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We previously conducted a QTL analysis of small RNA (sRNA) abundance in flag leaves of an immortalized
rice F2 (IMF2) population by aligning sRNA reads to the reference genome to quantify the expression
levels of sRNAs. However, this approach missed about half of the sRNAs as only 50% of all sRNA reads
could be uniquely aligned to the reference genome. Here, we quantified the expression levels of sRNAs
and sRNA clusters without the use of a reference genome. QTL analysis of the expression levels of
sRNAs and sRNA clusters confirmed the feasibility of this approach. sRNAs and sRNA clusters with iden-
tified QTLs were then aligned to the high-quality parental genomes of the IMF2 population to resolve the
identified QTLs into local vs. distant regulation mode. We were able to detect new QTL hotspots by con-
sidering sRNAs aligned to multiple positions of the parental genomes and sRNAs unaligned to the paren-
tal genomes. We found that several local-QTL hotspots were caused by sequence variations in long
inverted repeats, which probably function as precursors of sRNAs, between the two parental genomes.
The expression levels of these sRNAs were significantly associated with the presence/absence of the long
inverted repeats in the IMF2 population. Moreover, we found that the variations in whole-genome sRNA
species composition among different IMF2s were attributed to sRNA biogenesis genes including OsDCL2b
and OsRDR2. Our results highlight that genetic dissection of sRNA expression is a promising approach to
disclose new components functioning in sRNA biogenesis and new mechanisms of sRNA biogenesis.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Small RNAs (sRNAs) are non-coding RNAs with typical sizes of
18–30 nucleotides involved in diverse biological processes [1,2].
sRNAs are categorized into two major classes, hpRNA (hairpin
RNA) whose precursor is single-stranded hairpin RNA and siRNA
(small interfering RNA) whose precursor is double-stranded RNA
[1,3]. microRNA (miRNA) is the major type of hpRNA that has been
well studied in many plants and animals. In rice, OsmiR530 was
reported to regulate grain yield through down-regulating of a tar-
get gene OsPL3 [4]. Knockdown of another miRNA miR166 in rice
enhanced drought resistance by reducing transpiration through
regulation of stem vasculature and hydraulic conductivity [5].
Tuning the accumulation of miR528 in rice can modulate flowering
time and the defense against Rice stripe virus by regulating
different target genes in different pathways [6,7]. siRNA could be
further classified according to their evolutionary origin and further
biogenesis steps. A siRNA derived from transposon elements was
reported to be involved in disease resistance in rice [8]. Triggered
by miRNA, phased siRNA (phasiRNA) is a type of siRNA broadly
present in angiosperms and was reported to be involved in rice spi-
kelet development [9,10].

Dicer-like proteins (DCLs), RNA-dependent RNA polymerases
(RDRs) and Argonautes (AGOs) are the key proteins functioning
in the biogenesis of sRNAs [1,11]. In addition to its role in the pro-
cessing of miRNAs, DCL1 was reported to be involved in the pro-
duction of sRNAs from endogenous inverted repeats in
Arabidopsis [12]. In rice, OsDCL3a was found to be responsible for
the processing of 24-nt siRNAs from miniature inverted-repeat
transposable elements (MITEs) [13]. Although the key components
of sRNA biogenesis have been well studied, new species of sRNAs
and new genes involved in sRNA biogenesis were frequently
reported in recent years. For instance, sidRNA (siRNAs independent
of DCLs) is a new class of siRNAs identified in Arabidopsis, which
was reported to be involved in DNA methylation [14]. CUE1, which

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.10.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2020.10.012
http://creativecommons.org/licenses/by/4.0/
mailto:yaowen@henau.edu.cn
https://doi.org/10.1016/j.csbj.2020.10.012
http://www.elsevier.com/locate/csbj


W. Yao, Y. Li, W. Xie et al. Computational and Structural Biotechnology Journal 18 (2020) 3207–3216
encodes the plastid inner envelope phosphoenolpyruvate, is a new
gene that was found to regulate miRNA biogenesis in Arabidopsis
by affecting the accumulation of primary and mature miRNAs [15].

Although many studies have been conducted to dissect the bio-
logical functions of sRNAs in various organisms, the genetic and
molecular mechanisms underlying the quantitative variations
among group of individuals with different genotypes were merely
investigated [16]. In a previous study, we conducted quantitative
trait locus (QTL) analysis of sRNA expression variations using all
species of sRNAs of an experimental population in rice [16]. sRNA
reads were aligned to the reference genome to define sRNA expres-
sion traits (s-traits) and sRNA cluster expression traits (sc-traits),
which were used to identify QTLs regulating their expressions
[16]. This approach could be designated as the ‘‘align-then-quanti
fy” approach. Only sRNAs uniquely mapped to the reference gen-
ome were used in the analysis of the previous study.

In this study, we proposed a ‘‘quantify-then-align” approach.
We defined s-traits by directly normalizing the number of sRNA
reads and identified sc-traits by assembling sRNA reads, and used
them to perform QTL mapping. sRNAs with detected QTLs were
then aligned to the high-quality parental genomes of the experi-
mental population. New QTL hotspots were identified and the
genetic mechanisms underlying several QTL hotspots were investi-
gated with the help of the high-quality genomes of the two par-
ents. Features of sRNAs regulated by serval QTL hotspots were
investigated, which shed light on the mechanisms of sRNA biogen-
esis in rice flag leaves.
2. Results

2.1. QTL analysis of s-traits identified by directly normalizing the read
count of sRNAs

We previously reported the sRNA sequencing data of 98 IMF2s
[16]. For each IMF2, the reads of all species of sRNAs were first
aligned to the SNP-replaced reference genomes, in which the Nip-
ponbare reference genome was used as the backbone and the SNP
sites were replaced by the sequences of Zhenshan 97 or Minghui
63, which are the parents of the IMF2 population, respectively
[17]. By so doing, a total of 53,613,739 unique sRNA sequences
were identified, which included only<50% of the sRNAs from all
sequencing libraries [Supplementary file 1 in Dryad [18]]. Thus,
more than half of the sRNAs were left out from further analyses.

To recover as much as possible data in the analysis, we analyzed
all the 136,080,320 unique sRNAs obtained by integrating data of
all libraries, and found that about 88.66% of these sRNAs were pre-
sent in no more than 5 IMF2s while only 0.12% were present in all
98 IMF2s (Fig. S1A). Approximately 43.99% of the sRNAs were 24 nt
(Fig. S1B). The distribution of sRNAs in different genomic regions
were surveyed in our previous study [16]. Here, we investigated
the nucleotide composition at each base position of all sRNAs. Tak-
ing all base positions together, guanosine (G) is the most common
while cytidine (C) is the rarest nucleotide for sRNAs of 21, 22 and
23 nt (Fig. S2A-C). For 24-nt sRNA, adenosine (A) is the most com-
mon while C is the rarest nucleotide incorporating all base posi-
tions (Fig. S2D). The nucleotide composition for sRNAs of diverse
sizes varied across different base positions. Starting from the first
base at the 50 end, the percentage of A decreased sharply to the sec-
ond base, and went down slightly till the third base at the 30 end,
and then augmented steeply towards the first two bases at the 30

end (Fig. S2E-H). On the contrary, the proportion of G increased
from the first base to the second base at the 50 end, and went up
slightly till the third base from the 30 end, and then fell off steeply
towards the first two bases at the 30 end (Fig. S2 E-H). These two
rules also held true for sRNAs of 21, 22, 23 and 24 nt.
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The abundance of each sRNA in a library was normalized to
number of reads per millions (RPM) to quantify the sRNA expres-
sion levels in each library (Materials and methods). sRNAs present
in more than 48 IMF2s were considered as sRNA expression traits
(s-traits). In total, 1,805,909 s-traits were obtained, reaching more
than ten times of the number of s-traits in our previous study (Sup-
plementary file 1). Recently, we reported the high-quality genome
sequences of Zhenshan 97 and Minghui 63 [17]. The distribution of
s-traits based on the genome sequence of Minghui 63 was similar
to the results of our previous study (Fig. S3) [16]. The nucleotide
composition at each base position of s-traits resembled that of
the sRNAs (Fig. S2, S4).

We then conducted QTL analysis for these s-traits with a new
genetic map constructed based on the genome of Minghui 63 using
composite interval mapping (CIM) implemented in the R/qtl pack-
age with default parameters [19–21] (Supplementary file 2). QTLs
with LOD score � 5 was recovered, resulting in 517,495 QTLs for
495,232 s-traits, which were designated as sQTLs (QTLs regulating
the expression of sRNAs) (Fig. 1, Supplementary file 3). Several
sQTLs regulating the expression of plentiful sRNAs were located
in or neighboring the bins harboring sRNA biogenesis genes includ-
ing OsRDR2, OsDCL2a and OsDCL2b, which was consistent with the
previous results (Fig. 1) [16]. Another 8 clusters of sQTLs, Bin286-
Bin289, Bin359, Bin710-Bin715, Bin731-Bin734, Bin795, Bin827,
Bin903 and Bin1556, were identified to explain the expression
variations of large amounts of sRNAs (Fig. 1). Among these sQTLs,
Bin795 and Bin1556 were newly identified in this study.

To compare the new approach with the approach adopted in
our previous study, we further conducted QTL analysis of these
s-traits based on the same genetic map used in our previous study
and identified 517,945 QTLs for 496,423 s-traits. In all, 156 bins
were identified to encompass 166,771 (32.2%) sQTLs; sQTLs resid-
ing in each of the bins regulated the expression of more than 600 s-
traits. It was found that more than 73.7% of the 156 bins were in
the list of the 200 bins that were identified to regulate the expres-
sion of the highest number of s-traits in our previous study [16].

2.2. QTL analysis of sc-traits obtained based on assembly of sRNA reads

In our previous study, we defined 80,362 sRNA clusters with the
help of the reference genome and identified scQTLs (QTLs regulat-
ing the expression of sRNA clusters) regulating their expressions
[16]. Here, we performed assembly of sRNA reads to obtain the
DNA sequence from which a cluster of sRNAs was transcribed
(Materials and methods). A total of 394,965 sRNA clusters were
obtained (Supplementary file 4). The average length of all the sRNA
clusters was 84 bp (ranging from 60 bp to 3487 bp) (Fig. S5). More
than 89.90% and 89.52% of all sRNA clusters can be aligned to the
genomes of Minghui 63 and Zhenshan 97, respectively,
with � 70% query coverage and � 80% identity (BLASTN) (Fig. S6)
[22]. Taking the alignments to both genomes together, more than
93.98% of all sRNA clusters can be aligned with � 70% query cover-
age and � 80% identity.

To obtain the read count of each sRNA cluster for all 98 IMF2s,
we mapped the clean sRNA sequencing reads of each IMF2 to all
the sRNA clusters using Bowtie (Materials and methods) [23].
The read count table was then normalized by DESeq [24] to define
the expression level of each sRNA cluster. sRNA clusters with nor-
malized expression value � 6 in more than 25 of all the 98 IMF2s
were regarded as sRNA cluster expression traits (sc-traits). As a
result, 131,249 sc-traits were obtained, which was more than twice
of the number of sc-traits identified in our previous study. QTL
analysis was performed for all the sc-traits with the genetic map
constructed based on the genome of Minghui 63 and 55,061 scQTLs
(LOD score � 5) were recovered for 51,606 sc-traits (Fig. 1, Supple-
mentary file 5). Similarly, several QTLs regulating the expressions



Fig. 1. The distribution of sQTLs and scQTLs across the 1,567 bins. The top four panels are QTLs for sRNAs of 21, 22, 23 and 24 nt while the panel at the bottom shows the QTLs
for sc-traits. The 1,567 bins are represented as black bars and are arranged from left to right based on their genomic positions. The width of each bar represents the size of the
bin. The chromosome identifiers are labeled on the X-axis. Adjacent chromosomes are represented by different colors. Bins harboring sRNA biogenesis genes are indicated
with red rectangles above the bins. Clusters of QTL regulating the expression of large numbers of sRNAs are indicated with blue rectangles above the bins. The bin IDs and the
sRNA biogenesis genes for representative bins are indicated in the uppermost panel. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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of large numbers of sc-traits were located in or neighboring bins
harboring sRNA biogenesis genes including OsDCL2a, OsRDR2 and
OsDCL2b (Fig. 1).

We further performed QTL analysis for these sc-traits based on
the same genetic map used in our previous study [16]. A total of
55,365 scQTLs (LOD score � 5) were recovered for 51,822 sc-
traits. About 15.5% of these scQTLs were mapped to 60 bins, and
QTLs in each of these bins explained the variations in expression
of more than 100 sc-traits. Moreover, 46 of these 60 bins were in
the list of the 80 bins representing the highest number of scQTLs
detected in our previous study.
2.3. Resolving sQTLs and scQTLs as local-QTLs and distant-QTLs by
aligning the sequences of s-traits and sc-traits to the reference genome

We then classified sQTLs and scQTLs as local-QTLs and distant-
QTLs based on the alignment of the sequences of s-traits and sc-
traits with detected QTLs to the SNP-replaced reference genomes
of the parents using Bowtie and BLASTN respectively (Materials
and methods) [22,23]. A local-QTL represents local functional poly-
morphism(s) affecting the expression of the target gene, while a
distant-QTL indicates the expression of the target gene is controlled
by regulatory element(s) distant from the target gene [16]. A total
of 171,090 (53.7%) local-sQTLs and 147,353 (46.3%) distant-sQTLs
were resolved for 306,371 s-traits, while 12,851 (55.7%) local-
scQTLs and 10,227 (44.3%) distant-scQTLs were obtained for
22,070 sc-traits (Fig. S7, S8, S9, S10, Supplementary file 6, Supple-
mentary file 7). We also identified hotspots of local-QTLs and dis-
tant-QTLs using the same definitions proposed in our previous
study (Fig. S11, Supplementary file 8, Supplementary file 9). sRNA
biogenesis genes including OsDCL2a, OsRDR2 and OsDCL2b were
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observed in consecutive distant-sQTLs hotspots, in accordance with
the results of our previous study (Fig. S11).

We next aligned all the 1,805,909 s-traits to the high-quality
genomes of Zhenshan 97 and Minghui 63. A total of 88.59% and
89.03% s-traits can be aligned to one or multiple positions of the
Minghui 63 and Zhenshan 97 genome without mismatch, respec-
tively. Only 1,178,301 (65.24%) s-traits can be uniquely aligned
without mismatch to either of the parental genomes. Taking the
alignments to both genomes together, 96.21% (1,737,482) of all
s-traits can be aligned without mismatch to the parental genomes
(Fig. S12A). For the rest 68,427 s-traits, 52,575 (76.83%) can be
aligned with one mismatch to one or multiple positions of the par-
ental genomes (Fig. S12B). We further compared the genomic
alignments of s-traits and the genomic positions of sQTLs regulat-
ing the s-traits. We found that more than 32% of the sQTLs
were � 1 Mb away from at least one alignment of the correspond-
ing s-traits (Fig. S12C, D).
2.4. Features of sRNAs regulated by different distant-sQTL hotspots

In our previous study, we found that 79.7% of the sRNAs regu-
lated by the sQTL hotspot harboring OsRDR2 were 24 nt while
51.0% of the sRNAs attributed to the sQTL hotspot harboring
OsDCL2b were 22 nt, in consistent with the results of functional
studies of RDR2 and DCL2 in Arabidopsis [16,25]. Here, we surveyed
the features of sRNAs regulated by seven different sQTL hotspots,
including Bin286-Bin289, Bin454-Bin457 (harboring OsDCL2a),
Bin596-Bin602 (harboring OsRDR2), Bin710-Bin715, Bin731-
Bin734, Bin827 and Bin1135-Bin1144 (harboring OsDCL2b). Only
sRNAs that were uniquely aligned to the Minghui 63 reference gen-
ome and the corresponding sQTLs that could be resolved into local-
sQTL or distant-sQTL were included in the following analyses. Apart
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from Bin827, the proportion of sRNAs of different sizes regulated
by the other six sQTL hotspots were significantly different from
that of all sRNAs with detected QTLs (Fig. 2A). Compared with all
sRNAs with detected QTLs, higher percentage of sRNAs regulated
by Bin454-Bin457 were from non-transposon genes (Fig. 2B), espe-
cially the exon and intron of non-transposon genes (Fig. 2C). For
five sQTL hotspots, the proportion of sRNAs beginning with differ-
ent nucleotide at 50 end was significantly different from that of all
sRNAs with detected QTLs (Fig. 2D). We found that the 50 first base
of higher proportions of 21-nt and 22-nt sRNAs were U, compared
with all sRNAs and larger portion of sRNAs regulated by Bin710-
Bin715 were of 21 and 22 nt (Fig. 2A). However, the 50 first base
of 68.1% of sRNAs regulated by Bin710-Bin715 were A, a proportion
higher than that of all sRNAs with QTLs (Fig. 2D). Moreover, higher
proportion of sRNAs regulated by Bin710-Bin715 and Bin731-
Bin734 were from MITEs, compared with all sRNAs with QTLs
(Fig. 2E). In contrast, lower proportion of sRNAs regulated by
Fig. 2. Diverse features of uniquely mapped sRNAs regulated by different sQTL hotspots. s
varying features of sRNAs, including the size of sRNAs (A), the genomic distribution of sRN
position at the 50 end (D), the origination of sRNAs from MITEs (E). Different sQTL hots
grouped based on diverse feature of sRNAs and are labeled with grey color. The species o
squared test. *, p-value < 1e-5. **, p-value < 1e-10.
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Bin454-Bin457 were from MITEs. Excluding local-sQTLs, the fea-
tures of all the sRNAs regulated by the seven sQTL hotspots
remained unchanged in general (Fig. S13). We further explored
the size and the nucleotide at the first base position at 50 end for
all the sRNAs, including ones that couldn’t be uniquely aligned to
the Minghui 63 reference genome, regulated by the sQTL hotspots.
The results were generally similar to that of all sRNAs uniquely
aligned to the reference genome (Fig. S14).

2.5. Several local-sQTL hotspots were caused by variations in long
inverted repeats between the genomes of Minghui 63 and Zhenshan 97

Two new sQTL hotspots represented by Bin795 and Bin1556
were identified in this study (Fig. 1). The expressions of 2473
sRNAs were regulated by Bin795 (chr06: 1894025–2056990 in
Minghui 63; chr06:1844230–2032924 in Zhenshan 97). A total of
43.1%, 34.0% and 20.4% of the 2473 sRNAs were of 21, 22 and 24
RNAs regulated by each sQTL hotspot are categorized into different groups based on
As (B), the genic distribution of sRNAs (C), the nucleotide preference at the first base
pots are represented by different colors (F). All sRNAs with detected QTL are also
f sRNAs in different groups are compared with that of all sRNAs with QTL using chi-
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nucleotides. For more than 83.2% of the 2473 sRNAs, each could be
aligned to two different positions within chr06:1989522–2005555
of the Zhenshan 97 genome. On the contrary, each one of a set of
793 sRNAs, among all 2473 sRNAs, could be aligned to two differ-
ent positions within chr06:1037057–1054781 of the Minghui 63
genome, while each of another set of 1115 sRNAs could be aligned
to a single position of this region. The expression values of 79.5% of
the 2473 sRNAs were higher than 0.1 in the genome of Zhenshan
97 while the expression values of 81.8% sRNAs were lower than
0.05 in the genome of Minghui 63 (Fig. 3A). In addition, the expres-
sion levels of the majority of the 2473 sRNAs were close to zero in
IMF2s of Minghui 63 genotype in this region (Fig. 3B). On the con-
trary, the expression levels of the majority of the 2473 sRNAs were
higher than zero in IMF2s of Zhenshan 97 or heterozygote geno-
type in this region. We then compared the sequences of the two
regions in the genomes of Minghui 63 and Zhenshan 97. The geno-
mic region in Zhenshan 97 (chr06:1989522–2005555) is a long
inverted repeat (LIR) composed of a sequence (chr06:1990252–
1997608) and its reverse complement (chr06:1997887–2005264)
separated by a short intervening sequence (chr06:1997609–1997
886), which could probably form a hpRNA when transcribing
(Fig. 3C). The genomic region in Minghui 63 genome is also a long
inverted repeat composed of a sequence (chr06:1037493–
1042254) and its reverse complement (chr06:1048473–1053234)
separated by a very long intervening sequence (chr06:1042255–
1048472) (Fig. 3D). The sequence of the corresponding region in
the Nipponbare genome is the same to that of the Minghui 63 gen-
ome (Fig. 3E). We further quantified the expression levels of the LIR
in the IMF2 population (Materials and methods). The expression
values of the LIR were higher than zero in all 98 IMF2s (Fig. 3F).
Contrary to the expressions of sRNAs, the expressions of the LIR
Fig. 3. sRNAs regulated by Bin795 and the long inverted repeat functioning as the potent
Zhenshan 97 (ZS97), Minghui 63 (MH63) and the hybrid. (B) Expression values of sRNAs re
MH63, the Minghui 63 genotype. Heterozygote, heterozygote genotype. (C) Structure of t
created using shinyCircos [44]. The clockwise grey circle indicates the LIR. The two co
(chr06:1037057–1054781) in the Minghui 63 genome. (E) Structure of the LIR (chr06:118
of different genotypes quantified by mRNA sequencing. (G) Correlation coefficients betwe
97 genotype. (H) Correlation coefficients between expression values of sRNAs regulated
references to color in this figure legend, the reader is referred to the web version of thi
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in IMF2s of Minghui 63 genotype were higher than that in IMF2s
of Zhenshan 97 genotype (Fig. 3F). The correlation coefficients
between the expressions of sRNAs regulated by Bin795 and the
LIR were calculated and more than 60% of the correlation coeffi-
cients were higher than 0 (Fig. 3G-H). These results implied that
the genomic region in Minghui 63 genome probably cannot form
an hpRNA due to the very long intervening sequence. The expres-
sion variations of these sRNAs among different IMF2s were proba-
bly attributed to the sequence divergence between the genomes of
Zhenshan 97 and Minghui 63, which were detected by QTL analysis
in this study. This sQTL hotspot would not be detected using solely
uniquely aligned sRNA reads, and would not be illustrated using
the Nipponbare reference genome. Nevertheless, we did observe
the discordance between the expressions of the LIRs and the sRNAs
regulated by Bin795. We found that the discordance was possibly
caused by a genomic region on chromosome 1 highly similar to
the LIR on chromosome 6 in the genome of Minghui 63, which hin-
dered the accurate quantification of the LIR.

The expression of 1139 sRNAs, including 382 (33.5%), 314
(27.6%) and 369 (32.4%) sRNAs of 21, 22 and 24 nt, were regulated
by another sQTL hotspot Bin1556 (chr12:22946937–23029125 in
Minghui 63; chr12:23880702–23936203 in Zhenshan 97). For a
set of 549 sRNAs out of all 1139 sRNAs, each one could be aligned
to two different positions within chr12:22977717–22980753 of
the Minghui 63 genome. Moreover, each one of another set of
339 sRNAs could be aligned to a single position of this region in
the Minghui 63 genome. On the contrary, each one of a set of
482 sRNAs could be aligned to a single position within
chr12:23895468–23896801 of the Zhenshan 97 genome. However,
none of the 1139 sRNAs could be aligned to multiple positions of
this region in the Zhenshan 97 genome. The expression values of
ial precursors of these sRNAs. (A) Expression values of sRNAs regulated by Bin795 in
gulated by Bin795 in IMF2s of different genotypes. ZS97, the Zhenshan 97 genotype.
he long inverted repeat (LIR) (chr06:1989522–2005555) in the Zhenshan 97 genome
mplementary regions are connected by the blue ribbon. (D) Structure of the LIR
5416–1203145) in the Nipponbare genome. (F) Expression values of the LIR in IMF2s
en expression values of sRNAs regulated by Bin795 and the LIR in IMF2s of Zhenshan
by Bin795 and the LIR in IMF2s of Minghui 63 genotype. (For interpretation of the
s article.)
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the majority of all 1139 sRNAs were close to zero in Zhenshan 97 or
IMF2s with Zhenshan 97 genotype but were higher than zero in
Minghui 63 or IMF2s with Minghui 63 genotype (Fig. 4A-B). With
the availability of the high-quality genomes of Minghui 63 and
Zhenshan 97, we found that the genomic region in Minghui 63 is
a LIR composed of a sequence (chr12:22977740–22979063) and
its reverse complement (chr12:22979407–22980753) separated
by a short intervening sequence (chr12:22979064–22979406),
which could probably form an hpRNA (Fig. 4C). The genomic region
in Zhenshan 97 is only a sequence highly similar to half of the cor-
responding genomic region in Minghui 63 without its reverse com-
plement. The sequence in the Nipponbare genome in this region
was quite different from that of Minghui 63 and Zhenshan 97
(Fig. 4D). The RNA sequence encoded by chr12:22977717–
22980753 of the Minghui 63 genome were predicted as a long
hpRNA as shown in Fig. 4E [26]. The expression values of the LIR
were close to zero in IMF2s of Zhenshan 97 genotype but were sig-
nificantly higher than zero in IMF2s of Minghui 63 or heterozygote
genotype (Fig. 4F). The majority of the correlation coefficients
between the expressions of sRNAs regulated by Bin1556 and the
LIR were higher than 0 (Fig. 4G). These results implied that the
expression variations of these sRNAs among different IMF2s were
attributed to the sequence divergence between Zhenshan 97 and
Minghui 63. This sQTL hotspot would not be detected using solely
uniquely aligned sRNAs or using the Nipponbare reference gen-
ome. The mechanism underlying this sQTL hotspot would not be
dissected without the available of the genome sequences of Min-
ghui 63 and Zhenshan 97.
Fig. 4. sRNAs regulated by Bin1556 and the long inverted repeat functioning as the poten
in Zhenshan 97 (ZS97), Minghui 63 (MH63) and the hybrid. (B) Expression values of sR
genotype. MH63, the Minghui 63 genotype. Heterozygote, heterozygote genotype. (C) Str
63 genome. The clockwise grey circle indicates the LIR. The two complementary regio
24563242) in the Nipponbare genome. (E) Predicted secondary structure of RNA encoded
the LIR in IMF2s of different genotypes quantified by mRNA sequencing. (G) Correlation c
98 IMF2s. (For interpretation of the references to color in this figure legend, the reader

3212
The two local-sQTL hotspots designated as Bin358 and Bin969
identified in the previous study were also recovered in this study,
which were represented by Bin359 and Bin903 [16]. The majority
of sRNAs regulated by Bin903 could be aligned to a genomic region
on chromosome 7 (chr07:159842–163153 in Zhenshan 97;
chr07:139399–142701 in Minghui 63). The expression value of
sRNAs regulated by Bin903 were mostly higher than zero in Zhen-
shan 97, Minghui 63 and all IMF2s (Fig. S15A-B). This region in
Zhenshan 97 and Minghui 63 were both long inverted repeats that
could probably form hpRNAs (Fig. S15C-E). We speculate that the
expression variations in sRNAs regulated by Bin903 are probably
caused by the expression variations of the long inverted repeat,
which could function as precursor of sRNAs, between the genomes
of Zhenshan 97 and Minghui 63. We further found that the situa-
tion of Bin359 was similar to that of Bin903.

2.6. Contribution of sRNA biogenesis genes to the variation of whole-
genome sRNAs species composition among different IMF2s

We found that the whole-genome sRNAs species composition
varied significantly among different IMF2s (Fig. S16). For instance,
the percentage of 21-nt sRNAs in all sRNAs varied from 5.6% to
10.6% with an average of 7.8% among different IMF2s. We further
detected extensive variations in the proportion of sRNA sequencing
reads with specific features out of all sequencing reads, among dif-
ferent IMF2s (Fig. S17). We then conducted QTL analysis of these
variations using CIM. A total of 20 QTLs were detected for 16 traits
and the LOD value of 9 QTLs passed the threshold determined by
tial precursors of these sRNAs. (A) Expression values of sRNAs regulated by Bin1556
NAs regulated by Bin1556 in IMF2s of different genotypes. ZS97, the Zhenshan 97
ucture of the long inverted repeat (LIR) (chr12:22977717–22980753) in the Minghui
ns are connected by the blue ribbon. (D) Structure of the LIR (chr12:24529089–
by chr12:22977717–22980753 of the Minghui 63 genome. (F) Expression values of
oefficients between expression values of sRNAs regulated by Bin1556 and the LIR in
is referred to the web version of this article.)
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1,000 permutations (Supplementary file 10). OsDCL2b was
frequently found in or neighboring the confidence interval of
identified QTLs with the highest LOD values (Fig. 5, Supplementary
file 10). In addition, OsDCL2a and OsRDR2 were found in QTLs
regulating the proportions of 21-nt and 26-nt sRNAs in the IMF2
Fig. 5. QTL analysis of variations in whole-genome sRNA species composition among diff
left to right based on their genomic positions. The height of each bar indicates the LOD v
chromosomes are denoted with different colors. The red rectangle in chromosome 9 indi
the bin harboring OsRDR2.
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population, respectively (Fig. 5, Supplementary file 10). These
results suggested that sRNA biogenesis genes including OsDCL2b,
OsDCL2a and OsRDR2 contributed largely to the variation of
whole-genome sRNAs species composition among different IMF2s
in the flag leaves of rice.
erent IMF2s. The 1,567 bins (QTL) are represented as vertical bars and arranged from
alue of each bin while the width of each bar indicates the size of each bin. Adjacent
cates the bin harboring OsDCL2b while the red rectangle in chromosome 4 indicates
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3. Discussion

In this study, we proposed a ‘‘quantify-then-align” approach for
QTL analysis of sRNA expression levels and demonstrated the fea-
sibility of quantifying the expression levels of sRNAs and sRNA
clusters, referred to as s-traits and sc-traits, without the use of a
reference genome. With a molecular marker linkage map, QTL
analysis can be performed for these s-traits and sc-traits exactly
like any of the agronomic quantitative traits. Thus, for an organism
without a reference genome, the strategy we proposed in this
study can be applied to perform genetic analyses to identify QTLs
regulating sRNA expression levels, although they could not be
resolved into local- vs. distant- sQTLs and scQTLs, like in the case
with an available reference genome. For an organism with a refer-
ence genome, the approach we explored here served as an alterna-
tive for conducting QTL analyses of sRNA expression levels, which
also captured the genetic regulation of sRNAs not uniquely mapped
to the reference genome as well as sRNAs unable to be aligned to
the reference genome. This approach is much straightforward com-
pared with traditional methods, as we can dissect the expression
regulations of all species of sRNAs and identify QTL hotspots with-
out choosing the appropriate strategy to align the sRNA reads,
which was illustrated in Fig. 1. As for the mechanism underlying
specific QTL hotspot of interest, we can then seek help form all
aspects including investigations on the features and the genomic
alignments of sRNAs regulated by the QTL hotspot, as well as addi-
tional genetic and molecular experiments.

Using the new approach, we were able to detect new QTL hot-
spots. With the high-quality sequences of the two parental gen-
omes, we found that several local-sQTL hotspots including
Bin795 and Bin1556 were attributed to the sequence variations
in long inverted repeats, which probably functioned as precursors
of sRNAs, between the parental genomes. This wouldn’t have been
revealed using a single reference genome or by restricting the
alignment of sRNAs to unique positions of the reference genome.
The 2473 sRNAs, represented by tens of thousands of sRNA
sequencing reads of the IMF2 population, regulated by Bin795
can be aligned without mismatch to 8076 positions across the 12
chromosomes of the Minghui 63 genome. Only 2701 of all 8076
alignments to chr06:1037057–1054781 of the Minghui 63 genome
were determined as authentic alignments based on the results of
QTL analysis and the alignments of these sRNAs to the Zhenshan
97 genome. If we used the ‘‘align-then-quantify” approach and
assigned a random position for sRNA reads aligned to multiple
positions, we would probably miss this QTL hotspot and the under-
lying mechanism. With the development of next-generation
sequencing and the application of QTL mapping and genome-
wide association studies, the approach we proposed in this study
will be helpful for future researches on sRNA biogenesis. Using
technologies of transcriptome-wide association studies, we can
directly build the associations between sRNA expression variations
and phenotypic variations to dissect the molecular functions of
sRNAs, without using a reference genome [27].

After the discovery of DCLs, RDRs and AGOs as the core enzymes
involved in sRNA biogenesis, hundreds of studies to uncover the
functions of these enzymes in animals and plants were conducted
[11]. Generally, individuals with knockout or knockdown of these
enzymes were generated utilizing reverse genetic tools and the
sRNA sequencing of these individuals were then compared with
that of the wild types. In this study, we explored the genetic regu-
lation of sRNA expression level using forward genetics approaches
and investigated the connection between genomic regions regulat-
ing sRNAs expression levels and the diverse features of corre-
sponding sRNAs. The length distribution of sRNAs regulated by
sQTL hotspots harboring OsRDR2 and OsDCL2b observed in our
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previous study and confirmed in this study, was in accordance with
the results of functional studies on RDR2 and DCL2 in Arabidopsis
[16,25]. Compared with all sRNAs with QTL, higher portion of sRNA
regulated by OsDCL2b started with U at the 50 end. In Arabidopsis,
the products of DCL2 are loaded into AGO1 which preferentially
recruit sRNAs with a 50 terminal U [28–31]. In addition, we found
that the variations in whole-genome sRNA species composition
in the flag leaf of rice among different IMF2s was mostly deter-
mined by OsDCL2b, OsDCL2a and OsRDR2. Previously, we identified
SNPs and indels in the genic and promoter regions of OsDCL2a,
OsDCL2b and OsRDR2 between the two parental genomes of the
IMF2 population [16]. We also found that OsDCL2a, OsDCL2b were
significantly differentially expressed between the two parental
genomes of the IMF2 population. However, additional genetic
and molecular experiments are required to disclose the functional
variations responsible for the regulations of sRNA expression levels
by these enzymes. These results are helpful for future dissection of
the functions of these enzymes in rice as well as in other crops and
shed light on the biogenesis mechanisms of sRNAs in rice.
4. Conclusions

Previously, we conducted QTL analyses of the expression levels
of sRNAs in flag leaves of a rice IMF2 population. In this study, we
proposed a new approach for analysis of sRNA sequencing data.
The feasibility of this approach was verified by analysis of the sRNA
sequencing data published in the previous study. Using the new
approach, we were able to detect new QTL hotspots regulating
the expression levels of sRNAs. Sequence variations in long
inverted repeats between the parental genomes of the IMF2 popu-
lation were found to be responsible for two new QTL hotspots. We
further investigated the features of sRNAs regulated by different
QTL hotspots. The results of this study provide new approaches
for analysis of sRNA sequencing data and new insights into the bio-
genesis mechanisms of sRNAs in rice.
5. Materials and methods

5.1. Quantification of sRNA expression level

Clean sRNA reads obtained after a series of filtering in our pre-
vious study were used to quantify the expression level of sRNAs
[16]. The expression level of a sRNA in a specific library was
defined as the read count of this sRNA divided by the total number
(in millions) of all sRNA reads in this library, which was designated
as ‘‘reads per million” (RPM).

5.2. Definition of sRNA clusters based on assembly of sRNA reads

Assembly of sRNA reads was rarely reported especially for
eukaryotes. Kreuze et al. [32] compared the assembly of sRNA
reads in virus using SSAKE [33], VCAKE [34] and Velvet [35], and
found that Velvet was faster and more accurate than SSAKE or
VCAKE. We compared the assembly of our sRNA sequencing data
using the three programs. We failed to run Velvet, as it required
a very large amount of memory when processing our sRNA
sequencing data. The results of SSAKE was generally better than
that of VCAKE based on the N50 of assembled contigs and the
alignments of assembled contigs to the rice reference genome. In
addition, we tried to use other assemblers including Edena [36]
and SHARCGS [37] which were reported to be suitable for the
assembly of very short next generation sequencing reads. How-
ever, we failed to run Edena or SHARCGS with our data because
they required all the sequencing reads to be the same length. As
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a result, we chose to perform assembly using SSAKE (parameters ‘‘-
w 1 –m 16 –o 1 –z 50”) for sRNA sequencing reads of each IMF2
and the mixed reads of all 98 IMF2s [33]. All the assemblies of
SSAKE were further clustered and assembled using GICL with
default parameters [38,39]. Contigs shorter than 60 bp were fur-
ther removed.

5.3. Quantification of sRNA cluster expression level

The clean sRNA sequencing data of each IMF2 were aligned to
the sequences of all sRNA clusters using Bowtie (parameters ‘‘-v
0 –m 1”) to obtain the read count for each sRNA cluster [23]. The
R package DESeq [24] was used to normalize the read count of
sRNA clusters to obtain the expression levels of sRNA clusters.

5.4. Construction of genetic map based on the genome of Minghui 63

The 98 IMF2s used in this study were obtained by paired crosses
of 196 recombinant inbred lines (RILs) chosen from 210 RILs
derived by single seed descent from a cross between Zhenshan
97 and Minghui 63 [40]. In previous studies, we conducted DNA
sequencing of the 210 RILs and proposed a new method based on
hidden Markov model to build an ultrahigh-density linkage map
for the RIL population utilizing the Nipponbare reference genome
[41,42]. In this study, we built the genetic map for the 210 RILs
using the method proposed in our previous study by aligning the
DNA sequencing data to the Minghui 63 reference genome
[17,41]. A total of 262,749 high-quality SNPs were identified and
were used to construct a genetic map consist of 1567 bins with
each bin representing a genomic region composed of SNPs without
recombination. The boundary between two adjacent bins indicates
the genomic position where a recombination event was detected.
The genetic map for 98 IMF2s was then deduced based on the
crossing information of RILs.

5.5. Alignment of sRNA and sRNA cluster to the reference genome

sRNAs were aligned to the Minghui 63 genome and the Minghui
63 genome with SNP sites replaced by Zhenshan 97 sequences
using Bowtie (parameters ‘‘-v 0 –m 1”) to determine their genomic
locations utilizing the same principles used in our previous study
[17]. sRNA clusters were aligned to the Minghui 63 reference gen-
ome using BLASTN. Alignments with identity � 90% and query cov-
erage� 85% were used to determine the genomic locations of sRNA
clusters. Results with more than one alignment hit were discarded.

5.6. Mites in the genome of Minghui 63

The sequences of MITEs in the Nipponbare genome were down-
loaded from the P-MITE database, which were then aligned to the
genome of Minghui 63 using BLASTN (Query coverage � 95%, e-
value � 1e-5) to annotate the MITEs in the genome of Minghui
63 [17,43].

5.7. Quantification of the expression levels of long inverted repeats in
the IMF2 population using mRNA sequencing data

For Bin1556, the sequence of the long inverted repeat (LIR) rep-
resented by chr12:22977690–22980803 of the Minghui 63 gen-
ome was extracted as the reference genome. Then the mRNA
sequencing data of each IMF2 was aligned to the LIR reference by
HISAT2 (parameter ‘‘-k 1”) allowing one alignment for each
sequencing read. The number of aligned reads were then divided
by the total sequencing reads of each IMF2 (in millions), which
were defined as the expression level of the LIR. For Bin795, the
sequences of the LIRs were extracted from the Zhenshan 97 and
3215
Minghui 63 genomes. The mRNA sequencing data of IMF2s of
Zhenshan 97 genotype were aligned to the LIR from the Zhenshan
97 genome, while the mRNA sequencing data of IMF2s of Minghui
63 genotype were aligned to the LIR from the Minghui 63 genome.
The mRNA sequencing data of heterozygote genotype were aligned
to the combined LIRs of both genomes. The process of sequence
alignment and expression quantification were the same as that
for Bin795.
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