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Abstract

Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal 

phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and 

thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-

mesenchymal transition, morphologic changes to cells correlate with changes in chromatin 

structure and gene expression, ultimately driving this process. However, studies on the effects of 

inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact 

of epigenetic alterations in this process are limited. In this study we used high-resolution 

microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic 

arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after 

removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose 

inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic 

arsenic withdrawal several differential methylated sites were reversed, albeit not completely. 

Furthermore, these changes in DNA methylation mainly correlated with changes in gene 

expression at most sites tested but not at all. This study suggests that DNA methylation changes on 

gene expression are not clear-cut and provide a platform to begin to uncover the relationship 

between DNA methylation and gene expression, specifically within the context of inorganic 

arsenic treatment.
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1. Introduction

Environmental inorganic arsenic (iAs) exposure through contaminated water consumption 

represents a major public health concern (IARC, 2004; Tapio and Grosche, 2006; Salnikow 

and Zhitkovich, 2008; States et al., 2009; Cheng et al., 2012) and has been linked to 

cardiovascular diseases (States et al., 2009; Garcia-Esquinas et al., 2013), diabetes (Drobná 

et al., 2013), and a variety of cancers including lung (Hopenhayn-Rich et al., 1998), 

colorectal (Johnson et al., 2011), kidney (Hopenhayn-Rich et al., 1998), liver (Hopenhayn-

Rich et al., 1998; Chen et al., 2004) and skin cancers (Tseng et al., 1968; Rossman et al., 

2001). Inorganic arsenic is not a direct mutagen, rather it acts through other mechanisms to 

induce cellular transformation and epithelial-to-mesenchymal transition (EMT) (Rossman, 

2003; Klein et al., 2007). Several mechanisms have been proposed to describe how iAs-

induced toxicity promotes carcinogenesis; these include the induction of oxidative stress 

(Huang et al., 1999; Harris and Shi, 2003; Huang et al., 2004), inhibition of DNA repair, and 

chromosomal aberrations (Collins et al., 1995; Klein et al., 2007). In addition to these 

mechanisms, recent findings indicate that epigenetic factors, such as DNA methylation, play 

a central role in aberrant gene expression resulting from iAs exposure (Li et al., 2002; Li et 

al., 2008; Zhou et al., 2008, 2011).

DNA methylation, the most stable epigenetic mark, is a key factor in regulating gene 

expression (Robertson, 2005; Suzuki and Bird, 2008). This mark is catalyzed by DNA 

methyltransferases (DNMTs); DNMT1 is responsible for the maintenance methylation while 

DNMT3a and DNMT3b perform de novo methylation (Bestor, 2000; Goll and Bestor, 

2005). DNA methyltransferases facilitate this modification by the transfer of a methyl group 

from S-adenosyl methionine (SAM) to the 5′ carbon of cytosine residues (Bestor, 2000). 

This modification normally occurs in regions/contexts of high CpG density, known as CpG 

islands (CGIs). However, DNA methylation can also occur in non-CGI contexts. CGIs are 

typically concentrated at promoter regions but can be found in other regions (Bird, 2002) 

and methylation controls gene expression differently depending on its location. The presence 

of 5-methylcytosine at promoters is usually associated with transcriptional repression (Bird, 

2002). Conversely, absence of this mark, along with the presence of the appropriate 

transcription factors, promotes gene expression. However, within gene bodies and at 

intergenic regions, the effects of methylation are less definitive; therefore, studies are in 

process to elucidate the dynamic effects of DNA methylation in those contexts. Since 

methylation affects transcription factor binding ability (Perini et al., 2005), it is possible that 

DNA methylation functions prominently in cell and tissue identity and functionality.

Several mechanisms have been proposed to describe how iAs affects the DNA methylation 

profile in cells. The first involves the metabolism of inorganic arsenic. During iAs 

metabolism, arsenic methyltransferase (AS3MT) transfers a methyl group to arsenite, using 

SAM as a donor (Miao et al., 2015); this process could lead to a depletion of SAM, which is 

needed for a variety of other cellular processes. A second mechanism involves changes in 

the expression of DNMTs in response to chronic exposure to iAs. In trying to understand 

why DNMTs would be targeted, we found that the transcriptional repressor CTCF is 

targeted by iAs treatment, causing changes in CTCF occupancy at DNMT promoters (Cui et 
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al., 2006; Li et al., 2015a; Rea et al., 2017). Such disruption in the DNMT expression would 

effect changes in DNA methylation patterns.

Several studies that focus on profiling of the global changes in DNA methylation levels have 

been carried out in cells exposed to iAs; however, these studies have used low-resolution 

genome profiling techniques to investigate methylation patterns (Koestler et al., 2013). 

Clearly missing is an analysis of DNA methylation patterns at gene regulatory regions such 

as CpG islands, promoters, and enhancers. Recently, we carried out the first comprehensive 

study of DNA methylation changes with single-nucleotide resolution for cells chronically 

exposed to low doses of arsenic (Rea et al., 2017). In the present study, we extend our 

findings to determine changes in iAs-induced DNA methylation patterns in cells with 

chronic low-dose iAs exposure, as well as in cells that undergo a reversal of this treatment. 

Our studies include the analysis of DNA methylation profiles and correlations of gene 

expression changes in the cells, combining unbiased whole-genome and candidate gene 

approaches.

In this study, we aim to determine the effect of iAs on both permanent and reversible 

changes in DNA methylation and gene expression that drive EMT. Our lab previously 

showed that removal of iAs resulted in a reversal of some gene expression patterns 

(Riedmann et al., 2015; Rea et al., 2016). We reasoned that since epigenetic marks are 

reversible, some methylation patterns would revert to the nontreated condition when iAs is 

removed, thereby reversing some gene expression patterns, while others would remain 

stable. We therefore investigated the adaptive changes after reversal of the exposure.

2. Materials and methods

2.1. HeLa cell growth conditions and treatment

HeLa cells were grown using Dulbecco's modified Eagle medium (Sigma-Aldrich, St. Louis, 

MO) supplemented with 10% fetal bovine serum (Sigma-Aldrich), 1% MEM nonessential 

amino acids (Sigma-Aldrich), and 1% penicillin-streptomycin (Sigma-Aldrich). Cells were 

grown in a humidified chamber at 37 °C and 5% CO2 until they reached 80% confluency. 

For iAs exposure, cells were treated with 0.5 µM sodium arsenite (Sigma-Aldrich) for 

approximately 45 days. Time matched controls were treated with water (nontreated or NT 

cells). Reverse treated cells were treated with 0.5 µM sodium arsenite until day 36, at which 

point they were treated with water instead of sodium arsenite. Reverse treated cells were 

harvested 10 days after treatment reversal (day 46).

2.2. Western blot analysis

Whole cell protein was extracted from 5 × 106 HeLa cells. Cells were intermittently 

sonicated with 12 cycles of 30 s bursts/30 s rest (Diagenode Bioruptor 300) and centrifuged 

at 13000 rpm at 4 °C for 15 min to pellet cell debris. Protein concentration was measured 

using a BCA kit (Thermo Fisher) and 30 µg of total protein were run on a 10% or 15% SDS-

PAGE gel at 120 V until loading dye reached the bottom of the gel. Proteins were transferred 

to polyvinylidene fluoride membranes (PVDF) at 65 V for 90 min on ice. 5% milk + 

phosphate buffered saline with Tween (PBST) was used to block non-specific binding to the 
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membranes. Membranes were incubated with primary antibodies (Cell Signaling 

Technologies, Danvers, MA #9782, EMT Antibody Sampler Kit) (in 0.5% milk + PBST) 

overnight at 4 °C and then with secondary antibody (α-rabbit or α-mouse) the next day. 

Proteins were visualized with ECF (GE-Typhoon FLA9500) as outlined by the 

manufacturer.

2.3. Quantification of the 5-methylcytosine level in DNA

Genomic DNA was isolated from the cells and total 5-methylcytosine (5-mC) was 

determined using the 5-mC DNA ELISA kit (Zymo Research Corp., Irvine, CA, USA) per 

the manufacturer's instruction. Briefly, DNA is denatured and then treated with an anti-5-

methylcytosine monoclonal antibody that is both sensitive and specific for 5-mC. A 

secondary antibody containing horseradish peroxidase is then used to detect 5mC. Values are 

expressed as a percent 5-mC in a DNA sample calculated through a standard curve 

generated with specially designed controls that are included in the kit. Each ELISA was 

performed in triplicate and students t-test (p < 0.05) determined statistical significance.

2.4. Infinium MethylationEPIC BeadChip - methylation array analysis

2.4.1. Sample preparation for the chip—Genomic DNA from nontreated, treated, and 

reverse treated cells was extracted using the Qiagen DNeasy Blood and Tissue kit; samples 

were initially bisulfite converted using the Zymo EZ-96DNA Methylation Kit (Catalog 

#D5004) Deep-Well Format. DNA was treated with sodium bisulfite causing unmethylated 

cytosines to convert to uracil while keeping methylated cytosines unchanged. Then 4 µl 

(equivalent to 750 ng DNA) of the bisulfite- converted DNA was used as input for the 

Illumina Infinium HD Methylation Array. During this process, the bisulfite converted DNA 

samples were denatured, neutralized, and prepared for amplification. The amplified DNA 

was enzymatically fragmented and precipitated. The resuspended DNA samples were then 

dispensed onto Illumina's Infinium MethylationEPIC BeadChip, where they underwent a 

series of washing, extension, and staining procedures. The BeadChips are then coated for 

protection and scanned on the Illumina HiScanSQ. Once scanning was completed, the data 

were uploaded into GenomeStudio for preliminary and quality control analysis.

2.4.2. Data analyses—Target success rates were determined and the detection p-value 

was calculated as 1-p from the background model characterizing the chance that the target 

sequence was distinguishable from the negative control. Poor performing targets were 

defined as having p > 0.05 and were discarded. Sample replicates were checked for an r2 

value >0.99. For statistical analysis, beta values were calculated. The methylation levels of 

CpGs were described as beta values (0 to 1) representing the calculated level of methylation 

(0% to 100%). We had two technical and two biological replicates processed by chip 

technique. The Pearson correlation coefficients (PCCs) were >0.99 for all the replicates, 

confirming a good level of reproducibility for the chip process and indicating that the 

observed differential methylation between the cells (treatments) represented true biological 

differences. Functional normalization was performed using home scripts ‘Minfi 

preprocessFunNorm’ which does the background normalization. Additionally, the dye 

correction was performed using noob. All CpG sites with a detection value > 0.05, CpG sites 

with SNPs, as well as probes predicted to hybridize to more than one genomic location 
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(identified by McCartney et al. in Genomics Data, 2016) were removed. Experiments were 

done in duplicate and a high concordance was observed within each group.

2.5. qRT-PCR

RNA was isolated from 5 × 106 HeLa cells using an RNeasy Mini Kit (Qiagen). A reverse 

transcriptase reaction was set up containing iScript Reverse Transcriptase (Bio-Rad 

#1708891) and 1 µg of RNA, producing cDNA. Each qRT-PCR reaction contained 25 ng of 

cDNA and followed the following reaction protocol: 1) 94 °C for 5 min; 2) 94 °C for 30 s; 3) 

53– 65 °C (dependent on primer pair; Supplemental Table 1) for 30 s; 4) 72 °C for 45 s; 5) 

repeat 2–4 for 40 cycles; 6) 72 °C for 10 min. Primers for the housekeeping gene, GAPDH, 

were made using PrimerBank. qRT-PCR data was analyzed by the 2−ddCt method and 

student t-tests were performed to determine statistical significance.

3. Results

3.1. Cellular transformation and EMT

To determine the effect of iAs on the epithelial-to-mesenchymal transition (EMT), we used 

the common cervical cancer cell line, HeLa, which has been used extensively to study cell 

signaling and EMT (Deng et al., 2015; Li et al., 2015b; Riedmann et al., 2015). Interestingly, 

though carcinogenic, HeLa cells can still undergo EMT (Xiao et al., 2013), and specifically, 

iAs-induced EMT (Riedmann et al., 2015; Rea et al., 2016). In our experimental design (Fig. 

1A), HeLa media was replenished with 0.5 µM sodium arsenite every three to four days for 

45 days to allow cells to undergo iAs-mediated EMT (iAsT). This low-dose treatment 

simulates chronically exposed, environmentally relevant iAs levels that many people in 

mining regions experience (Nordstrom, 2002; IARC, 2004; NTP, 2014). We confirm our 

previous results showing that chronic low-dose treatment of cells with iAs resulted in 

epithelial-to-mesenchymal transition in HeLa cells (Riedmann et al., 2015; Rea et al., 2016; 

Rea et al., 2017). In addition, after continuous exposure, iAs was removed from some 

cultures and those cells were grown in media without iAs for 10 more days. We called this 

period of treatment without iAs “inorganic arsenic exposure reversal” (iAs-rev) and its 

purpose is to simulate situations where people are removed from chronic iAs exposure (Fig. 

1A).

In previous studies, we observed EMT through cell morphology as well as through qRT-PCR 

and western blot analyses of EMT markers (Riedmann et al., 2015; Rea et al., 2016, 2017). 

Morphologically, we observed that NT cells maintained an epithelial phenotype in which 

cells were round and small. Upon iAs treatment, cells developed a more mesenchymal 

phenotype, being elongated and spindle-shaped, suggestive of EMT (Riedmann et al., 2015; 

Rea et al., 2016). Through qRT-PCR and western blot analyses, we observed changes to 

cellular markers characteristic of cells undergoing the EMT process. Cell adhesion markers, 

such as β-catenin, Claudin-1, Claudin-3, and ZO-1, are expected to decrease in expression 

while transcription factors that promote a mesenchymal phenotype, such as Snail, Slug, and 

Vimentin, are expected to increase in expression (Riedmann et al., 2015; Rea et al., 2016). 

Additionally, upon reversal of treatment, we found that some EMT markers exhibited a 

moderate reversal in expression and protein levels (β-catenin, Slug, and Snail) while others 
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did not revert (Claudin-3 and Vimentin) (Rea et al., 2016). To validate that EMT is occurring 

in our current studies, we analyzed protein expression changes for EMT markers using 

western blot analysis and the changes in protein levels indicate that the cells indeed had 

undergone EMT (Fig. 1B). We found that Claudin-1 decreased in protein levels upon 

treatment and that Slug, N-cadherin, and Snail increased upon treatment. After reversal of 

treatment, some markers exhibited a moderate reversal such as Slug and N-cadherin, 

indicating that there was some reversal of the EMT conditions albeit not completely. 

Conversely, Claudin-1 and Snail did not revert back towards nontreated levels, which we 

also saw in previous studies (Fig. 1B). These results corroborate our previous data, 

indicating that cells treated with low doses of inorganic arsenic undergo EMT and that this 

transition is partially reversed when inorganic arsenic is removed.

3.2. Global DNA methylation level

After demonstrating that HeLa cells undergo EMT in response to iAs treatment and partial 

reversal with iAs withdrawal, we next identified the DNA methylation changes present in 

iAsT and iAs-rev cells. We first determined the levels of global DNA methylation in these 

samples using the Zymo 5-mC DNA ELISA assay. We found significantly higher DNA 

methylation levels in iAsT cells compared to NT cells (Fig. 2). In line with our reversal of 

EMT markers, we observed a reduction in global DNA methylation levels in iAs-rev cells 

compared to iAsT cells, and the amount of DNA methylation more closely resembled those 

in NT cells (Fig. 2). We interpret these data as indicating that global DNA methylation is 

reprogrammed in these cells and may correlate with changes in gene expression patterns.

3.3. Quantification of DNA methylation at specific sites

Since the 5MC DNA ELISA assay is a low-resolution technique that measures DNA 

methylation levels and only surveys a small sample of CpG sites, the Infinium 

MethylationEPIC BeadChip Array was used to further interrogate the differential 

methylation patterns globally, and at specific genes targeted in iAs-mediated EMT and 

reversal. This array has 853,307 CpG (850 K) sites, providing the ability to interrogate DNA 

methylation changes not only at promoters and gene bodies, but also at unexplored regions 

such as enhancers. Indeed, incorporated into this Chip are 333,265 CpG sites, including 

enhancer regions identified by the ENCODE (The, 2012; Siggens and Ekwall, 2014) and 

FANTOM5 (Lizio et al., 2015) projects. Thus, this is a valuable tool to decipher how DNA 

methylation changes in unexplored territories, such as enhancer sequences, contribute to 

arsenic-mediated diseases.

3.4. Global methylation changes

To identify possible targets for iAs-mediated DNA methylation reprogramming, we 

conducted methylation profiling of the NT, iAsT, and iAs-rev cells. We filtered DNA 

methylation data according to the following criteria: methylation changes should be more 

than two-fold and should have a p-value < 0.05 (Supplemental Figs. 1 and 2). Of the 

853,307 CpG sites, significant differences in DNA methylation were observed at 30,530 

CpG sites in iAsT when compared to NT, of which 67% (20,314 CpG) were 

hypermethylated and 33% (10,216 CpGs) were hypomethylated (Fig. 3). Upon reversal of 

arsenic treatment, some of the methylated sites did not revert to normal methylation in NT 
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conditions. A total of 53% of the DMRs still differed from NT cells; 77% of these CpGs 

(10,996 CpGs) were hypermethylated, while 23% (3,3339 CpGs) were hypomethylated (Fig. 

3). We then compared the DMRs in iAsT cells and iAs-rev cells. We observed that ~40,000 

sites had reverted towards the wildtype status - 20,997 hypomethylated and 20,589 

hypermethylated (Fig. 3). We hypothesize that although many DMRs revert to NT 

conditions, some were not reversed completely and so were still measured as DMRs by our 

analysis. While these global measurements are useful, they do not show differential 

methylation at specific gene regulatory regions.

3.5. iAs mediated DNA methylation changes in CGIs and non-island regions

Methylation is often concentrated at CGIs but can also be found in the regions surrounding 

CGIs (Fig. 4A). According to Illumina, a CGI is defined as a region in which there is GC 

content >50% in at least a 200 base pair region. Comparative analysis of the methylation 

patterns in CGIs, shores, shelves and open seas revealed significant differences in 

methylation patterns across NT, iAsT, and iAs-rev cells in certain CGI-related regions. The 

shelves (in blue), across all of the comparisons, only exhibited 2–3% hypo- or 

hypermethylation changes, indicating that DNA methylation of these specific regions may 

not play a prominent role in iAs-mediated EMT (Fig. 4B–D, all pie charts). For the shores 

(in purple), a slight decrease in hypomethylation was observed when comparing iAs-rev v. 

NT and iAsT v. NT (Fig. 4B and C, top pie charts). The most prominent changes in 

hypomethylation were observed within the CGIs (in orange) and open sea regions (in green). 

There was an increase in hypomethylation (15% to 25%) at CGIs upon reversal (Fig. 4B and 

C, top pie charts). On the other hand, in the open sea regions, the amount of 

hypomethylation was reduced upon reversal (55% to 49%) (Fig. 4B and C, top pie charts). 

This shift in the ratio of CGI to open sea hypomethylation could suggest that 

hypomethylation changes at the CGIs are more permanent while hypomethylation changes 

at the open seas are more transient and more prone to reversal when iAs treatment is 

removed.

In the shores (in purple), a slight increase in hypermethylation was observed when 

comparing iAs-rev v. NT and iAsT v. NT, which compensates for the slight decrease in 

hypomethylation, noted above (Fig. 4B and C, bottom pie charts). This shift in differential 

methylation at the shores was confirmed by the presence of more hypermethylation than 

hypomethylation in the iAs-rev v. iAsT comparison in Fig. 4D. This finding could suggest 

that the changes in the hypomethylated loci are more transient, or that the hypermethylation 

previously observed in treated cells is more permanent. At the CGIs, there is an increase in 

hypermethylation (11% to 14%) upon arsenic withdrawal, similar to the increase in 

hypomethylation in that region (Fig. 4B and C, bottom pie charts). For iAs-rev v. iAsT, the 

CpG islands exhibited 12% hypomethylation and 13% hypermethylation (Fig. 4D). In the 

open sea regions, the amount of hypermethylation was reduced from 66% to 61% upon 

reversal (Fig. 4B and C, bottom pie charts). Both hypo- and hypermethylation were reduced 

to a similar extent in the open seas after arsenic treatment was removed. When comparing 

iAs-rev to iAsT, the open sea represented 64% of the hypomethylated regions and 58% of 

the hypermethylated regions (Fig. 4D). The decrease in hypermethylation at the open seas 

and the increase in hypermethylation at CGIs after iAs withdrawal (which was also seen 
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with hypomethylation) could indicate that differential methylation in the open seas is not as 

permanent as differential methylation in the CGIs.

3.6. iAs-mediated DNA methylation changes in genes and gene regulatory regions

There are several regulatory regions within a gene that modulate gene expression and 

repression (Fig. 5A). We asked if there were any transient and/or permanent iAs-mediated 

methylation changes within these regions. We compared the methylation profiles across 

different regions of genes – 5′ and 3′UTRs (orange and gray respectively), gene body 

(purple), first exon (green), and regions 200 and 1500 base pairs (bp) upstream to the 

transcription start sites (TSS200 blue and TSS1500 red). When compared to NT cells, 

differential hypomethylation in iAsT cells is as follows – 25% at TSS1500, 11% at TSS200, 

15% at 5′UTR, 6% at first exon, 41% within the gene bodies and 2% within the 3′UTR 

(Fig. 5B, left bar). In all regions analyzed, there is a similar amount of hypo- and 

hypermethylation changes, except at the gene body and TSS1500, where we observed 41% 

hypomethylation to 49% hypermethylation and 25% hypomethylation to 19% 

hypermethylation. (Fig. 5B). We next asked if these methylation changes can be reversed by 

comparing DNA methylation patterns in NT cells and iAs-rev cells. Focusing mainly on the 

regions that were strongly differentially methylated, we first observed a 30% 

hypomethylation and a 45% hypermethylation change within the gene body (Fig. 5C). This 

seems to indicate a reversal of methylation patterns when considering the changes seen in 

iAsT cells in the gene body region. Surprisingly, we also observed a dramatic change in 

methylation at the first exon – 22% hypomethylation and 6% hypermethylation (Fig. 5C). 

However, our understanding of the implication of this shift in hypomethylation towards the 

first exon at the moment is not clear. Furthermore, the TSS1500, which exhibited 25% 

hypomethylation and 19% hypermethylation in iAsT cells compared to NT cells (Fig. 5B), 

also exhibited differential methylation in the reverse treated cells (Fig. 5C). In reversed 

conditions, compared to NT cells, the differential methylation pattern is 18% 

hypomethylation and 20% hypermethylation, which is the opposite of what was observed in 

iAsT cells, indicating that reversal of methylation patterns may be occurring upon removal 

of iAs treatment. In most cases, we observed some reversal in DNA methylation though it 

was not complete. To test directly if this is true, we compared methylation patterns in iAsT 

v. iAs-rev cells. Here too, we still observed differential methylation at the sites tested. The 

gene body had 52% hypomethylation and 48% hypermethylation (Fig. 5D). The TSS1500 

exhibited 20% hypomethylation and 24% hypermethylation (Fig. 5D). These findings verify 

that reversal of iAs treatment reversed DNA methylation patterns in gene regulatory regions, 

albeit not completely.

In order to better understand the DNA methylation changes occurring in genic regions, we 

performed Venn diagram comparisons of the differentially methylated genes. To begin, we 

compared those genes that are differentially methylated after iAs treatment (iAsT v. NT) 

with those that are differentially methylated after reversal of treatment (iAs-rev v. NT). The 

overlapping genes, of which there are 3582, are genes that had more permanent changes in 

methylation (Supplemental Fig. 3A); our reasoning being that these differential methylation 

patterns are present in both iAsT and iAs-rev cells.
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Next, we identified those genes whose methylation patterns reversed after removal of iAs by 

comparing genes that were differentially methylated after treatment (iAsT v. NT) to those 

that are differentially methylated between iAs-rev and iAsT cells. This comparison resulted 

in 6825 overlapping genes (Supplemental Fig. 3B). We consider these genes as those with 

methylation patterns that had reversed to normal conditions because the iAs methylation 

state is similar to NT but different from iAsT cells. This is further confirmed by looking at 

the overlap of genes that were hypomethylated in the iAs-T cells and those that were 

hypermethylated in the iAs-rev. Comparing these groups showed that about 82% of 

hypomethylated genes in iAsT showed hypermethylation in the iAs-rev (3472 genes of 4236 

total genes), while 71% of genes that were hypermethylated in iAsT showed 

hypomethylation in iAs-rev cells (4103 genes of 5774 total genes) (Supplemental Fig. 4).

Finally, we compared genes that were differentially methylated in iAs-rev cells to those that 

were differentially methylated between iAs-rev and iAsT cells. There were 4490 overlapping 

genes and we interpret these genes as those that are in transition between the NT and iAsT 

methylation state since their methylation state did not remain permanently changed but also 

did not completely revert to normal levels (Supplemental Fig. 3C).

3.7. iAs mediated DNA methylation changes at promoter associated regions

Promoter methylation is normally associated with gene repression. Thus to gain insight into 

the function of iAs-mediated reprogramming of DNA methylation patterns, we next focused 

our analyses of DNA methylation changes at promoter regions. Comparing iAsT to NT cells, 

we observed a near 50% hypomethylation in promoter-associated regions, of which 3.71% 

hypomethylation was associated with cell type specific promoter regions (Fig. 6A, top pie 

chart). This result is reasonable considering we are using the same cell type throughout this 

study. We next investigated if hypomethylation changes in promoter associated regions 

persisted after reversal of treatment. It seems that in iAs-rev cells (iAs-rev v. NT), there was 

little change – 48.58% to 49.03%, in promoter-associated hypomethylation in iAsT cells 

compared to iAs-rev cells (Fig. 6A and B, top pie charts). This may suggest that 

hypomethylation in promoter associated regions is stable and permanent and does not revert 

back to normal conditions upon reversal of iAs treatment.

We next analyzed hypermethylation at promoters. In iAsT cells, there was 38% 

hypermethylation in promoter-associated regions with 3.24% hypermethylation associated 

with cell type specific promoter regions when compared to NT cells (Fig. 6A, bottom pie 

chart). Interestingly, after withdrawal of iAs treatment (iAs-rev v. NT), there was a large 

increase in hypermethylation at promoter-associated regions (38.16% to 60.66%) (Fig. 6A 

and B, bottom pie charts). This was also accompanied by a decrease in hypermethylation in 

unclassified regions (25.68% to 19.8%) and unclassified cell type specific regions (30.83% 

to 14.78) (Fig. 6A and B, bottom pie charts). This shift in ratio could suggest that 

hypermethylation in promoter-associated regions is more permanent while hypermethylation 

in unclassified regions is more transient and able to revert back to normal levels after iAs 

withdrawal. The stark increase in hypermethylation at promoter-associated regions is 

validated by a higher ratio of hypermethylation than hypomethylation in that region in the 

iAs-rev v. iAsT comparison (Fig. 6C). While investigating DNA methylation changes within 
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specific gene regions is advantageous for understanding their function, our understanding of 

DNA methylation in non-promoter regions is still in its infancy. In this study, we have 

focused our attention to promoter and gene body methylation at specific genes and the 

correlation of their methylation status to gene expression levels.

3.8. Coupling of differential methylation and differential gene expression at specific loci

Next we asked whether these differential methylation patterns affect gene expression at the 

transcript level. DNA methylation present at the promoters of genes is typically associated 

with gene repression, and demethylation leads to gene expression (Bird, 2002; Perini et al., 

2005). On the other hand, the function of DNA methylation in gene body regions is not as 

definitive. It seems that methylation in the gene body functions in a manner opposite to that 

in the promoter region (Jjingo et al., 2012; Yang et al., 2014). In gene bodies, 

hypomethylation correlates with gene repression while hypermethylation correlates with 

gene expression (Yang et al., 2014). Additionally, DNA methylation in the gene body has 

been linked to regulation of alternative splicing so the full breadth of its function is still 

limited (Maunakea et al., 2013; Lev Maor et al., 2015; Yearim et al., 2015). To examine the 

impact of DNA methylation changes on gene expression in our experimental conditions, 

RNA was extracted from NT, iAsT and iAs-rev cells. This RNA was converted to cDNA and 

used for quantitative real time PCR analysis (qRT-PCR). For this analysis, we chose genes 

that showed significant differential methylation (Fig. 3) at the promoter region or within the 

gene body and that could potentially be implicated in EMT.

The first gene examined was CORO1B, which is important in cell motility regulation 

(Williams et al., 2012), and has hypomethylation at the promoter region (Table 1). qRT-PCR 

analysis at the transcript level of this gene showed an increase in gene expression in iAsT 

cells (Fig. 7A), correlating with the observed hypomethylation at the promoter region of this 

gene (Table 1). The level of gene expression remained high even after iAs was removed 

(iAs-rev cells), indicating that this change is more permanent. Interestingly, we were not 

able to identify any significant change in DNA methylation at the promoter of this gene in 

iAs-rev cells, possibly due to the cutoff stringency applied in the differential methylation 

analysis. The second gene we tested was PPME1, which plays a role in malignant glioma 

progression (Puustinen et al., 2009). qRT-PCR analysis showed no increase in gene 

expression in iAsT cells, though our genome-wide methylation data indicated this region as 

being hypermethylated (Table 1). This could possibly be explained by the fact that not all 

CpGs regulate gene expression. On the other hand, in iAs-rev cells, a significant increase in 

gene expression was observed (Fig. 7A), We also investigated the PPM1L gene, which is 

known to repress apoptosis (Ren et al., 2014). Expression levels of this gene were increased 

in both iAsT and iAs-rev cells compared to NT cells (Fig. 7A). These gene expression 

changes correlated positively with the increase in DNA methylation in the gene body of this 

gene in both iAsT and iAs-rev cells compared to NT cells (Table 1).

Five genes exhibited prominent downregulation after iAs treatment (Fig. 7B). For CDH12, 

expression decreased in iAsT cells and this decrease persisted with iAs-reversal (Fig. 7B). 

CDH12 is a type II classical cadherin protein (Shan et al., 2004) and the changes in its 

expression correlated with gene body hypomethylation, as well as promoter 
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hypermethylation, in iAsT cells compared to NT cells (Fig. 7B and Table 1). The decrease in 

expression from iAsT to iAs-rev also correlates with promoter hypermethylation identified 

in our genome-wide methylation studies. ARID5B, which is involved in histone demethylase 

complexes (Baba et al., 2011), had a decrease in expression in iAsT cells and remained at 

that level even in iAs-rev cells (Fig. 7B). This is somewhat surprising considering ARID5B 

has hypomethylation in its promoter region in iAs-rev cells (Table 1). For DYNC1I2, a 

member of the dynein intermediate chain family (Kuta et al., 2010), a decrease in gene 

expression was observed in iAsT cells compared to NT cells, while iAs removal resulted in 

upregulation of DYNC1I2 (Fig. 7B), correlating with the promoter hypomethylation 

observed in the microarray (Table 1). PRDX1, a peroxiredoxin family member, showed a 

decrease in expression during iAs treatment correlating with promoter hypermethylation in 

iAsT cells (Fig. 7B and Table 1). After removal of iAs, gene expression returned to normal 

levels (Fig. 7B). Lastly, gene expression at the EPC1 gene, a polycomb group member 

(Huang et al., 2014), correlated to the observed methylation changes – decreased gene 

expression in iAsT cells compared to NT cells with moderate reversal in iAs-rev cells, 

corresponding with gene body hypomethylation in iAs-rev compared to NT cells. So too, an 

increase in gene expression in iAs-rev cells compared to iAsT cells corresponded to the 

observed hypermethylation at the gene body of the EPC1 gene for iAs-rev v. iAsT (Fig. 7B).

The fact that expression of some genes such as PPM1L, DYNC1I2, PRDX1, and EPC1 
reverted to normal levels in iAs-rev and that those gene expression changes correlate to 

reversal of DNA methylation patterns suggests the role of epigenetics in this process. 

However, other changes instigated by iAs treatment were more permanent, such as the gene 

expression changes seen for CORO1B, PPME1, CDH12, and ARID5B and suggest that 

either these epigenetic factors were not reversed or that other factors together with 

epigenetics are stabilizing a more permanently changed gene expression state of the gene.

3.9. Global correlation of gene expression pattern with DNA methylation patterns

In order to further understand the biological significance of differential methylation in iAsT 

and iAs-rev cells, we examined the overlap of genes that were both differentially methylated 

as well as differentially expressed at the transcript level. For this analysis we reanalyzed our 

previous dataset (GSE60760) of iAs-mediated differentially expressed genes (Riedmann et 

al., 2015). To understand the pathways targeted in iAsT, we analyzed the overlap between 

genes differentially expressed in iAsT cells and those differentially methylated in iAsT cells. 

There were 270 genes that were both differentially methylated and differentially expressed 

in cells treated with inorganic arsenic (Supplemental Fig. 5A). For the sake of simplicity, 

Venn diagram analysis was performed on all genes that were differentially expressed as well 

as differentially methylated.

We then performed gene ontology (GO) analyses using the Gene Set Enrichment Analysis 

(GSEA) to identify regulatory pathways affected by both differential methylation and 

differential expression. Our analyses show that signal transduction pathways and 

development processes are enriched, indicating that these pathways are targeted by iAs 

(Table 2). Since we observed that iAsT cells were undergoing EMT, we analyzed the target 

genes for oncogenic signatures. Our analysis showed that some of the genes with differential 
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methylation and differential gene expression are involved in abnormal expression of K-RAS 

(an oncogene) in epithelial cells, particularly lung, breast, and kidney tissue (Supplemental 

Table 2).

We next asked if these pathways are still targeted in iAs-rev cells. We identified 187 genes 

that are both differentially methylated and differentially expressed in iAs-rev cells 

(Supplemental Fig. 5B). These genes represent those whose methylation patterns did not 

revert to normal levels and were more permanently changed. GO analysis of these genes 

showed enrichment in biological processes such as development and metabolic processes 

(Table 3). Investigating the oncogenic signature of these genes also revealed that they are 

involved in abnormal expression of K-RAS in lung, breast, and kidney epithelial tissue, 

similarly to iAsT cells (Supplemental Table 3). This could indicate that while some genes 

are reverting back to normal levels of expression, the genes that do not revert are driving the 

carcinogenic potential of iAs treatment.

Finally, we investigated those genes that are differentially methylated between iAs-rev cells 

and iAsT cells. These genes represent the group of genes that are transient and return to a 

more normalized condition after iAs removal (Supplemental Fig. 5C). GO analysis of these 

genes revealed enrichment in biological processes such as signal transduction, metabolism, 

and cell death (Table 4). Their oncogenic signatures again showed dysregulation of K-RAS 

in epithelial cells in lung, kidney, and breast tissue (Supplemental Table 4). A complete gene 

ontology listing of these genes with regards to their hyper- and hypomethylation state is 

found in Supplemental Tables 5–7.

In summary, we show that differential methylation influences differential expression, both 

during treatment and after the reversal of treatment. While some differential methylation and 

differential expression changes remained after reversal of treatment, others reversed back to 

normal conditions. Since the breadth of the impact of methylation is not completely known, 

we also observed that some methylation patterns which were reversed did not correlate with 

changes in gene expression. Additionally, it seems that even though some genes are 

reversed, the cells are still poised in an oncogenic state, as revealed by the oncogenic 

signatures. However, our data provides a platform enabling the probing of DNA methylation 

patterns, reversal of those patterns, and the function either in promoting direct gene 

expression and/or in the possible recruitment of factors that might aid in gene expression. 

This is especially intriguing as we observed that the K-RAS regulatory process might be 

specifically targeted by iAs in disease pathogenesis.

4. Discussion

To date, few studies have identified specific gene loci that are differentially methylated in 

response to chronic iAs exposure. The dose used in our experiments is biologically relevant 

and mimics the dosage many living in mining regions are exposed to daily (Nordstrom, 

2002; IARC, 2004; NTP, 2014). Sadly, in some countries, people are exposed to even higher 

amounts on a regular basis (Tsuda et al., 1995; Drobná et al., 2013; Koestler et al., 2013). 

Ours is the first study to distinguish between permanent and reversible DNA methylation 

changes using data from cells with treatment reversal. The treatment group that experienced 
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reversal of treatment is also biologically relevant as it imitates the case in which people 

move away from an area that has chronic low dose arsenic exposure, quit smoking, or 

otherwise remove themselves from environments where they are experiencing high levels of 

inorganic arsenic. All of these situations happen frequently and while these people 

experience a cessation of exposure, the biologic effects may still persist, as shown by this 

study.

Our studies show that chronic low-dose exposure to iAs leads to global methylation changes 

(Figs. 2 and 3) as well as differential methylation in gene regulatory regions (Figs. 4–6) and 

specific genes (Table 1). Differential methylation is concentrated to CGIs (Fig. 4), upstream 

promoter regions, and gene bodies (Fig. 5). The differential methylation correlates to 

changes in gene expression which may be a driving factor in the epithelial-to-mesenchymal 

transition (Figs. 1 and 7). Upon reversal of treatment, some methylation and expression 

changes revert to normal conditions and others do not (Fig. 7 and Table 1). Ontology 

analysis of genes targeted in iAs-mediated differential methylation patterns revealed an 

enrichment of cellular processes, such as cell signaling and development, after initial iAs 

exposure and enrichment of processes involved in metabolism after iAs withdrawal (Tables 

2–4).

Our study is unique in its investigation of biological consequences of removal of iAs 

exposure. The initial insult of chronic low dose exposure to iAs is clearly detrimental due to 

its ability to cause cellular transformation and EMT (Riedmann et al., 2015; Rea et al., 2016; 

Rea et al., 2017). However, the ramifications of iAs exposure do not fully disappear when 

exposure ends. It appears that while some changes partially revert back to normal conditions 

after exposure is removed, many changes remain in their abnormal state (Fig. 1). Previous 

studies showed this partial reversal in morphology, gene expression and protein levels of 

EMT markers, DNA methylation patterns, and gene expression patterns (Riedmann et al., 

2015; Rea et al., 2016; Rea et al., 2017). What we are now showing is methylation and gene 

expression changes due to withdrawal of iAs exposure. For DNA methylation and its effect 

on gene expression, we hypothesize that the genes that remain differentially methylated and 

expressed, such as CORO1B and CDH12, are driving transformation and EMT, while those 

that revert back to normal levels of methylation and expression, such as DYNC1I2 and 

EPC1, are involved in early adaptation to iAs exposure and are less involved in 

transformation and EMT. Additional studies will be needed to identify specific genes as 

drivers or passengers. By identifying specific genes that are differentially methylated 

between iAsT and its withdrawal, we can parse out which genes are still altered after 

reversal and which revert to a more normal phenotype. We hypothesize that as cells undergo 

iAs-mediated EMT, hypomethylation may be occurring at oncogenes while 

hypermethylation may be occurring at tumor suppressors.

We are also intrigued and encouraged by the fact that our previous studies in BEAS-2B cells 

and our current study in HeLa cells show similar results in EMT markers, DNA methylation 

patterns, and carcinogenic potential (Riedmann et al., 2015; Rea et al., 2016, 2017). This 

finding indicates that HeLa cells can be used as an effective model for chronic low-dose iAs-

mediated epithelial-to-mesenchymal transition. We witnessed similar changes in cell 

morphology expression and protein levels of EMT markers in both cell types. Additionally, 
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we found that DNA methylation instigates changes in gene expression patterns that 

contribute to EMT for both cell types. Furthermore, HeLa cells and BEAS-2B cells returned 

similar gene ontology results for pathways and processes that are being targeted in iAs 

treatment such as cell signaling and neurogenesis (Tables 2–4) (Rea et al., 2017). As would 

be expected, there were some minor differences between the results we observed in HeLa 

cells compared to BEAS-2B cells. For example, BEAS-2B cells had slight global 

hypomethylation while HeLa cells had slight global hypermethylation upon treatment (Rea 

et al., 2017). Differences could be due to the state of the cells used in the experiments. In our 

earlier studies, we used non-carcinogenic cells, whereas in this study, HeLa cells are already 

carcinogenic. Even though one cell line is carcinogenic and the other is not, iAs caused 

EMT in both and we believe that similar mechanisms are driving EMT in both cell lines. 

Transformation and carcinogenesis are dynamic processes that rely on several mechanisms, 

EMT being one of them. It seems that in HeLa cells, iAs treatment pushes EMT even 

further. It would be interesting to compare the changes seen in BEAS-2B and HeLa to 

determine which changes are contributing to cellular transformation and which are 

contributing to EMT.

For the most part, our expression data matched what we would expect based on the 

methylation present in the gene (Fig. 7). However, a few genes, such as PPME1, exhibited 

expression changes that were opposite of what we would expect due to the methylation data. 

One explanation is that not every CpG is able to influence gene expression with its 

methylation status; some CpGs are regulatory and others are not. With so much data, it's 

possible that not every CpG is regulatory. Some CpGs could be functioning as a location for 

other transcription factors or proteins to bind that may have functions other than mediating 

gene expression (Maunakea et al., 2013; Nalabothula et al., 2015). For many of the genes we 

investigated, there was differential methylation in several regions. In our data set, some 

genes had antagonistic methylation changes such as hypomethylation at one CpG in the 

promoter and hypermethylation at another CpG in the same promoter. It's been proposed that 

methylation may function differently depending on whether it's in an intron or exon (Lev 

Maor et al., 2015). Further research is needed to answer these questions and to understand 

the full function of gene body methylation in the context of low dose arsenic exposure. 

Clearly, we are at the beginning of understanding the full function of DNA methylation. 

Interestingly, recent studies have linked methylation changes to alterations in alternative 

splicing patterns (Maunakea et al., 2013; Lev Maor et al., 2015; Yearim et al., 2015). Our 

own previous studies implicated all of the genes from our gene expression experiment as 

having alternative splicing changes (Supplemental Table 8).

The vastness of the data we gained from the Infinium MethylationEPIC BeadChip Array 

underscores the complexity of differential DNA methylation in cells, and therefore the depth 

of our understanding. For instance, tens of thousands of loci are differentially methylated in 

response to low dose arsenic exposure and/or reversal of treatment (Fig. 3 and Supplemental 

Fig. 2); which of them is actually regulatory is the subject of additional study. However, 

inorganic arsenic is known to cause detrimental effects through mechanisms other than 

epigenetics, such as reactive oxygen species (Carpenter et al., 2011; Li et al., 2014; Zhang et 

al., 2015). It is also possible that both mechanisms are working together, enhancing biologic 

actions to drive the carcinogenic potential of iAs (He et al., 2012; Kang et al., 2012). Further 
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studies to understand this cooperation would be interesting. In addition to ROS, DNA 

methylation is also known to interplay with other epigenetic modifications such histone 

variants and histone post-translational modifications (Chervona et al., 2012; Riedmann et al., 

2015; Rea et al., 2016). Because other epigenetic marks are altered in iAs-mediated EMT, it 

is plausible that they all work collectively. For example, dysregulation of histones H2B and 

H3 has been implicated in iAs-mediated transformation and EMT (Brocato et al., 2015; Rea 

et al., 2016). Additionally, alterations in histone post-translational modifications have been 

shown in iAs-treated conditions including upregulation of the repressive mark H3K27me3 

and activation of the mark H3K4me3. It is hypothesized that crosstalk between all of these 

epigenetic marks – DNA methylation, histone variants, and histone post-translational 

modifications – control the chromatin landscape present in iAs treated cells. For example, 

DNA methylation and H3K27me3 are known to be coregulated and both dynamically 

monitor DNA accessibility and gene expression (Hagarman et al., 2013; de la Calle 

Mustienes et al., 2015). Therefore, the full implications of iAs exposure cannot fully be 

appreciated without understanding the crosstalk between epigenetic marks.

In conclusion, this study presents genome-wide changes to DNA methylation levels, as well 

as changes in gene expression in HeLa cells that were exposed to iAs at chronic low-dose 

levels, and also in cells that had the arsenic removed. We found that in many cases, the 

changes seen in cells exposed to iAs returned to near NT levels; these regions may be 

important in the cellular response to the iAs. However, many genes either do not revert to 

NT levels, or show an increased change in DNA methylation and gene expression. These 

genes may be involved in the EMT process that drives the carcinogenic effects with chronic 

low-dose iAs exposure. Our results provide a platform to develop potential epigenetic 

therapeutics in iAs-mediated carcinogenesis. Such studies could be extended to other 

environmental toxicants to enhance the understanding of their impact on the epigenome and 

gene expression.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

NT nontreated HeLa cells

iAsT 0.5 µM sodium arsenite treated HeLa cells

iAs-rev reverse treated cells

EMT epithelial-to-mesenchymal transition
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DMR Differentially Methylated Region

iAs inorganic arsenic

DNMTs DNA methyltransferases

SAM S-adenosyl methionine

CGI CpG island

AS3MT arsenic methyltransferase

qRT-PCR quantitative real time polymerase chain reaction

5mC 5-methylcytosine

5′UTR 5′ untranslated region

3′UTR 3′ untranslated region

TSS transcription start site

GO gene ontology

GSEA Gene Set Enrichment Analysis

H3K4me3 Histone 3 lysine 4 trimethylation

H3K27me3 Histone 3 lysine 27 trimethylation
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Fig. 1. 
Chronic low-dose exposure to iAs and subsequent reversal causes cells to undergo EMT. 

(A). Diagram of experimental design. HeLa cells were treated with 0.5 µM sodium arsenite 

(iAsT) while some were mock treated with dIH2O (NT). After 36 days of iAs treatment, 

sodium arsenite was removed from growth media for some treated cells and replaced with 

dIH2O (iAs-rev); (B). western blot analysis of EMT markers show HeLa cells undergoing 

iAs-induced EMT. Claudin-1 decreased with treatment, and remained decreased in the iAs-

rev condition. Some markers, like Snail, increased in the iAsT, but did not return towards NT 

levels in iAs-rev cells while N-cadherin and Slug increased in iAsT and returned towards NT 

levels.
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Fig. 2. 
Global DNA methylation levels are increased with 0.5 µM arsenite exposure. Results from 

the 5mC-ELISA show that 0.5 µM sodium arsenite exposure significantly increased global 

DNA methylation levels in HeLa cells. iAsT cells that had exposure removed (iAs-rev) 

showed a significant decrease from the iAsT DNA methylation levels; however, these are 

still significantly increased from NT levels. ELISA was performed in triplicate and error 

bars reflect the SEM of these replicates. Students t-test was performed for significance (p < 

0.05); * denotes difference from NT † denotes difference from iAsT to iAs-rev.
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Fig. 3. 
Methylation EPIC BeadChip Assay reveals global DNA methylation changes between NT, 

iAsT, and iAs-rev. Comparison of loci from NT v. iAsT shows that 67% of loci on the chip 

are hypermethylated in iAsT, while only 33% are hypomethylated. Comparison of 

methylation loci between NT and iAs-rev shows that 77% of loci are hypermethylated in 

iAs-rev while only 23% are hypomethylated. Comparison of iAsT and iAs-rev reveals that 

the loci are approximately equal for hyper- and hypomethylation, suggesting that when iAs 

is removed many loci return towards NT levels.
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Fig. 4. 
DNA methylation patterns show changes both within CGIs and outside of CGIs during iAs-

mediated EMT. (A). Diagram showing the relationship of CGIs and neighboring regions. 

CGI is defined as >50% CG content in at least a 200 base pair region. The north shore is 0–

2000 bp upstream of the CGI and north shelf is 2001–4000 bp upstream of the CGI. The 

south shore is 0–2000 bp downstream of the CGI and the south shelf is 2001–4000 bp 

downstream of the CGI. Open sea regions are >4000 bp outside of the CGI. (B). Regional 

methylation changes between iAsT v. NT (C). Regional methylation changes between iAs-

rev v. NT (D). Regional methylation changes between iAs-rev v. iAsT. Levels of methylation 

in shelves and shores stay relatively unchanged between groups and hyper- or 

hypomethylation. Prominent methylation changes occur at the CGIs and out in the open 

seas.
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Fig. 5. 
DNA methylation patterns within gene regulatory regions reveal large changes within gene 

bodies, at the 1st exon, and 200–1500 bp upstream of start of transcription. (A). Diagram 

mapping gene regulatory regions. TSS1500 is 200–1500 bp upstream of transcription start 

site (TSS), TSS200 is 1–200 bp upstream of TSS, 5′UTR is the 5′ untranslated region, 1st 

exon is the first translated region, gene body includes all other exons and all introns, and 

3′UTR is the 3′ untranslated region where translation ends. Outside of the TSS1500 and 

3′UTR is considered intergenic. (B). Gene regulatory methylation differences between iAsT 

and NT. (C). Gene regulatory methylation differences between iAs-rev and NT. (D). Gene 

regulatory methylation differences between iAs-rev and iAsT. Methylation within gene 

regulatory regions is generally stable throughout the treatment groups. Gene body and 

TSS1500 methylation shows the most variation between hyper- and hypomethylated DMRs.
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Fig. 6. 
DNA methylation level changes at promoter associated regions reveal large changes within 

the promoter and unclassified regions. Comparison of DMRs within different promoter 

types. (A). Regional promoter-associated methylation differences between iAsT and NT. 

(B). Regional promoter-associated methylation differences between iAs-rev and NT. (C). 

Regional promoter-associated methylation differences between iAs-rev and iAsT. Promoter 

methylation changes are most apparent at promoter associated (dark green) and unclassified 

regions (purple), which suggests that iAs targets distinct promoters and regions in 

methylation changes.
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Fig. 7. 
Correlation of differential methylation and gene expression. (A). Three genes were 

upregulated with iAs treatment. CORO1B and PPME1 both increased in expression with 

iAsT and a further increase was observed in iAs-rev. PPM1L increased in iAsT, but shifted 

towards NT levels with iAs-rev. (B). Seven genes were downregulated with iAs treatment. 

CDH12 and ARID5B decreased expression levels with iAsT as well as with iAs-rev. 

DYNC12, PRDX1 and EPC1 all decreased expression levels with iAsT, but with iAs-rev the 

expression levels increased closer to or even above NT levels. qRT-PCR reactions were 

performed in triplicate. * indicates a significant change when iAsT or iAs-rev is compared to 

NT and † indicates a significant change between iAsT and iAs-rev with p-value < 0.05.

Eckstein et al. Page 27

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2017 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Error bars are from triplicate experiments and represent SEM.
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Table 2

Gene ontology of differentially methylated and differentially expressed genes (iAsT v. NT).

GO term Number of genes p-Value

Intracellular signal transduction 36 3.05E−13

Intrinsic component of plasma membrane 36 1.22E−12

Receptor binding 32 2.93E−11

Cell development 31 5.74E−11

Tissue development 32 5.97E−11

Movement of cell or subcellular component 29 8.81E−11

Regulation of cell death 30 5.52E−10

Response to endogenous stimulus 29 1.67E−09

Negative regulation of response to stimulus 28 1.74E−09

Protein phosphorylation 23 2.43E−09

Gene ontology terms of differentially methylated and differentially expressed genes comparing iAsT to NT (270 total genes).
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Table 3

Gene ontology of differentially methylated and differentially expressed genes (iAs-rev v. NT).

GO term Number of genes p-Value

Intrinsic component of plasma membrane 32 3.90E−14

Cell development 23 7.07E−09

Response to oxygen containing compound 22 1.92E−08

Small molecule metabolic process 25 1.96E−08

Response to nitrogen compound 17 4.21E−08

Tissue development 22 9.99E−08

Neuron part 20 1.01E−07

Cell junction 19 1.11E−07

Cytoskeleton 25 1.52E−07

Response to endogenous stimulus 21 2.02E−07

Gene ontology terms of differentially methylated and differentially expressed genes comparing iAs-rev to NT (187 total genes).
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Table 4

Gene ontology of differentially methylated and differentially expressed genes (iAs-rev v. iAsT).

GO term Number
of genes

p-value

Intrinsic component of plasma membrane 46 5.76E−17

Receptor binding 38 4.46E−13

Intracellular signal transduction 39 6.68E−13

Regulation of cell death 36 8.35E−12

Phosphate containing compound metabolic process 42 1.18E−11

Negative regulation of cell death 27 2.35E-11

Response to endogenous stimulus 35 2.39E−11

Response to oxygen containing compound 34 2.79E−11

Biological adhesion 29 4.15E−11

Neurogenesis 34 4.16E−11

Gene ontology terms of differentially methylated and differentially expressed genes comparing iAs-rev to iAsT (322 total genes).
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