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Introduction

p63 is the most ancient member of p53 family of gene, in which 
is included, besides p53, also p73. p63, like the other two mem-
bers, uses an alternative promoter at the 5' end of the gene to 
allow the expression of two different N-terminal isoforms, one 
containing the N-terminal transactivation domain (TA isoform) 
and an N-terminal truncated isoform (ΔN isoform) that lacks 
this domain.1 Moreover, the C-terminal sequence undergoes 
alternative splicing that gives rise to a wide range of TA and ΔN 
isoforms with different C-terminal organization.2-4 The DNA 
binding domain (DBD) in the p53 family is the region with 
the highest degree of conservation among the different protein 
members and throughout the evolutionary lineage, and, there-
fore, all family members bind to conserved p53 response elements 
(p53RE) in promoter DNA. However, there may also be some 
subtle preferences in the precise nucleotide sequence in the RE 
recognized by different family members.
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p63 is a transcriptional factor implicated in cancer and 
development. The presence in TP63 gene of alternative 
promoters allows expression of one isoform containing the 
N-terminal transactivation domain (TA isoform) and one 
N-terminal truncated isoform (ΔN isoform). Complete ablation 
of all p63 isoforms produced mice with fatal developmental 
abnormalities, including lack of epidermal barrier, limbs 
and other epidermal appendages. Specific TAp63-null mice, 
although they developed normally, failed to undergo in 
DNA damage-induced apoptosis during primordial follicle 
meiotic arrest, suggesting a p63 involvement in maternal 
reproduction. Recent findings have elucidated the role in 
DNA damage response of a novel Hominidae p63 isoform, 
GTAp63, specifically expressed in human spermatic precursors. 
Thus, these findings suggest a unique strategy of p63 gene, 
to evolve in order to preserve the species as a guardian 
of reproduction. Elucidation of the biological basis of p63 
function in reproduction may provide novel approaches to the 
control of human fertility.
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The importance of the p53 family is highlighted by the global 
impact that these three genes have on cellular function. p53, 
the first family member to be identified, mainly acts as a tumor 
suppressor5-10 and plays a key role in maintaining the integrity 
of somatic cells in the vertebrate genome.11-15 Following DNA 
damage, activation of p5316-19 leads to cell cycle arrest,20-22 apop-
tosis,23-29 induction of senescence or differentiation.30-39 p63 par-
tially shares common functions in the DNA damage response 
with p53.40 After inactivating mutations of the p53 gene, found 
in more than 50% of human cancers,41-44 p63 and p73 can at least 
partially compensate for the functional loss of p53.45-55 However, 
p63 has its own very distinct roles. The first p63-knockout mouse 
models, independently generated by two groups in 1999, revealed 
a fundamental role for p63 in epidermal development. p63-null 
mice die shortly after birth due to the lack of an epidermal barrier 
and consequent dehydration. They also show additional devel-
opmental defects, including lack of limbs and other epidermal 
appendages. This phenotype led to two different interpretations: 
lack of proper epidermal stratification and commitment of epi-
dermal embryonic precursors, or a failure in the maintenance of 
the full repertoire of epidermal stem cells, despite normal com-
mitment and differentiation capabilities.56-62 However, accu-
mulating data favor the hypothesis that ΔNp63, the dominant 
isoform in the skin, is crucial for the maintenance of the epi-
dermal stem cell niche and for the proliferation of committed 
precursors.34,63-67 Conditional ΔNp63-null mice showed some 
patches of keratinocytes, which were able to stratify and undergo 
a program of terminal differentiation, as shown by the expres-
sion of loricrin, filaggrin and involucrin in the isolated clusters of 
disorganized epithelial cells.68 This finding supports the hypoth-
esis that the absence of p63 results in progenitor cell exhaustion 
of skin keratinocytes. The ΔNp63-null largely phenocopies the 
full p63-null (lacking all p63 isoforms) exhibiting severe devel-
opmental abnormalities including truncated forelimbs, absence 
of hind limbs and stratified epidermis.68 In contrast, the role of 
TAp63 isoforms in specifying epidermal development has been 
controversial. The TAp63-null mice developed by McKeon’s 
group did not show any evident morphological defects,69 while 
the TAp63-null mouse engineered in Flores’s lab, despite nor-
mal development, showed accelerated aging, blisters, skin ulcer-
ations, senescence of hair follicles and alopecia.69 This complex 
phenotype is dependent on defective proliferation and senescence 
of dermal and epidermal precursors, and suggests that TAp63 
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potentially vulnerable state; therefore, effective mechanisms are 
required for genomic integrity maintenance and the preservation 
of related species.

Although p63 appears to be completely dispensable for oogen-
esis, primordial and primary follicles show strong expression of 
TAp63. The high amount of TAp63 is maintained in an inac-
tive status by the inhibited dimer form, which presents a very 
low DNA binding affinity. Phosphorylation triggers a conforma-
tion change, which releases the inhibitory interaction within the 
dimer and allows TAp63 tertramerization, increasing the affinity 
for DNA and transcriptional machinery (Fig. 1).70-72 This tight 
control of p63 is necessary for the crucial function that TAp63 
exerts in controlling oocyte death. TAp63, indeed, is phos-
phorylated and activated following DNA double-strand breaks 
(DSBs), induced by ionized radiation or cisplatin treatment.73 
Oocytes from TAp63-null mice showed resistance to high doses 
of gamma irradiation, while WT oocytes or p53-null oocytes 
are completely killed.69 Phosphorylation appeared to irreversibly 
trigger TAp63 tetrameric state. Treatment with λ-phosphatase, 
though, leads to complete dephosphorylation of p63, does not 
affect tetramer conformation, preserving DNA binding affinity 
of TAp63. However, in contrast to the dimer, this active form 
shows high susceptibly to degradation. Consistently it has been 
shown that efficient degradation requires TA domain accessibil-
ity.74-77 Therefore, E3 ligase ITCH78 or MDM279-82 can control 
intracellular concentration of TAp63 active form, while dimers, 
hiding the ammino acid consensus for E3 ligases,16,83 preserve 
higher protein stability. These biochemical characteristics guar-
antee a constant high level of inactive TAp63, in a ready but 
inactive status that can be recruited when necessary. At the same 
time, this allows a short half-life for the active TAp63 to finely 
tune the oocyte death regulation, once the pathway has been irre-
versibly triggered. Recently, BH3-only proapototic BCL-2 fam-
ily members, PUMA84-89 and NOXA,90-94 have been identified as 
critical downstream targets of DNA damage-induced,90 TAp63-
mediated oocytes apoptosis.95,96 Primordial follicle oocytes from 
TAp63-null mice, indeed, failed to show induction of PUMA and 
NOXA following γ-irradiation. Consistently, PUMA or NOXA-
null mice are protected from γ-irradiation-induced apoptosis and 
produce healthy offspring, resembling TAp63-null mouse.97

In C. elegans, CEP-198,99 and from D. melanogaster, Dmp53100 
are the only p53 members present, and they are both exclusively 
required for germ line fidelity. It seems very likely that mamma-
lian TAp63 in DNA damage-induced apoptosis resembles their 
function. Moreover, considering the p53-independence of this 
function invertebrate, Mckeon proposed a model, whereby p63 
represents the ancestral member of p53 family. Therefore, while 
p63 conserves the ancestral function of maintenance of female 
germ line, p53 has acquired the “modern” role of genomic stabil-
ity control in somatic cells of vertebrate organisms.

Who Pulls the Trigger for TAp63 Activation?

Phosphorylation of TAp63 appears to be the critical step for acti-
vation of DNA damage response in oocytes. The tyrosin kinase 
c-Abl101,102 has been reported by Gonfloni et al. to be at least one 

may also have a role in maintenance of skin stem cells. However, 
McKeon’s work clearly showed that TA isoforms, encoded by p63 
gene, are strongly expressed in oocyte nuclei and are responsible 
for the protection of the female germ line during meiotic arrest.69 
In this review we will discuss the mechanism of p63 function in 
germ line protection, and we will analyze some aspects concern-
ing the evolutionary pressure which p63 has been undergone to 
refine its function.

p63 in Protection of Female Germ Line

Preservation of genomic integrity in somatic cells derives from 
evolution of mechanisms for germ line protection; this last pro-
cess, indeed, has been fundamental for maintenance of the spe-
cies during the evolution. Cells from female germ line undergo 
meiosis in order to generate haploid cells necessary for sexual 
division. Meiosis is a multiple steps process that starts during 
embryonic development and temporarily stops when cells reach 
a tetraploid state. This time window, in female germ line, is 
extraordinary extended for a long time period, until the specific 
hormone signaling induces the maturation of oocytes during the 
ovulation. The extended length of this phase (more than 1 y in 
mice and decades in humans) places the immature oocytes in a 

Figure 1. Schematic representation of TAp63a’s switch from an inac-
tive dimer to an active tetramer. Interactions within the TAp63a dimer 
maintain the transcriptional factor in an inactive form: the TA domain 
from one monomer respectively interacts with TI domain from oppo-
site monomer. Phosphorylation is required to open dimers and allows 
interaction for tetramerizion. C-Abl is one of the kinases able to trigger 
activating phosphorylation. TA, transactivation domain; TI, transactiva-
tion inhibitory domain.



www.landesbioscience.com Cell Cycle 4547

DNA damage response in spermatogenic precursors. Indeed, 
although TAp63 mRNA has been detected in mouse male germ 
cells,112,113 specific antibodies failed to clearly detect protein lev-
els, as shown as for female primordial follicles.69 Moreover, upon 
irradiation, mouse p63-/- testis did not show any significant dif-
ference in apoptotic response compared with WT.112,113

Recently, a novel p63 isoform, unique to Hominoidea (humans 
and great apes), has been identified in human testis.114,115 This 
isoform, termed GTAp63 (germ cell-encoded transactivating 
p63), rises from a more complex 5' region of human TP63 gene. 
Indeed, here three additional upstream exons (U1, U2, U3) that 
can be fused by alternative splicing with the previous described 
exon 2, generating different N-terminal splicing variants (Fig. 
3A). The most abundant splicing variant is originated by fusion 
of exon U1 with exon 2 and differs from the previous described 
TAp63 isoforms for a 19-residues long N terminus (Fig. 3B). 
GTAp63 is highly expressed in human male germ cell precur-
sors, while mostly undetectable in all other tissue. Upon geno-
toxic stress, it shows ability to induces apoptotic p53-responsive 
genes (PUMA, NOXA, CD95L), thus probably contributing to 
maintenance of spermatozoa genome integrity. Although pro-
tective mechanisms of germ cell genome are generally crucial 

of the upstream factors responsible for p63 phosphorylation. 
Gonfloni and collegues showed that upon cisplatin treatment, in 
postnatal day 5 (P5) mice, TAp63 was stabilized and phosphory-
lated (on tyrosine residues Tyr149, Tyr171, Tyr289) consistently 
with c-Abl nuclear accumulation, leading to oocytes death (Fig. 2). 
Inhibition of c-Abl, by imatinib,103 a BCR-ABL inhibitor designed 
and used for clinical treatment of CML (chronic myelogenous leu-
kemia), abolished TAp63 activation and protected mouse oocytes 
from cysplatin chemotherapy.73,104,105 This observation underlined 
the central role of c-Abl in regulation of primordial oocytes cell 
death and also partially clarified the molecular pathway involved 
in TAp63 recruitment during oocyte DNA damage response. 
Moreover, this would imply important medical considerations: 
inhibition of c-Abl/TAp63 axis, using, for example, imatinib, 
would open novel options to counteract oocytes cell death to pre-
vent female infertility during cancer chemotherapy. However, it is 
still controverted whether damage oocytes should die; preventing 
infertility to result in fetal malformation would be not feasible. 
On the contrary, a recent report has suggested caution about the 
possible application of anti-Abl treatment to prevent cysplatin-
induced infertility. In a correspondence to Nature Medicine editor, 
Kerr and colleagues showed how in their hands-on co-adminis-
tration of imatinib and cysplatin in two different mouse strains 
(CD1 and C57BL6) did not rescue the primordial follicle deple-
tion.24 Moreover, they showed that administration of imatinib 
alone increased the number of apoptotic oocytes, accordingly 
with a possible imatinib-dependent inhibition of the crucial fac-
tor for oocyte survival, c-kit.106 These results undermine the real 
indispensability of c-Abl for DNA damage-induced oocytes apop-
tosis. Furthermore, they raised the question about the low speci-
ficity of imatinib, which potentially affects enzymatic activity of 
some other tyrosin kinases, such as c-kit. Gonfloni and colleagues 
defended their hypothesis, repeating the crucial experiments by 
inhibiting c-Abl with an alternative compound, GNF-2, that has 
no affinity for the tyrosine kinase c-kit.107,108 With GNF-2, they 
confirmed the role of c-Abl in TAp63 activation. They explained 
the discrepancy of imatinib results with a different equivalency in 
the cysplatin solution used in the other work. Apparently, while 
Kerr et al. were using hospital-grade cysplatin solution, Gonfloni 
and colleagues were using cysplatin from Sigma. The difference 
in preparation may affect solubility of the compound, resulting 
in a different efficacy at the same concentration. However, the 
debate remains opened. How crucial is the c-Abl contribution for 
p63 phosphorylation for DNA damage-induced oocytes apopto-
sis? Multiple kinases showed ability to phosphorylate p63, includ-
ing ATM, Cdk2, p70s6K, p38MAPK,109,110 Iκβ, Plk,111 (Fig. 2). May 
any of them partially overcome c-Abl inhibition? Maybe address-
ing the questions whether the conditional c-Abl-null oocytes are 
sensitive to cysplatin-induced apoptosis and whether TAp63 is 
activated would help to clarify this point.

“GTA” p63 Relieves TAp63 in Protection  
of Hominoidea Male Germ Lines

Despite the fundamental role as guardian of female germ line, 
no evidence has been obtained for an involvement of TAp63 in 

Figure 2. DNA damage actives oocyte death by triggering TAp63 
phosphorylation. DNA damage leads to activation of TAp63 inducing 
its phosphorylation by different kinases. Activated TAp63 mediates 
the oocyte death by inducing transcription of BH3-only proapoptotic 
family members, PUMA and NOXA, which can inhibit pro-survival BCL-2 
proteins (BCL-2, BCL-w, A1, MCL-1, BCL-XL).
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acid N-terminal tail allow an at least partial, different promoter 
responsivity from p53? Further efforts on the study of this novel 
isoform will be extremely important to completely clarify p63 
contribution in human reproduction fidelity.

Concluding Remarks

Many invertebrates, such as C. elegans and Drosophila melano-
gaster, have only one p53 family member, which resembles more 
closely p63 and p73 than p53 from both structural and func-
tional aspects. The p53 members from C. elegans, CEP-1,98,99 and 
from D. melanogaster, Dmp53,100 are both exclusively required for 
germ line fidelity. The current most accredited theory, therefore, 
is that, from germ line fidelity control, p53 members have adapted 
their function over time in different tissues, controlling different 
processes, including tumor suppression and development. This 
is also supported by the fact that from the structural point of 
view, CEP-1 forms dimers via C-terminal domain, resembling 
the dimer-tetramer strategy adopted by mammalian TAp63. The 
ancestral reproduction role has been mainly maintained by p63 
as dimer-tetramer, while the subsequent tumor suppression role 
evolved in p53 as tetramer,120,121 suggesting a parallel structural-
functional evolution.
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for maintenance of all species, this appears particular critical 
in spermatogenesis of Hominoidea, since humans produce 100 
million of spermatozoa per day for a long lifespan. Expression 
of GTAp63, indeed, was phylogenetically allowed only recently 
in primate evolution, by insertion of an endogenous retrovirus, 
ERV9, coinciding with the Hominoidea lineage separation from 
other primates. The 5' portion of exon U1, indeed, overlaps the 
LTR sequences of ERV9, which are predominantly transcribed in 
testis. Therefore, GTAp63 expression is very likely the result of 
ERV9 LTR promoter activity. This insertion represented a posi-
tive event during the evolution, which fortified the expression of a 
guardian of genome. This has, indeed, enabled a more restrictive 
surveillance on genome of male germ line, probably coinciding 
with the requirement a longer fertile lifespan of these species.

Moreover, GTAp63 represents also a potential novel tumor 
suppressor candidate of testicular tumors. HDAC inhibition 
restores expression of GTAp63 in testicular carcinomas, where 
p63 expression is very often lost.114 Consequently, treatment with 
HDAC inhibitors,116,117 like SAHA currently under clinical use,118 
might sinergistically improve anticancer ability of conventional 
chemotherapeutic compounds,117,119 like cisplatin, by restoring 
GTAp63 expression

However, a complete understanding of GTAp63 functions 
is still far to be clarified. Due to limits of Hominoidea “experi-
mental system,” many questions remain elusive. One important 
issue, for example, concerns the dependence from p53 of DNA 
damage response in sperm precursors. Does GTAp63 contribute 
to p53-dependent apoptosis or act completely independent, mim-
icking TAp63 in oocytes? And does the additional 19-amino 

Figure 3. Human testis-specific p63 isoforms are encoded by unique upstream exons. (A) Gene architecture of human p63 gene shows presence 
of unique upstream exons, U1, U2, U3 (sky-blue). The GTAp63 testis-specific isoform is encoded by a direct fusion of exon U1 to exon 2 by premRNA 
splicing. The black arrows indicate, starting from their first exons, the three transcriptional start sites for GTA (exon U1, sky blues), TA (exon 1, brown) 
and ΔN (exon 3', gray). The downstream exons 10 and 14 undergo alternative splicing, encoding for the most abundant isoforms α and less abundant 
β and γ. The ERV9 LTR insert shows the transcriptional start site (TSS) of GTAp63. (B) N-terminal amino acid sequences of GTAp63 and TAp63. The 
19-amino acidic long N-terminal of GTAp63 encoded by exon U1 is highlighted in green, while in blue is highlighted amino acid sequence codified by 
exon 2. Red “M” indicates Metionines at translational starts of GTAp63 or TAp63.
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