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Summary
Background The underlying health status of populations was a major determinant of the impact of the COVID-19
pandemic, particularly obesity prevalence. Mexico was one of the most severely affected countries during the
COVID-19 pandemic and its obesity prevalence is among the highest in the world. It is unknown by how much
the COVID-19 burden could have been reduced if systemic actions had been implemented to reduce excess
weight in Mexico before the onset of the pandemic.

Methods Using a dynamic epidemic model based on nationwide data, we compare actual deaths with those under
hypothetical scenarios assuming a lower body mass index in the Mexican population, as observed historically. We also
model the number of deaths that would have been averted due to earlier implementation of front-of-pack warning
labels or due to increases in taxes on sugar-sweetened beverages and non-essential high-energy foods in Mexico.

Findings We estimate that 52.5% (95% prediction interval (PI) 43.2, 61.6%) of COVID-19 deaths were attributable to
obesity for adults aged 20–64 and 23.8% (95% PI 18.7, 29.1%) for those aged 65 and over. Had the population BMI
distribution remained as it was in 2000, 2006, or 2012, COVID-19 deaths would have been reduced by an expected
20.6% (95% PI 16.9, 24.6%), 9.9% (95% PI 7.3, 12.9%), or 6.9% (95% PI 4.5, 9.5%), respectively. If the food-labelling
intervention introduced in 2020 had been introduced in 2018, an expected 6.2% (95% PI 5.2, 7.3%) of COVID-19
deaths would have been averted. If taxes on sugar-sweetened beverages and high-energy foods had been doubled,
trebled, or quadrupled in 2018, COVID-19 deaths would have been reduced by an expected 4.1% (95% PI 2.5,
5.7%), 7.9% (95% PI 4.9, 11.0%), or 11.6% (95% PI 7.3, 15.8%), respectively.

Interpretation Public health interventions targeting underlying population health, including non-communicable
chronic diseases, is a promising line of action for pandemic preparedness that should be included in all
pandemic plans.
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Introduction
Pandemic preparedness plans describe the steps nations
can take to reduce the likelihood of outbreaks of infec-
tious disease and reduce the severity of such outbreaks,
should an international sanitary emergency be
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declared.1 Steps to limit severity focus on mitigation
measures such as surveillance, test and trace, self-
isolation, quarantining, and vaccination, and the
health-system response and treatment capacity. How-
ever, other factors will modify the impact of a pandemic
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Research in context

Evidence before this study
We searched for publications in PubMed and SciELO databases
from March 1, 2020 to May 15, 2023, with no language
restrictions, using the search terms (“obesity” OR
“overweight” OR “BMI”) AND (“COVID-19” OR “SARS-CoV-2”)
AND (“death” OR “severity” OR “critical illness” OR
“hospitalization” OR “severe”). We also reviewed the World
Health Organization (WHO) documents: International Health
Regulations, the pandemic Influenza preparedness plan, and
the Health Emergency Preparedness, Response & Resilience.
We found several systematic reviews and meta-analyses that
report that obesity is associated with an increased risk of
severe COVID-19 outcomes including hospitalisation, critical
illness, and death. These studies are at high risk of bias, given
that obesity is often self-reported and not well-defined.
Several authors have proposed COVID-19 and obesity as a
syndemic phenomenon leading to higher mortality rates in
populations with higher BMI. However, it remains unknown
how much less severe COVID-19 might have been had there
been lower BMI levels, and whether obesity-reducing policies
could be a tool to reduce Pandemic severity and deaths.
Pandemic plans mainly focus on financing, governance, and
system responses: in particular, on operations and
interventions to attenuate transmission, and the capacity of
the health system to care for patients. Most pandemic
preparedness protocols do not consider improving population
health among actions nations can take to prepare for future
pandemics. The WHO is currently working on the

Preparedness and Resilience for Emerging Threats initiative,
which focuses on health systems and capacities specifically for
respiratory pathogens, with no consideration of the
underlying population health as a key factor for pandemic
impact.

Added value of this study
We created an epidemiological simulation model that
accounts for the interaction between non-communicable
chronic diseases and infectious diseases. Our model showed
that the implementation of structural interventions to reduce
obesity and overweight on a population level could have
reduced the impact of COVID-19 in Mexico, benefitting all
people, including those without high BMI.

Implications of all the available evidence
Planning for preparedness to mitigate the impact of an
epidemic tends to focus on the health system’s capacity and
direct actions to reduce the probability of infection, yet rarely
considers indirect influences on the pandemic’s severity, such
as the underlying population health. Obesity prevalence was a
major determinant of the severity of the COVID-19 pandemic
and its reduction would have reduced the burden of severe
COVID-19 outcomes. Improving population health through
specific interventions should be integral to any pandemic
preparedness plan, particularly for countries with a high toll of
chronic diseases.
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independently of the system response. In particular, the
health status of the population, including the prevalence
of non-communicable diseases,2 prior to the emergence
of a pandemic is a critical factor that needs to be
considered as part of any comprehensive pandemic
preparedness effort.

The underlying health status of the population, in
particular obesity prevalence, was a major determinant
of the impact of the COVID-19 pandemic. Obesity,
defined as having a body mass index (BMI) of 30 kg/m2

or higher, is associated with an increased risk of infec-
tion and with severe forms of COVID-19.3–8 Over the last
decades, Mexico experienced a substantial increase in
obesity prevalence, from 23.5% in 2000 to 36.1% in
2018.9 Mexico was also among the countries with
highest COVID-19 mortality during the pandemic,10 and
it is estimated that 33.6% of deaths in the country were
attributable to obesity, hypertension, and diabetes.11

Excess weight, in contrast to other risk factors for
COVID-19, such as advanced age or being immuno-
compromised, is amenable to intervention. Timely
implementation of interventions to reduce excess
weight could have changed the landscape of the
pandemic in countries with a high burden of obesity,
such as Mexico. In the last decade, policies were intro-
duced in Mexico to address the structural determinants
of poor diets by steering consumers towards making
choices that are better for their health. In 2014, the
country introduced a 10% tax to industrialised sugar-
sweetened beverages (SSB) to curb consumption.12

Simultaneously, an 8% tax on non-essential high-en-
ergy foods was also implemented.13 In 2020, a food-and-
drink labelling regulation was introduced, mandating
front-of-pack labelling to warn consumers if the product
is high in calories, sugar, sodium, or fats.14 A survey
found that 44.8% of adults reported buying less un-
healthy food because of front-of pack labelling, although
the survey is not nationally representative.15 Still, it is
unknown whether an earlier implementation of these
measures could have changed the COVID-19 epidemic
impact in Mexico.

To contextualise the change in BMI in Mexico over
the last twenty years and its impact on the severity of the
COVID-19 pandemic in the country, we first aimed to
demonstrate what would have happened if the BMI
distribution had remained as it was in 2000, 2006, and
2012 (years for which survey data are available). These
are meaningful scenarios for Mexico because they
www.thelancet.com Vol 30 February, 2024

www.thelancet.com/digital-health


Articles
correspond to attainable population BMI distributions,
as they have been observed historically. Then, to un-
derstand the potential impact of structural interventions
to reduce body weight as a pandemic preparedness
strategy in Mexico, we created scenarios to assess what
would have happened if the introduction of front-of-
pack warning labels or increases to the SSB and non-
essential high-energy foods taxes had been imple-
mented two years prior to the onset of the pandemic.
Methods
Our methodological approach is shown schematically in
Fig. 1. We constructed a synthetic population of adults
in Mexico, where each individual had a fixed age and
sex, and a unique body mass index (BMI) value in each
of nine different scenarios. In the reference scenario,
the population had a BMI distribution drawn from the
National Survey of Health and Nutrition (ENSANUT,
for its Spanish acronym) survey conducted in 2018,
corresponding to the last nationally representative sur-
vey before COVID-19.9 We used anthropometric data
with accompanying survey weights from 17,474 adults
aged 20 and over. We used this population to create the
other scenarios by sampling or altering BMI values to
reflect the hypothetical population with reduced BMI
(Supplementary Figure S4). The following scenarios
were considered: the reference scenario (corresponding
to what was observed); no obesity (all adults have BMI
lower than 30 kg/m2); historical BMI distributions (what
if the BMI distribution had not changed since 2000,
2006, or 2012); labelling (what if food labels had been
introduced in 2018); taxation (what if taxes had been
doubled, trebled, or quadrupled in 2018).

Outcomes
For each scenario, we projected the number of COVID-
19 infections, hospitalization days, and deaths from the
beginning of January 2020 to the end of October 2021.
We calculated the years of life lost (YLL) per death using
life-expectancy values from 201916 for all scenarios, i.e.,
Chan
dist

Scenarios:
1. Reference
2. No obesity

3. 2000 BMI-distribution
4. 2006 BMI-distribution
5. 2012 BMI-distribution

6. Labelling
7.Double tax
8-Treble tax

9.Quadruple tax

Starting BMI distribution

Fig. 1: Summary of methods. We started with the 2018 survey from ENS
dataset to represent the reference scenario. We created new scenarios by
new BMI distributions together with BMI dose-response relationships, we
each scenario. We then simulated the COVID-19 epidemic using the popu
those seen in the reference scenario.

www.thelancet.com Vol 30 February, 2024
we did not adjust for changes to life expectancy as a
consequence of changes to BMI.

BMI impact on COVID-19 dynamics
We modelled individual-level risks of COVID-19
outcomes based on each individual’s age and scenario-
specific BMI using published relative risk dose-response
relationships.8 We computed the population-average rela-
tive risks of disease outcomes by age group for each
scenario from the synthetic population (Supplementary
Table S7). We computed risks for three outcomes: posi-
tive diagnosis, hospitalisation, and death and mapped
these relative risks onto the relevant parameters in the
epidemic model (shown schematically in Supplementary
Figure S5), which are probabilities of acquisition of
infection, the infection-hospitalisation rate, and the
infection-fatality rate (Fig. 2). Refer to the Supplementary
Appendix A for details.

Statistical analysis
BMI reduction scenarios
No-obesity scenario. To construct the no-obesity sce-
nario from the 2018 BMI distribution, we imputed
values for BMI for all people with obesity from all people
without obesity, matching by age and sex. Comparing
outcomes for this population to those for the reference
scenario allowed us to estimate transmission-model
population-attributable fractions (PAF) of COVID-19
outcomes due to obesity. This contrasts with the con-
ventional PAF calculation, in which the division of the
population into those with and without the risk factor
obscures the effect of the risk factor at the population
level.17

Historical BMI distribution scenarios. We created three
scenarios using past ENSANUT surveys,18 asking what
would have happened if the population had had the BMI
distribution of 2000, 2006, or 2012 (average values
shown in Supplementary Table S6). We sampled new
values for BMI for all people from the historic survey
data, matching by age and sex.
ge in BMI
ribution COVID model

∆  COVID outcomes
Infections

Hospital days
YLL

Deaths

ANUT, from which we computed each individual’s BMI. We used this
adjusting individuals’ BMI values according to the scenario. Using the
computed new disease-state transition rates for each age group in
lation-average transition rates and compared epidemic outcomes to

3
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Fig. 2: State transitions for the COVID-19 epidemic model. Disease
states are susceptible (S), exposed (E—infected but not yet infec-
tious), symptomatic infectious (IS), asymptomatic infectious (IA),
hospitalised (H), recovered (R), and deceased (D). In the model, BMI
impacts three state transitions: from susceptible to exposed, from
symptomatic to hospitalised, and from hospitalisation to death. NB:
the model includes vaccination states for all compartments, not
shown here. Refer to Supplementary Appendix E for details.
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Labelling scenario. In our labelling scenario, we
assumed that the labelling scheme launched in 2020
was instead launched in 2018. We estimated the caloric
and sodium reduction by age group and BMI category,
using the estimated change presented in Basto-Abreu
et al.14 (Supplementary Table S4). To estimate the
consequent weight change, we used Hall’s model19 via
the R package bw.20 We assumed that the daily reduction
in consumption was constant for two years up to the
beginning of the pandemic, from which point BMI
remained the same.

Tax scenarios. We created scenario populations corre-
sponding to different levels of taxation, estimating the
change in consumption by age group and BMI category
using published estimates for the relationships between
tax and purchases of SSB12 and taxed food.13 Reference
consumption was taken from the ENSANUT 2018 food-
frequency questionnaire. The current rate of tax in
Mexico is 10% for SSB, and 8% for non-essential en-
ergy-dense foods. We considered that this rate was
doubled, trebled, or quadrupled, two years before the
onset of the pandemic. To create our scenario-specific
synthetic populations, we assumed that daily caloric
intake was reduced by fixed amounts by socioeconomic
status per 10% tax on SSB12 and 8% tax on non-essential
energy-dense foods13 for the two years preceding the
pandemic. Reductions were allocated according to age
group and BMI category (Supplementary Table S5). We
assumed linear changes in consumption with respect to
the tax rate,21 and that products compositions did not
vary as a result of the tax being implemented. We esti-
mated weight changes in the same way as for the
labelling scenario.

We used the compartmental epidemic model
DAEDALUS,22 described in Supplementary Appendix E,
to simulate COVID-19 outcomes. In simulating sce-
narios, we assumed no changes in the transmission rate
apart from the parameters we modified, i.e., we
assumed that population behaviour and government
response are the same in all scenarios as in the refer-
ence scenario. Assessments of vaccine impacts often
rely on these assumptions,23 leading to estimates that
serve as upper bounds to the true number of cases,
hospitalisations, and deaths that would have been aver-
ted. We additionally assumed no changes to BMI in the
population over time and that transition rates remained
the same for the duration of the epidemic simulation.
That is, we did not account for population changes in
behaviour (or continued trends) that would alter
population-average BMI, and we did not account for
changes in population-average BMI within compart-
ments due to differential transition rates through the
disease pathway. BMI changes, and therefore rate
changes, are computed only for the adult population.
The epidemic model also included children and ado-
lescents, whose disease-transition rates in all scenarios
were the same as those in the Reference scenario. We
did not model changes to BMI in these groups as there
were no estimates available for consumption changes as
a consequence of labelling specifically for their ages.12–14

More importantly, published dose-response relation-
ships between BMI and COVID-19 outcomes were
estimated only for adults,8 and the natures of these re-
lationships in children and adolescents are currently not
available. Any changes in COVID-19 outcomes in sce-
narios were therefore a consequence only of changes to
infections among the adult populations.

Uncertainty
We included uncertainty in our estimates using Monte
Carlo (MC) sampling with 8192 samples. We modelled
uncertainty arising from population BMI values and
from the dose-response relationships with COVID-19
outcomes. For the reference, no-obesity, and scenarios
with historical BMI distributions, we resampled BMI
values, according to the survey weights, so that each MC
sample had a different distribution. For the intervention
scenarios, we used published confidence intervals13,14 to
construct independent normal distributions that
described the population mean change in consumption
(Supplementary Tables S4 and S5), such that there was
one value per subgroup in each MC sample.

We sampled dose-response relationships assuming
log-normal distributions to describe relative risks, which
we derived from the published confidence intervals.8 We
assumed the relative risks are independent across
disease-state transitions but perfectly correlated across
BMI values and age groups (e.g., a high value for the
relative risk of diagnosis among one age group with a
BMI of, say, 30 kg/m2 means that the relative risk of
diagnosis is also high for other age groups and other
BMIs, but has no implications for values of the relative
risk of hospitalisation given diagnosis).

We report the expected relative values (percentages)
of outcomes with 95% prediction intervals (PI). We
assessed the sensitivity of the results to the uncertain
www.thelancet.com Vol 30 February, 2024
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Scenario Infections Hospital days YLL

% (95% PI) % (95% PI) % (95% PI)

No obesity 14.4 (13.1, 15.7) 26.9 (24.5, 29.3) 44.8 (36.8, 52.6)

2000 9.2 (8.1, 10.2) 15.8 (14.2, 17.4) 23.3 (19.2, 27.7)

2006 4.3 (3.4, 5.2) 7.5 (6.2, 8.8) 11.5 (8.6, 15.0)

2012 2.2 (1.5, 3.1) 4.0 (2.7, 5.3) 7.1 (4.5, 10.1)

Labelling 2.9 (2.7, 3.1) 4.9 (4.5, 5.3) 7.1 (6.0, 8.2)

Double tax 2.0 (1.1, 2.8) 3.3 (2.1, 4.5) 4.6 (2.8, 6.5)

Treble tax 4.1 (2.4, 5.7) 6.6 (4.2, 8.9) 9.1 (5.5, 12.7)

Quadruple tax 6.1 (3.6, 8.4) 9.7 (6.3, 13.0) 13.3 (8.2, 18.3)

YLL: years of life lost. PI: prediction interval.

Table 1: Relative reduction in infections, hospital days, and YLLs from the reference scenario
associated with lower population BMI levels for all scenarios up to October 2021.
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parameters using value-of-information methods
(Supplementary Appendix D): we computed the ex-
pected value of partial perfect information, which is a
measure of how much uncertainty in our estimated
quantities would reduce if we knew a parameter or
group of parameters perfectly.24

Ethical approval
The present study used secondary data publicly avail-
able. Hence, ethical approval was not needed.

Role of funding source
The funders of the study had no role in the study design,
data collection, data analysis, data interpretation, or
writing of the report. All authors had full access to the
data. The corresponding author had the final re-
sponsibility for the decision to submit for publication.
Fig. 3: Population mean BMI among adults in all scenarios
considered plotted against the percentage of deaths that would
have been averted in the COVID-19 pandemic up to
October 2021. Grey dots show the 8192 Monte Carlo samples. Navy
dots show mean values for scenarios.
Results
In all scenarios, infections, hospitalisations, YLLs, and
deaths were reduced for all age groups relative to the
reference scenario from January 2020 to October 2021
(percent reductions shown in Table 1, and absolute re-
ductions shown in Supplementary Table S8). The
reduction of infections ranged from 2.0% (95% PI 1.1,
2.8%) to 14.4% (95% PI 13.1, 15.7%), the hospitals days,
from 3.3% (95% PI 2.1, 4.5%) to 26.9% (95% PI 24.5,
29.3%) and the YLLs from 4.6% (95% PI 2.8, 6.5%) to
44.8% (95% PI 36.8, 52.6%).

The no-obesity scenario had the largest effect on
infections, hospital days, and YLL. Among the scenarios
with historical BMI distributions, the largest reduction
was observed in the scenario with the BMI distribution
of the year 2000, with a 9.2% (95% PI 8.1, 10.2%)
reduction in infections, a 15.8% (95% PI 14.2, 17.4%)
reduction in hospital days, and a 23.3% (95% PI 19.2,
27.7%) reduction in YLLs. Among the intervention
scenarios, the largest reduction was in the quadruple tax
scenario with a 6.1% (95% PI 3.6, 8.4%) reduction in
infections, a 9.7% (95% PI 6.3, 13.0%) reduction in
hospital days, and a 13.3% (95% PI 8.2, 18.3%) reduc-
tion in YLLs (Table 1).

The largest relative reduction in deaths was in the no-
obesity scenario (39.3%, 95% PI 32.1, 46.5%). The
highest reduction among the scenarios with historical
BMI distributions was that for the year 2000 (20.6%, 95%
PI 16.9, 24.6%), and for the intervention scenarios, in the
quadruple tax (11.6%, 95% PI 7.3, 15.8%). The labelling
scenario and the scenario with BMI distribution taken
from the year 2012 had a similar effect, while doubling
the tax scenario had the lowest effect overall (Fig. 3).

We observed an effect on the reduction of deaths in
children and adolescents (0–19 years), even though in all
scenarios their BMI distribution did not change. Had
the adults 20 and over had the BMI distribution of the
year 2000, 14.2% (95% PI 12.4, 16.0%) and 15.6% (95%
www.thelancet.com Vol 30 February, 2024
PI 13.8, 17.4%) of the deaths could have been averted in
age group 0–4 and 5–19 years, respectively; and in the
quadruple tax, 9.2% (95% PI 5.3, 13.0%) and 10.3%
(95% PI 6.0, 14.4) (Table 2).

The no-obesity scenario allowed us to estimate the
transmission-model PAF for COVID-19 outcomes due
to obesity: the reduction in expected deaths is 39.3%
(95% PI 32.1, 46.5%) overall, 52.5% (95% PI 43.2,
61.6%) for adults aged 20–64 and 23.8% (95% PI 18.7,
29.1%) for adults aged 65 and over. In comparison,
PAFs computed without considering transmission dy-
namics are 44.5% for adults aged 20–64 and 18.2% for
adults aged 65 and over (Supplementary Appendix B).

In our sensitivity analysis (presented in
Supplementary Appendix D), we find that, across all
5
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Scenario Age group

Total 0–4 years 5–19 years 20–64 years 65 and over

% (95% PI) % (95% PI) % (95% PI) % (95% PI) % (95% PI)

No obesity 39.3 (32.1, 46.5) 23.4 (21.2, 25.5) 24.8 (22.7, 26.8) 52.5 (43.2, 61.6) 23.8 (18.7, 29.1)

2000 20.6 (16.9, 24.6) 14.2 (12.4, 16.0) 15.6 (13.8, 17.4) 27.0 (22.3, 32.3) 12.9 (10.0, 16.2)

2006 9.9 (7.3, 12.9) 6.2 (4.9, 7.6) 7.1 (5.7, 8.6) 13.8 (10.2, 18.1) 5.3 (2.7, 8.2)

2012 6.9 (4.5, 9.5) 3.2 (2.1, 4.4) 3.7 (2.4, 5.0) 7.9 (4.3, 11.2) 6.0 (3.9, 8.5)

Labelling 6.2 (5.2, 7.3) 4.1 (3.8, 4.4) 4.7 (4.4, 5.1) 8.2 (7.0, 9.4) 3.9 (3.1, 4.7)

Double tax 4.1 (2.5, 5.7) 2.8 (1.6, 4.0) 3.2 (1.8, 4.6) 5.5 (3.2, 7.8) 2.4 (1.3, 3.5)

Treble tax 7.9 (4.9, 11.0) 5.6 (3.4, 8.4) 6.7 (3.9, 9.5) 10.7 (6.4, 15.1) 4.6 (2.6, 6.8)

Quadruple tax 11.6 (7.3, 15.8) 9.2 (5.3, 13.0) 10.3 (6.0, 14.4) 15.6 (9.5, 21.8) 6.8 (3.8, 9.9)

Values for the four age groups are shown separately. The column “Total” is the weighted sum of the four age-group columns. PI: prediction interval.

Table 2: Relative reduction in deaths from the reference scenario for all scenarios up to October 2021.
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scenarios, our estimates are sensitive to uncertainty in
the relationship between BMI and the relative risk of
death given hospitalisation. Within the tax scenarios,
there is sensitivity also to the relationship between
taxation and consumption, particularly for the age group
40–59 years old. These are the parameters that would be
most beneficial to learn to increase estimate precision.

Discussion
Using simulation modelling, we show how the preva-
lence of obesity played an important role in the lethality
and severity of the COVID-19 pandemic in Mexico. The
results from the historical BMI-distribution scenarios
suggest that the BMI increase of the Mexican population
over the last two decades led to a population more
susceptible to infection and severe COVID-19 outcomes.
It is important to note that in constructing these sce-
narios we used only the BMI distribution: we do not
capture any other ways in which population health
might have changed over time, ways that might also
have impacted COVID-19 dynamics for better or worse.
In the historical BMI distribution scenarios, the largest
reduction was in the scenario with the BMI distribution
taken from the year 2000 for all outcomes—infection,
hospital days, YLL, and deaths. We estimate that had the
BMI distribution been as it was in 2000, COVID-19
deaths could have been reduced by 20.6% (95% PI
16.9, 24.6%) for the whole population, or 27.0% (95% PI
22.3, 32.3%) for adults aged 20–64 and 12.9% (95%
PI 10.0, 16.2%) for those aged 65 and older. Among the
intervention scenarios, the largest reduction was
observed in the quadruple tax scenario.

The cause of the rise in obesity combines complex
social and economic factors which will not be reversed
by a single public health intervention.25–27 However, our
results suggest that strengthening our current in-
terventions, such as doubling the tax for non-essential
energy-dense food and SSB, could have averted be-
tween 2.5% and 5.7% of the deaths due to COVID-19.
Trebling tax or implementing front-of-pack warning
labels could have led to larger gains. Population-level
interventions to reduce BMI are being proposed and
tested across the world and they could be beneficial
beyond their immediate targets, such as the reduction of
obesity or chronic diseases,14,28 extending to reducing the
impact of infectious diseases such as COVID-19.

We estimated that the PAF for COVID-19 deaths due
to obesity was 39.3% (95% PI 32.1, 46.5%) for the whole
population, or 52.5% (95% PI 43.2, 61.6%) for adults
aged 20–64 and 23.8% (95% PI 18.7, 29.1%) for those
aged 65 and older. However, in the elderly groups, the
BMI is more likely to misclassify individuals29 due to
physiological changes associated with ageing, so we
could be under or over-estimating the PAF in this
group. Our estimated PAF for deaths is greater than
estimates of 30% for the US30 and 30% for the UK.31 The
countries have similar levels of obesity, but the PAF
computation did not account for disease transmission. It
is also greater than the 12.8% estimated for Mexico.11

However, the dataset used (COVID-19 surveillance)
suffered from underreporting of obesity: it reported an
overall prevalence of 15.2%, compared to 36.1% in
ENSANUT (Supplementary Table S2).

Our results show that timely interventions to
improve the underlying health state of populations pose
an important opportunity for pandemic preparedness,
independently of the benefits provided by the health-
system response. Chronic conditions, such as obesity,
hypertension, and diabetes, increase the risk of more
severe forms of different infectious diseases, such as
influenza H1N1.32,33 Under a sanitary emergency, a
healthier population will be a more resilient population.
This not only implies lower numbers of cases, severe
cases, and deaths but also a more manageable scenario
for the health system to respond to, which is particularly
critical for low- and middle-income countries. An
example that highlights the encompassing benefits of a
healthier population is our result that the number of
hospital person–days required was 26.9% lower in the
no-obesity scenario, which represents a substantially
www.thelancet.com Vol 30 February, 2024
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lower health-system burden. This would be in addition
to the reductions in health-system demand due to re-
ductions in obesity and its sequelae. While the differ-
ence in the number of infections was small relative to
the differences in hospitalisations, and deaths, the dif-
ference in cases of long COVID would likely be greater,
with people with obesity having an estimated odds ratio
of 0.34–0.74 for recovery within one year of infection.34

The complexity of the dynamics between chronic
diseases and the COVID-19 pandemic remains a chal-
lenge. We now have evidence that a high BMI increases
the risk of COVID-19 infection in addition to severe
outcomes8; therefore, reducing the prevalence of high
BMI is also expected to reduce infection rates for all
people, no matter their BMI. This insight cannot be
captured by static analyses of the burden of disease such
as the PAF as it is conventionally defined.17 With a dy-
namic model including BMI-dependent disease trans-
mission, we capture this effect. This is clearest in our
results for COVID-19 infections and deaths in people
under 20 years old, who were not subjected to changes
in BMI distribution and yet had lower incidence and
mortality. These reductions are a consequence of fewer
infections occurring among adults aged 20 and over.

Our study has some limitations. A source of uncer-
tainty in our model is to parameterize the effect of taxa-
tion and labelling campaigns on calories. We have used
published estimates and their uncertainty in Mexico,14

but the basis for the predicted effect of the labelling
campaign is a study in Canada. For the effect of taxation,
we assume a linear relationship between the level of tax
and the reduction in consumption, which extends beyond
the scope of the meta-analysis.21 We accounted for these
uncertainties by assigning them distributions and esti-
mating the expected health benefits under uncertainty
and assessing the sensitivity of our conclusions to these
values. In encoding the epidemic model, we assumed all
variables other than disease-state transition rates
impacted by BMI stay the same, most notably population
behaviour and government mandates. In reality, had the
prevalence been lower, individuals may have reduced
self-protective behaviour, and the government may have
employed lighter pandemic mitigation interventions,
which would have led to higher contact rates, and
therefore higher infection rates. Thus, our results present
an upper bound to the health gains corresponding to
each scenario, and scenarios with the highest reduction
in BMI, such as the no-obesity scenario, likely most
overestimate transmission reduction. We assumed that
the effects of vaccines are independent of BMI. There is
some evidence suggesting that vaccines could be less
effective at higher BMI35; therefore, our estimates of the
impact of BMI are conservative in this respect. We also
do not take into consideration how BMI impacts mor-
tality through any means other than COVID-19; in
particular, we do not account for how the population’s
age distribution might be different because of different
www.thelancet.com Vol 30 February, 2024
BMI profiles, i.e., we do not account for the non-COVID
benefits of BMI-reducing policies. Rather, we assume the
same age distribution as in the reference scenario for all
scenarios. Finally, we note that our method does not
permit reporting of final outcomes disaggregated by
ethnicity, gender, or socio-economic status. This is a
limitation of our compartmental epidemic model: to
disaggregate outcomes would require disaggregation of
all contact rates between the groups already present in the
model to account for mixing between different groups
within each setting (Refer to Supplementary Appendix E5
for setting-specific contact rates estimated for our model).

Pandemic plans detail many direct actions to reduce
the probability of infection, and to improve the health-
system response. However, the COVID-19 pandemic
provided clear evidence that the underlying health status
of the population modifies the impact of an emerging
infectious disease. Improving the population’s underly-
ing health should be considered as a priority pandemic
preparedness strategy. Our study explored the potential
impact of structural interventions in improving popu-
lation health through the reduction of obesity and
overweight and highlighted the magnitude of the impact
that interventions might have if they were able to change
the distribution of population BMI as dramatically as it
has changed in the last 20 years. Similar interventions
could be introduced to reduce other chronic conditions
that increase the susceptibility of populations, such as
undernutrition, diabetes, and hypertension. Including
specific interventions to improve population health
should be an integral part of any pandemic prepared-
ness plan, particularly for countries that are currently
experiencing a very large toll of chronic diseases.

Contributors
RJ took the lead on conceptualisation, formal analysis, investigation,
methodology, software, validation, visualisation and writing–original
draft, and contributed to data curation. MC contributed to con-
ceptualisation, data curation, formal analysis, investigation, validation,
visualisation, and writing–review & editing. ABA contributed to writing–
review & editing. DH contributed to conceptualisation, software, vali-
dation, and writing–review & editing. CM contributed to con-
ceptualisation, methodology, validation, and writing–review & editing.
PD contributed to conceptualisation, software, validation, and writing–
review & editing. GF contributed to conceptualisation, validation, and
writing–review & editing. KDH lead on funding acquisition, project
administration, resources, supervision, and contributed to con-
ceptualisation, methodology, validation, and writing–review & editing.
TBG contributed to funding acquisition, project administration, re-
sources, supervision, and contributed to conceptualisation, and writing–
review & editing. RJ, MC, CM, DH, and PD accessed and verified the
data, and RJ and MC were responsible for the decision to submit the
manuscript.

Data sharing statement
All data used are publicly available and cited within the text. Available
hyperlinks are given in References.

Declaration of interests
KDH declares receipt of personal fees from WHO, Pfizer and GSK for
work unrelated to this study, Payments for expert testimony by Infected
Blood Inquiry (UK) and stocks from Astra Zeneca. GF declares receipt
7

www.thelancet.com/digital-health


Articles

8

of personal fees from WHO and Imperial College London for consul-
tancies. RJ and PD declare receipt of personal fees from WHO for
consultancies on pandemic vulnerabilities and integrated epidemiolog-
ical—economic modelling, respectively.

Acknowledgements
This study received funding from Bloomberg Philanthropies; awarded
to Juan A. Rivera from the Norwegian Institute of Public Health. RJ,
DH, CM, PD, GF, and KH acknowledge funding from Community
Jameel and from the MRC Centre for Global Infectious Disease Analysis
(reference MR/X020258/1), funded by the UK Medical Research
Council (MRC). This UK funded award is carried out in the frame of the
Global Health EDCTP3 Joint Undertaking. RJ, DH, GF, and KH also
acknowledge funding by Kenneth C Griffin. RJ and DH acknowledge
funding by the World Health Organization. KH is also funded by the
National Institute for Health and Care Research (NIHR) Health Pro-
tection Research Unit in Modelling and Health Economics, a partner-
ship between the UK Health Security Agency, Imperial College London
and LSHTM (grant code NIHR200908). GF is also supported by the Jan
Wallanders and Tom Hedelius Foundation and the Tore Browaldh
Foundation grant No P19-0110. CM acknowledges the Schmidt Foun-
dation for research funding (grant code 6-22-63345).

Disclaimer: “The views expressed are those of the author(s) and not
necessarily those of the NIHR, UK Health Security Agency or the
Department of Health and Social Care.”

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.lana.2024.100682.
References
1 World Health Organization. International health regulations.

https://www.who.int/publications/i/item/9789241580496.
2 Kostova D, Richter P, Van Vliet G, Mahar M, Moolenaar RL. The

role of noncommunicable diseases in the pursuit of global health
security. Health Secur. 2021;19:288–301.

3 Gao F, Zheng KI, Wang XB, et al. Obesity is a risk factor for greater
COVID-19 severity. Diabetes Care. 2020;43:E72–E74.

4 Kim TS, Roslin M, Wang JJ, Kane J, Hirsch JS, Kim EJ. BMI as a
risk factor for clinical outcomes in patients hospitalized with
COVID-19 in New York. Obesity. 2021;29:279–284.

5 Kwok S, Adam S, Ho JH, et al. Obesity: a critical risk factor in the
COVID -19 pandemic. Clin Obes. 2020;10:1–11.

6 Sawadogo W, Tsegaye M, Gizaw A, Adera T. Overweight and
obesity as risk factors for COVID-19-associated hospitalisations and
death: systematic review and meta-analysis. BMJ Nutr Prev Health.
2022;5:10–18.

7 Kristensen NM, Gribsholt SB, Andersen AL, Richelsen B,
Bruun JM. Obesity augments the disease burden in COVID-19:
updated data from an umbrella review. Clin Obes. 2022;12:e12508.

8 Recalde M, Pistillo A, Fernandez-Bertolin S, et al. Body mass index
and risk of COVID-19 diagnosis, hospitalization, and death: a
cohort study of 2 524 926 Catalans. J Clin Endocrinol Metab.
2021;106:e5030–e5042.

9 Secretaría de Salud. Encuesta Nacional de Salud y Nutrición 2018:
presentación de resultados. https://ensanut.insp.mx/encuestas/
ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.
pdf.

10 Palacio-Mejía LS, Hernández-Ávila JE, Hernández-Ávila M, et al.
Leading causes of excess mortality in Mexico during the COVID-19
pandemic 2020-2021: a death certificates study in a middle-income
country. Lancet Reg Health Am. 2022;13:100303.

11 Reyes-Sánchez F, Basto-Abreu A, Torres-Alvarez R, et al. Fraction
of COVID-19 hospitalizations and deaths attributable to chronic
diseases. Prev Med. 2022;155:106917.

12 Colchero MA, Rivera-Dommarco J, Popkin BM, Ng SW. In Mexico,
evidence of sustained consumer response two years after imple-
menting a sugar-sweetened beverage tax. Health Aff. 2017;36:564–571.

13 Batis C, Rivera JA, Popkin BM, Taillie LS. First-year evaluation of
Mexico’s tax on nonessential energy-dense foods: an observational
study. PLoS Med. 2016;13:e1002057.
14 Basto-Abreu A, Torres-Alvarez R, Reyes-Sánchez F, et al. Predicting
obesity reduction after implementing warning labels in Mexico: a
modeling study. PLoS Med. 2020;17:e1003221.

15 Contreras-Manzano A, White CM, Nieto C, et al. Self-reported
decreases in the purchases of selected unhealthy foods resulting
from the implementation of warning labels in Mexican youth and
adult population. medRxiv. 2023. https://doi.org/10.1101/2023.11.
22.23298843.

16 Global Burden of Disease Collaborative Network. Global burden of
disease study 2019 (GBD 2019) reference life table (Technical report).
Seattle, United States of America: Institute for Health Metrics and
Evaluation (IHME); 2021.

17 Paynter S. Incorporating transmission into causal models of in-
fectious diseases for improved understanding of the effect and
impact of risk factors. Am J Epidemiol. 2016;183:574–582.

18 Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y
Nutrición. https://ensanut.insp.mx/.

19 Hall KD, Sacks G, Chandramohan D, et al. Quantification of the
effect of energy imbalance on bodyweight. Lancet. 2011;378:826–
837.

20 Camacho-Garcia-Formenti D, Zepeda-Tello D. bw: dynamic body
weight models for children and adults. R package version 1.0.0. 2018.

21 Teng AM, Jones AC, Mizdrak A, Signal L, Genç M, Wilson N.
Impact of sugar-sweetened beverage taxes on purchases and dietary
intake: systematic review and meta-analysis. Obes Rev. 2019;20:
1187–1204.

22 Haw DJ, Forchini G, Doohan P, et al. Optimizing social and eco-
nomic activity while containing SARS-CoV-2 transmission using
DAEDALUS. Nat Comput Sci. 2022;2:223–233.

23 Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC.
Global impact of the first year of COVID-19 vaccination: a mathe-
matical modelling study. Lancet Infect Dis. 2022;22:1293–1302.

24 Jackson C, Johnson R, de Nazelle A, et al. A guide to value of in-
formation methods for prioritising research in health impact
modelling. Epidemiol Methods. 2021;10:20210012.

25 Otero G, Gürcan EC, Pechlaner G, Liberman G. Food security,
obesity, and inequality: measuring the risk of exposure to the
neoliberal diet. J Agrar Chang. 2018;18:536–554.

26 Torres F, Rojas A. Obesity and public health in Mexico: trans-
forming the hegemonic food supply and demand pattern. Probl
Desarro. 2018;49:145–169.

27 Popkin BM, Ng SW. The nutrition transition to a stage of high
obesity and noncommunicable disease prevalence dominated by
ultra-processed foods is not inevitable. Obes Rev. 2022;23:e13366.

28 Illescas-Zárate D, Batis C, Ramírez-Silva I, Torres-Álvarez R,
Rivera JA, Barrientos-Gutiérrez T. Potential impact of the nones-
sential energy-dense foods tax on the prevalence of overweight and
obesity in children: a modeling study. Front Public Health. 2021;8:
591696.

29 Gallagher D, Visser M, Sepúlveda D, Pierson RN, Harris T,
Heymsfield SB. How useful is body mass index for comparison of
body fatness across age, sex, and ethnic groups? Am J Epidemiol.
1996;143:228–239.

30 O’Hearn M, Liu J, Cudhea F, Micha R, Mozaffarian D. Coronavirus
disease 2019 hospitalizations attributable to cardiometabolic con-
ditions in the United States: a comparative risk assessment anal-
ysis. J Am Heart Assoc. 2021;10:1–27.

31 Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors,
inflammatory mechanisms, and COVID-19 hospitalization: a
community-based cohort study of 387,109 adults in UK. Brain
Behav Immun. 2020;87:184–187.

32 Fezeu L, Julia C, Henegar A, et al. Obesity is associated with higher
risk of intensive care unit admission and death in influenza A
(H1N1) patients: a systematic review and meta-analysis. Obes Rev.
2011;12:653–659.

33 Viasus D, Paño-Pardo JR, Pachón J, et al. Factors associated with
severe disease in hospitalized adults with pandemic (H1N1) 2009
in Spain. Clin Microbiol Infect. 2011;17:738–746.

34 The PHOSP-COVID Collaborative Group. Clinical characteristics
with inflammation profiling of long COVID and association with 1-
year recovery following hospitalisation in the UK: a prospective
observational study. Lancet Resp Med. 2022;10:761–775.

35 Piernas C, Patone M, Astbury NM, et al. Associations of BMI with
COVID-19 vaccine uptake, vaccine effectiveness, and risk of severe
COVID-19 outcomes after vaccination in England: a population-
based cohort study. Lancet Diabetes Endocrinol. 2022;10:571–580.
www.thelancet.com Vol 30 February, 2024

https://doi.org/10.1016/j.lana.2024.100682
https://doi.org/10.1016/j.lana.2024.100682
https://www.who.int/publications/i/item/9789241580496
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref2
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref2
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref2
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref3
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref3
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref4
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref4
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref4
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref5
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref5
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref6
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref6
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref6
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref6
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref7
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref7
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref7
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref8
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref8
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref8
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref8
https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf
https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf
https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref10
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref10
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref10
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref10
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref11
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref11
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref11
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref12
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref12
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref12
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref13
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref13
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref13
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref14
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref14
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref14
https://doi.org/10.1101/2023.11.22.23298843
https://doi.org/10.1101/2023.11.22.23298843
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref16
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref16
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref16
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref16
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref17
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref17
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref17
https://ensanut.insp.mx/
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref19
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref19
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref19
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref20
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref20
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref21
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref21
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref21
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref21
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref22
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref22
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref22
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref23
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref23
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref23
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref24
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref24
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref24
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref25
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref25
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref25
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref26
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref26
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref26
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref27
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref27
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref27
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref28
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref28
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref28
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref28
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref28
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref29
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref29
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref29
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref29
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref30
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref30
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref30
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref30
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref31
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref31
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref31
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref31
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref32
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref32
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref32
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref32
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref33
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref33
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref33
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref34
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref34
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref34
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref34
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref35
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref35
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref35
http://refhub.elsevier.com/S2667-193X(24)00009-7/sref35
www.thelancet.com/digital-health

	Promoting healthy populations as a pandemic preparedness strategy: a simulation study from Mexico
	Introduction
	Methods
	Outcomes
	BMI impact on COVID-19 dynamics
	Statistical analysis
	Outline placeholder
	No-obesity scenario
	Historical BMI distribution scenarios
	Labelling scenario
	Tax scenarios


	Uncertainty
	Ethical approval
	Role of funding source

	Results
	Discussion
	ContributorsRJ took the lead on conceptualisation, formal analysis, investigation, methodology, software, validation, visua ...
	Data sharing statementAll data used are publicly available and cited within the text. Available hyperlinks are given in Ref ...
	Declaration of interests
	Acknowledgements
	Appendix A. Supplementary data
	References


