesthesia
equipment and infrastructure, patient comorbidities and late
presentations (LeBrun et al., 2014; Dohlman, 2017). In LMICs,
ketamine is the only anesthetic drug in many hospitals as
compared to HICs, where it is used as an adjunct in combination
with other anesthetics (Dohlman, 2017). LMICs are lacking in
the provision and training for safe anesthesia practice. In a
cross-sectional survey made in Zimbabwe involving 42 hospitals,
the number of specialist physician anesthetics were limited
(Lonnée et al., 2018). Further, 19% of the nurse anesthetists
have had no formal training (Lonnée et al., 2018). In Nigeria,
intravenous ketamine is used as general anesthesia in parts of the
country where anesthesiologist’s services are scarce. However, few
patients experience adverse effects including high blood pressure,
priapism, emergent delirium, tachycardia, disorientation and
confusion (Iyalomhe and Iyalomhe, 2014). In a recent survey
conducted in Tanzania,Malawi and Zambia, ketamine was widely
used in many of the hospitals to compensate for shortages of
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other forms of anesthesia. Anesthesia care in these countries were
performed by non-physician anesthetists, some of whom had no
formal training. Shortage of staff, interrupted access to electricity
and water for some facilities and lack of functional anesthesia
machines were reported (Gajewski et al., 2020). Though ketamine
is considered safe, its application by untrained personal might
lead to abnormal doses and contribute to adverse effects in
these populations.

Methadone
Methadone is a synthetic opioid utilized for the treatment
of chronic, acute and neuropathic pain. It is also used
as an analgesic to treat pain in cancer patients and as a
maintenance therapy for opiate addiction (Chou et al., 2009;
Parsons et al., 2010; Kharasch, 2011). In opioid use disorder,
methadone reduces the painful symptoms of opiate withdrawal
and relieves drug craving by acting on the opioid receptor in
the brain. Methadone is administered as a racemate consisting
of the S-and R-enantiomers (Crettol et al., 2005; Ansermot
et al., 2010). Methadone is metabolized in the liver via N-
demethylation performed by various cytochromes including
CYP3A4 and CYP2B6. CYP2B6 confers enantioselectivity for the
S-enantiomer (Yang et al., 2016), further, the influence of CYP2B6
variants on the S-enantiomer has been reported (Kharasch and
Crafford, 2019).

In vitro studies demonstrate differential metabolism and
clearance of methadone by CYP2B6 variants ranging from
CYP2B6∗4 ≥ CYP2B6∗1 > CYP2B6∗5 > CYP2B6∗9 ≥

CYP2B6∗6 (Gadel et al., 2015). CYP2B6 genotype influences
the plasma levels of both enantiomers (Victorri-Vigneau et al.,
2019). Also, decreased clearance and high plasma concentration
of methadone enantiomers was observed in patients with
CYP2B6∗1/∗6 and CYP2B6∗6/∗6 compared to controls (Eap
et al., 2007; Kharasch et al., 2015; Kringen et al., 2017;
Talal et al., 2020). In a study involving 125 methadone
fatality cases, the frequency of CYP2B6∗9 was high in the
methadone group compared to the control groups. High plasma
levels of methadone were observed in individuals with the
CYP2B6∗5 homozygous genotype compared to the wild type
and heterozygous genotype (Ahmad et al., 2017). Studies
also show that CYP2B6 genotype influences the severity of
neonatal abstinence syndrome (Mactier et al., 2017) in infants
of methadone-maintained opioid-dependent mothers. Infants
who needed treatment were more likely to carry the wild type
genotype for CYP2B6∗6 allele (516GG, 785AA) (Mactier et al.,
2017). Studies involving Malay opioid dependent males revealed
association between CYP2B6∗6 and increased severity of pain
(Zahari et al., 2016). The presence of concomitant diseases such
as HCV infection influence methadone therapy. Reportedly,
HCV patients often require higher doses of methadone. Most
studies have reported the inability of patients, harboring the
CYP2B6∗6 allele to metabolize and clear the drug (Crettol et al.,
2005; Hung et al., 2011; Bart et al., 2014; Csajka et al., 2016).
Thus, patients are likely to experience unwanted effects of the
drug. Therefore, dose reduction in this group of patients may
yield methadone safety. Meanwhile, others have shown that the
CYP2B6∗4 allele results in increased metabolism of the drug,

thus patients might require increased dose. Patient genotyping
for CYP2B6 variants may be of importance when considering
dose requirement in methadone maintenance treatment most
especially among HCV and HIV patients.

Even though methadone maintenance therapy is effective
and affordable, it is still unavailable in many LMICs where it
is highly needed. High prevalence of HIV, hepatitis C virus
(HCV) and tuberculosis is reported among people with drug
use disorder (Wu and Clark, 2013; Larney et al., 2017). As
reported in 2018, out of 179 countries with evidence of drug
use disorder, opioid substitution therapy (OST) was available in
only 86 countries (Avert, 2016; International HR, 2019). OST is
a replacement therapy whereby prescribed medications such as
methadone and buprenorphine are given to opioid dependent
patients, which enables them to reduce or cease from injecting
drugs. OST is not found in Nigeria and Zimbabwe despite
the presence of drug addicts and HIV patients. However, the
Nigerian government has initiated guidelines on the use of
methadone for treatment of drug rehabilitation (International
HR, 2018). OST is available in South Africa and on a smaller
scale in Tanzania, Uganda, Senegal, and is highly expanding in
Zanzibar and Kenya (International HR, 2019). In Asia, OST is
present in most countries with the highest number in China
and the least in Cambodia (International HR, 2019). In Eastern
Europe and Central Asia, OST is applied in many countries but
coverage is limited. In Western Europe and North American
countries, OST is vastly available. However, in Germany opiate
substitution treatment is variable between people in prison and
those living outside of prison. According to a report by Stöver
et al., the application of OST in German prisons depends on
the federal state, the prison and prison doctors (Stöver et al.,
2019). Existing barriers to accessing OST in both high and LMICs
include criminalization and financial barrier, for example, OST
is forbidden in Russia and Uzbekistan. Though OST is free in
Australia, most people still buy it at a minimum cost of AU35
per week. If people with opiate addiction are not treated, the
prevalence of HIV will continue to rise in LMICs. There is a need
for more countries to provide OST with good coverage so as to
reduce HIV, hepatitis C andmortality among drug users. There is
need for the government to provide funds for the health care in
some LMICs.

Artemisinin
Artemisinin-based combination therapy (ACT) is the basis of
treatment and considered first-line for the majority of malaria
infection cases (WHO, 2015). ACT, presently approved for
treatment of uncomplicated Plasmodium falciparum malaria in
many malaria-endemic countries, are substrates of CYP enzymes
(Svensson and Ashton, 1999). Combining artemisinin agents,
which are fast acting with a short half-life with partner drugs that
have long half-life enables optimization of parasite killing and
greatly protects against reinfection (White et al., 2014). Patient’s
response to antimalarial treatment can be influenced by factors
such as quality of the antimalarial agent, the natural immune
system of the host, parasite resistance, concomitant diseases
and the pharmacokinetics of the malaria drug (Travassos and
Laufer, 2009). Most studies on the efficacy of antimalarial agents
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have focused more on understanding the resistant mechanism
of the parasite by investigating the parasites multi drug resistant
genes (Travassos and Laufer, 2009). However, studies have shown
interindividual variations in the concentration of artimisinin,
dihydroartemisinin, artesunate, and their anti-malarial effect
among malaria infected individuals. Underdosing seems to
enhance parasite resistance to the therapeutic agents. Due to
the lack of efficacy, optimization of antimalarial treatment is the
main factor considered toward global eradication of the diseases
(WHO, 2015).

Among many other factors, host genetics, especially
polymorphisms in CYP enzymes involved in the metabolism of
the drugs, may be one of the confounders, causing variability
in ACT drugs levels and treatment failure. In vitro studies
show that artemisinin metabolism in human liver microsomes
is mediated primarily by CYP2B6 with a contribution of
CYP3A4 in individuals with low expression of CYP2B6
(Svensson and Ashton, 1999). So far, a report from Tanzania
indicated their concern about metabolism of ACT and high
prevalence of CYP2B6 G516T and other CYP polymorphisms
in the population. The prevalence of CYP2B6 G516T in the
Tanzanian population was 36% (Marwa et al., 2014). Authors
did not evaluate the direct impact of these polymorphisms on
treatment outcome or safety of the drugs (Marwa et al., 2014).
Another study in the malaria-endemic population of Timor
Leste indicated that the prevalence of CYP2B6∗4, ∗9, and ∗6
might impact the metabolism and efficacy of artemisinin and
its derivatives among the Timorians (Hananta et al., 2018).
Another study amongst Nigerian HIV-malaria infected subjects
explored the impact of CYP2B6 516GT polymorphism on
NVR and artemether-lumefantrine drug-drug interaction. The
authors showed that decreased exposure to artemether and
desbutyl-lumefantrine caused by NVR was further enhanced by
patients with CYP2B6 516GG genotype (ultrarapid metabolizers)
(Abdullahi et al., 2020). Again, the CYP2B6 516TT genotype
(poor metabolizers) also influenced increased exposure to
dihydroartemisinin and lumefantrine caused by NVR (Abdullahi
et al., 2020). According to the authors, the inductive effect of
NRV on CYP2B6 and CYP3A4 enzymes, both of which are
involved in the metabolism of these antimalarial drugs, might
have caused this variability (Abdullahi et al., 2020). An Iranian
study also indicated high prevalence of CYP2B6∗2, ∗4, ∗5, ∗6, and
∗7 alleles among the Iranian Baluchi, which may affect patient
response to artemisinin and derivatives (Zakeri et al., 2014).

Limited effort has been employed to determine genetic
polymorphisms in CYP enzymes, which may lead to therapeutic
failure in patients who are extensive metabolizers or cause
toxicity and resistance in patients who are slow metabolizers
(Gil, 2013). ACT is an effective treatment for resistant malaria,
knowledge on polymorphisms influencing their efficacymay help
to improve malaria therapy. The fight against over the counter
drugs will help to reduce relapse among patients and improve the
lives of people in the rural population.

The quality of malaria care offered in many malaria pandemic
LMICs is still very poor, presumption diagnosis is common
whereby treatment is provided to patients without any malaria
test inspite of the WHO recommendation of “test and treat”

(Macarayan et al., 2020). Over the counter poor quality malaria
drugs, some of which have no active ingredients, are offered
especially by smaller vendors (Bassat et al., 2016; Walker et al.,
2018). In Uganda, compared to the urban population, the rural
populations spent more money and experienced 97.9% of deaths
due to poor quality antimalarial drugs.

DISCUSSION AND FUTURE PERSPECTIVE

CYP2B6 Pharmacogenetics and Drug
Response
This article provides evidence on CYP2B6 functional variability
in drugmetabolism and exposure across populations. The impact
of CPY2B6 variant on patient response to various substrates is
evident in most ethnicities involved in this study. Depending
on CYP2B6 genotype, patients may be vulnerable to ADRs
ranging from mild to severe due to increased exposure to active
oral drugs, or otherwise experience therapeutic failure due to
reduced exposure to active metabolite in the case of prodrugs.
Poor metabolizers are likely to experience more ADRs (active
compounds) or treatment failure (prodrugs) than intermediate or
normal metabolizers. According to literature, CYP2B6∗6, which
is a haplotype of two variants, CYP2B6∗4 and CYP2B6∗9, is the
most studied allele (Li et al., 2012; Desta et al., 2021). Due to
the increasing knowledge on the role of CYP2B6 enzyme in drug
metabolism, there is the need to evaluate other CYP2B6 variants
on substrate metabolism in various populations or ethnicity.
According to the information gathered, some studies considered
the G516T (∗4) variant as CYP2B6∗6 allele, to maintain a
common style of variant nomenclature in articles. Researchers
can make use of the publicly available pharmacogene variation
(PharmVar) website, which clearly defines each haplotype or
alleles (Desta et al., 2021). CYP2B6 loss of function alleles
(poor metabolizer genotypes), which lead to an increase in
individual active drug exposure and toxicity are frequent in some
populations leading to high risk of ADRs in these populations.

In order to achieve the Joint United Nations Programme on
HIV/AIDS (UNAIDS) 90-90-90 target and complete eradication
of AIDS by 2030, pharmacogenetics testing for CYP2B6 to
assist EFV therapy in patients who are unlikely to benefit
from dolutegravir is of urgent need (Masimirembwa et al.,
2016; Mukonzo et al., 2016). The Clinical Pharmacogenetics
Implementation Consortium guideline for CYP2B6 and EFV-
containing antiretroviral therapy might serve as a basis for
implementation of CYP2B6 pharmacogenetic testing for EVF
therapy (Desta et al., 2019). This may help to reduce ADRs
and increase patient compliance with subsequent reduction
in drug resistance due to lack of patient compliance. At the
moment, many pharmacogenomics related ADRs are noticed
only after the drugs have been administered to the patients.
Population specific pharmacogenomics approaches at the level
of drug development can be used to address differences in
susceptibility to ADRs between populations. The inclusion
of pharmacogenomics in clinical trials could give a clue on
populations that are likely to benefit or suffer from adverse
effects. This could guide dose adjustments for some populations.
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Previous clinical trials included individuals from African descent
to represent the African population, while it is clear that the
African continent demonstrates high genetic diversity. Likewise,
Asian Americans or Asian Europeans cannot represent the Asian
population. Therefore, the inclusion of a diverse population in
clinical trials is inevitable. Interestingly, intrapopulation as well as
inter-individual variability in CYP2B6 alleles further complicates
the efficacy of many of its substrates. This could potentially
be improved by the application of patient genotyping prior
to prescription in clinical practice. Thus, a robust and more
personalized therapy could be provided to the patients.

Availability and Accessibility of Medication
According to our findings, HAART combination therapy that
includes EFV or NVP is mostly used in LMICs despite the
high frequency of CYP2B6 loss of function alleles in these
populations. Thus, pharmacovigilance is urgently needed in these
populations for the detection and subsequent prevention of
ADRs. Contrary to LMICs, in HICs more potent, less toxic and
novel antiretroviral drugs are used quite often. Higher donor
dependency and cost of medication has been highlighted as
barriers to the accessibility of quality and less toxic drugs in
LMICs. Donor funding has saved many lives in LMICs for the
past decades. The help from richer countries is provided in
the form of finance or medication via Government officials or
private agencies in health sectors. With the growing population
in LMICs, it is evident that donor funding can no longer
benefit every individual. Therefore, in this era, donors should
focus more on human capacity building and establishment of
infrastructures that will help LMICs become independent or self-
sponsored (Pillai et al., 2018). For example, antiretroviral drugs
are manufactured and sold at a cheaper rate in India compared to
African countries, where drugs aremostly imported at a very high
cost (Dickson, 2001). The African pharmaceutical industry, for
example, could be expanded and strengthened. This could help
to remove financial barriers to medicines as well as to improve
access to more potent, expensive, less toxic medication. The
public health sector needs to fully support organizations such
as the African Pharmacogenomics Consortium (APC), which
seeks to address the issue of drug safety, financial problems
in the health care sector, disease burden, research training and
implementation of pharmacogenomics in Africa (Dandara et al.,
2019). There is a need for creating awareness, funding and
provision of medication in countries where mental health has
been neglected. For example, a significant reduction of heroin
use and improvement of mental health was observed among
participants who were retained for methadone therapy for 6
months in South Africa (Scheibe et al., 2020).

Health Polices and Patent
There is a need for amendments of foreign and government
policies, that limit the growth of health care. According to
Tomlinson et al., amending the patent law could improve
affordability and accessibility of medicines in South Africa
(Tomlinson et al., 2019). The government in LMICs needs to
develop strategies to raise internal funds to support health care
rather than solely depending on foreign aid. There is a need
for allocation of healthcare budgets in both public and private
sectors. Additionally, accountability and better amendment of
funds in healthcare can help to improve health care services.

Comorbidities
People with two or more diseases need special attention and
health care coverage, for example, people with HCV and
HIV coinfection. The treatment of HIV might worsen HCV
infection in such individuals. Thus, increasing health coverage
and accessibility to diagnosis and counseling by trained medical
staffs can help patients to receive the right therapy and avoid
drug-drug interactions due to concomitant use of HIV and
HCV drugs.

CONCLUSION

In conclusion, there is a high level of CYP2B6 genetic
variability between and within ethnicities. In addition to
other confounders that can affect the pharmacokinetics and
pharmacodynamics properties of a drug, CYP2B6 genotyping
could be considered in regards to all CYP2B6 substrates
prescriptions in populations with expected high variability and
drugs with narrow therapeutic window.
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