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Salix integra Thunb., a fast-growing woody plant species, has been used for
phytoremediation in recent years. However, little knowledge is available regarding
indigenous soil microbial communities associated with the S. integra phytoextraction
process. In this study, we used an Illumina MiSeq platform to explore the indigenous
microbial composition after planting S. integra at different lead (Pb) contamination levels:
no Pb, low Pb treatment (Pb 500 mg kg−1), and high Pb treatment (Pb 1500 mg kg−1).
At the same time, the soil properties and their relationship with the bacterial communities
were analyzed. The results showed that Pb concentration was highest in the root
reaching at 3159.92 ± 138.98 mg kg−1 under the high Pb treatment. Planting S. integra
decreased the total Pb concentration by 84.61 and 29.24 mg kg−1, and increased
the acid-soluble Pb proportion by 1.0 and 0.75% in the rhizosphere and bulk soil
under the low Pb treatment compared with unplanted soil, respectively. However,
it occurred only in the rhizosphere soil under the high Pb treatment. The bacterial
community structure and microbial metabolism were related to Pb contamination
levels and planting of S. integra, while the bacterial diversity was only affected by Pb
contamination levels. The dominant microbial species were similar, but their relative
abundance shifted in different treatments. Most of the specific bacterial assemblages
whose relative abundances were promoted by root activity and/or Pb contamination
were suitable for use in plant-microbial combination remediation, especially many genera
coming from Proteobacteria. Redundancy analysis (RDA) showed available nitrogen and
pH having a significant effect on the bacteria relating to phytoremediation. The results
indicated that indigenous bacteria have great potential in the application of combined
S. integra-microbe remediation of lead-contaminated soil by adjusting soil properties.

Keywords: bacterial community, soil properties, Pb contamination, plant-microbe combined remediation,
redundancy analysis
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INTRODUCTION

Lead (Pb) is a widely distributed toxic element in soil with
no biological function (Kushwaha et al., 2018). It is produced
by mining and smelting activities, burning of leaded gasoline,
as well as disposal of sewage sludge, batteries, and other lead-
containing products (Huang et al., 2006). The accumulation
of Pb causes serious harm to human, particularly on children.
Many techniques to reduce its effects on ecosystems and humans
have been tried, including physical, chemical, and biological
processes, while most of them are high cost and also lead
to secondary pollution (Ma et al., 2016). Combined microbial
and plant remediation has become an popular way for its
low cost, no secondary contamination, and being superior to
single phytoremediation and microbiological methods (Khalid
et al., 2017). Hence, plant-microbial remediation has become a
research hotspot.

Although bacterially-assisted phytoremediation may seem
pretty good at first for remediation of heavy metal contaminated
soils, previous research has been performed only in pot culture
and focused on the function of a single microbial inoculum
(Hou et al., 2018; Zhang et al., 2018; Ramirez et al., 2019;
Ju et al., 2020). They overlooked the complexity of the plant-
soil environment in which abundant indigenous microbes may
surpass or suppress such inoculated microbes (Wood et al.,
2016; Kong et al., 2019; Xiao et al., 2020), and therefore the
practical application of bacterially-assisted phytoremediation has
generally been restricted (Xuliang et al., 2007; Kong et al., 2019;
Xiao et al., 2020). However, mounting research has proved the
importance of indigenous rhizosphere microbes in the process
of phytoremediation (Thijs et al., 2016; Egamberdieva et al.,
2017; Hou et al., 2019). A unique microbiome harboring in the
rhizosphere of hyperaccumulator Sedum alfredii made a great
contribution to the accumulation of trace metals (Hou et al.,
2017a). Plants can accumulate more trace metals in natural
soil than in γ-irradiated soil due to the differences in the
rhizosphere microbial communities (Muehe et al., 2015; Hou
et al., 2017b). Bacterial inoculation enhanced phytoremediation
through interactions with indigenous rhizosphere bacteria (Hou
et al., 2019; Joe et al., 2019). The study of the indigenous microbial
community is, therefore, very important for phytoremediation,
especially in the rhizosphere microenvironment.

Rhizosphere microbes are affected by soil physicochemical
properties and heavy metal concentrations (Philippot et al.,
2013; Guo et al., 2017; Lin et al., 2019; Cao et al., 2020). Soil
organic matter, nitrogen, and pH can greatly influence the soil
microbial structure and heavy metal content by affecting the
bioavailability of heavy metals in soil (Lin et al., 2019; Wang et al.,
2019a; Zhen et al., 2019; Cao et al., 2020). The soil N: P ratios
and available phosphorus affected bacterial biodiversity and
community composition in a reddish paddy soil (Huang et al.,
2019). Soil Na+ significantly changes dominant microbes in Cd-
contaminated soil (Wang et al., 2019b). Adjusting rhizosphere
microbial community structure could, therefore be used to
promote trace metal absorption by plants.

Salix integra Thunb., is a fast-growing woody species, with a
large biomass and deep root system (Kuzovkina and Volk, 2009;

Niu et al., 2019). It is a well-known Pb/Zn/Cd co-accumulator
native to China (Liu et al., 2011). Previous studies have evaluated
the ability of S. integra to absorb heavy metals such as Pb,
Cu, Cd, and Zn (Yang et al., 2014; Shi et al., 2017; Cao
et al., 2018, 2020; Yang et al., 2018). However, little is known
regarding the indigenous rhizosphere microorganism during
the phytoremediation by S. integra., which hinders the further
application of microbial remediation with S. integra. This present
study, therefore, investigates the characteristics of the indigenous
bacterial community after phytoremediation by S. integra under
different Pb levels using 16S rRNA gene amplicon sequencing
as well as the interaction impacts of Pb contamination and
root activity on the structure of soil bacterial communities. We
aimed to (i) evaluate the effect of planting S. integra and Pb
exposure on the indigenous bacterial community from different
parts of the experiment (rhizosphere, bulk, and unplanted) in
response to different Pb contamination levels, (ii) the effect of
planting S. integra on Pb bioavailability from different parts of
the experiment, and (iii) explore the key bacterial taxa involved in
the phytoremediation process of Pb-contaminated soil, and their
relationship with the soil properties.

MATERIALS AND METHODS

Study Site and Plant Material
The experiment was conducted in Baoding experimental
station of Hebei Agricultural University, Baoding City, Hebei
Province, China, which has a temperate climate (38◦45′21′′ N,
115◦24′37′′ E) with mean annual temperature ∼13.0◦C and
annual precipitation about 532 mm. The soil is a typical meadow
cinnamon soil in which the average concentration of Pb is
14.15 mg kg−1 lower than the soil background value (21.5 mg
kg−1 in Hebei province). S. integra is a shrub of the family
Salicaceae, and 1-year-old cuttings were selected for use with
similar growth and vigor in this study.

Experimental Set Up
The experiment was conducted in three square plots, 4× 4 m and
0.6 m deep. This method was closer to the natural growth of the
plant than pot experiments. Three Pb treatment regimens were
conducted on each of the plots: 0 mg kg−1 (CK), low Pb treatment
of 500 mg kg−1 (LT), and high Pb treatment of 1,500 mg kg−1

(HT). These correspond to the levels of Pb pollution found in
urban soils and lead mines in China (Wu et al., 2003; Qin et al.,
2019). Sheets of a perfluorinated ethylene-propylene copolymer
plastic were put on the bottom and sides of the three plots, to
prevent seepage. In each treatment, we planted S. integra and set
out the unplanted area at the same time. They were separated by
a PVC sheet in each plot. The layout of the study site is shown
in Figure 1.

Pb was added into the soil in the form of Pb(NO3)2 solution
in February 2017. The water volume was calculated by the
maximum water-holding capacity, and the weight of Pb(NO3)2
was calculated by dry soil weight and treat concentration. After
the powder of Pb(NO3)2 dissolving completely, it was sprayed
and mixed with soil. The soil was plowed and mixed every
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FIGURE 1 | The layout of the study site.

10 days, and were aged and equilibrated for 3 months under
natural conditions (the soil moisture being at ∼75% of the
maximum water-holding capacity), then the Pb concentration
was measured. One-year-old cuttings were grown in May 2017.
Eight cuttings were grown in each treatment. The awning with
a transparent plastic sheet was constructed above the experiment
area to avoid contaminating other soil when it rained. The control
and treatments were all take the same agronomic management
measures in the study period.

The initial soil properties were as follows: “organic carbon
2,780 mg kg−1, total nitrogen 240 mg kg−1, available nitrogen
22.28 mg kg−1, total phosphorus 510 mg kg−1, available
phosphorus 10.54 mg kg−1, total potassium 8,080 mg kg−1,
available potassium 278.4 mg kg−1, cation exchange capacity 8.46
cmol kg−1, and pH 8.14” (Niu et al., 2019). The Pb concentrations
were as follows: total Pb concentrations were 14.21 mg kg−1,
510.28 mg kg−1, 1513.45 mg kg−1 and the acid-soluble Pb
concentrations were 0.42 mg kg−1, 15.32 mg kg−1, 81.52 mg
kg−1 in CK, LT and HT, respectively.

Soil Sampling and Plant Harvesting
After 17 months growth (in September 2018), samples of the
plants, rhizospheric soil, bulk soil, and unplanted soil were
collected in three replicates under each treatment. It is important
to note that the aerial parts of the plant were ever reaped
in November 2017. The plants were completely uprooted and
shaken gently. After that, the soil adhering to the root was
collected by brush as the rhizosphere soil sample. The soil from
five plant roots was pooled as a mixed sample of rhizospheric soil.
The bulk soil and unplanted soil were all obtained by soil-drilling
at a depth of 20–30 cm, and five random spots were mixed as one
replicate. Approximately 3 g soil from each replication was stored
at −80◦C until DNA extraction. Residual soils were air dried to
measure soil physicochemical properties and Pb content. When
sampling, all tools were sterilized in different treatments.

At harvest, roots, trunk, branch, and leaves were harvested
separately, then rinsed thoroughly with water, and finally rinsed
with deionized water. The samples were through drying at 65◦C,
weighing, grinding, and passing through a 60 mesh sieve to
measure Pb content.

Soil Analyses
After the soil drying and passing through a 10 mesh sieve,
the soil properties were measured, such as available nitrogen
(AN), available phosphorus (AP), available potassium (AK), pH,
and cation exchange capacity (CEC), following the methods of
Niu et al. (2019).

Total Pb Content in Plant Tissues and
Soils
0.5 g of the powdered root, branch, leaf or soil was digested
in a mixture of HNO3 and HClO4 (10:1, v/v, 10 mL) by
microwave digestion (Sined, MDS-6, Shanghai, China). The
mixture was digested at 180◦C for about 3.5 h, until the
solution become clarification. It was diluted to 50 mL, and
filtered by 0.45 µm membrane. Total Pb in the extractant was
measured by atomic absorption spectrophotometry (AA-680,
SHIMADZU, Kyoto, Japan).

Fractionation of Pb in Soil
Partitioning of Pb was measured by the sequential extraction
procedure of Rauret et al. (1999), including the “acid-soluble,”
“reducible,” “oxidizable,” and “residual” fractions, using 0.5 g soil.
The extractions were as follows: acid-soluble extraction using
acetic acid (0.11 mol L−1, 16 h), reducible extraction using
hydroxylamine hydrochloride (0.5 mol L−1, pH = 1.5, 16 h),
oxidizable extraction using H2O2 (8.8 mol L−1, 2 × 1 h, 85◦C)
and then following extraction using ammonium acetate 1.0 mol
L−1. The digestion of residual fraction was through adding three
acids (4 mL HCl, 2 mL HNO3, and 2 mL HF). The different forms
of Pb were measured by atomic absorption spectrophotometry.

DNA Extraction, Bacterial 16S
Amplification, and MiSeq Sequencing
It is important to note that we measured only rhizosphere
and bulk soil samples in CK and the low Pb treatment (LT),
but measured rhizosphere, bulk, and unplanted soils in the
high Pb treatment (HT). The PowerSoil DNA isolation kit
(MOBIO, San Diego, United States) was used to extract soil
genomic DNA from 0.5 g soil following the manufacturer’s
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instructions, and a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, United States) was used to measure
DNA concentration. The V3-V4 regions of the bacterial 16S
rRNA genes were amplified using the primer set DBV34F
(5′-GTACTCCTACGGGAGGCAGCA-3′) and DBV34R (5′-
GTGGACTACHVGG GTWTCTAAT-3′). All PCR amplifications
were conducted in triplicate with a total reaction volume of 25 µL
containing 1 µL (5 µmol L−1) of each forward/reverse primer, 30
ng genomic DNA, BSA 3 µL (2 ng µL−1), 2 × Taq Master Mix
13.5 µL (Allwegene Biotech Co., Ltd., Beijing, China). The PCR
was carried out under the conditions: initial denaturation: 94◦C,
5 min; 25 cycles (denaturation: 94◦C, 30 s; annealing: 50◦C, 30 s;
and extension: 72◦C, 60 s); with a final extension: 72◦C, 7 min.
PCR amplicons were purified using a Purification Kit (Qiagen,
Shenzhen, China), and the concentration of purification was
measured by a NanoDrop 2000 spectrophotometer. Equivalent
PCR products from all repeats were combined into a mixed
sample, and sequenced using a MiSeqPE300 platform (Illumina,
United States; Allwegene Biotech Co., Ltd., Beijing, China).

Bioinformatic Analysis of 16S rRNA Gene
Sequences
QIIME v1.7.0 was used to de-multiplex, quality filter, and analyze
raw Illumina fastq files (Caporaso et al., 2012). Reads were filtered
with less than 200 bp long or 25 of the average quality score.
Chimeric sequences were removed using Chimera and filtered
by USEARCH (Edgar et al., 2011), and singletons were also
removed. Operational taxonomic units (OTU) were divided by
UCLUST according to 97% similarity threshold (Edgar, 2013).
Phylogenetic classification of the reads was identified according
to the Ribosomal Database Project (RDP), following 80%
threshold (Wang et al., 2007). The classification of representative
OTUs were according to similarity to the SILVA (release_132)
database. OTUs belonging to plants were removed. In order to
decrease the effects induced by sequencing depth, all samples
were rarefied to the same sequence depth. Shannon, Chao 1,
and Observed species were used to estimate the alpha microbial
biodiversity (Pagaling et al., 2014).

Statistical Analyses
Each data point represented the results of three replications
performed as average value ± standard error. The effects of
Pb contamination levels and planting S. integra on different
treatments were tested by a two-way ANOVA. The Shapiro-
Wilk test was used to check the analyzed features’ normality.
The significant differences were checked by the least significant
difference (LSD) in the parameter test or the Kruskal-Wallis
test in the non-parameter according to the distribution of the
estimated parameters. In all analyses, p-value < 0.05 meant
significant difference. The package SPSS 19.0 (IBM, America)
was used to analyze the data. Redundancy analysis (RDA)
was conducted to test the relationship of soil properties and
bacterial communities performed by the software CANOCO
(Windows version 4.5) (Biometris-Plant research international,
Wageningen, the Netherlands). Non-metric multidimensional
scaling (NMDS) was used to visualize differences based on
community composition by the metaMDS function of the vegan

package in R package. The microbial metabolism heat map and
cluster analyses were conducted, based on relative abundance
and Bray-Curtis distances, with the agnes function of the cluster
package in R package.

RESULTS

Effect of Pb on Plant Growth and Heavy
Metal Uptake
Plants were exposed to the Pb-polluted and unpolluted soil
for 17 months and appeared significant difference in biomass
(Supplementary Table S1). On the whole, the growth of S. integra
was not inhibited in the low Pb treatment (Pb500). The plant
biomass in CK (Pb 0) and the low Pb treatment had no
significant difference, but both were higher than in the high
Pb treatment (Pb1500). The total amount of Pb uptake by
S. integra was highest in the high Pb treatment, followed by
the low Pb treatment. Pb concentration was highest in the root,
reaching 1221.36 ± 111.36 mg kg−1 in the low Pb treatment
and 3159.92 ± 138.98 mg kg−1 in the high Pb treatment,
followed by the trunk and leaf, and lowest in the branch
whether in CK, low Pb treatment, or high Pb treatment. It
may be contributed to the lower transfer factor from the root
part to the aerial part. The Pb concentrations in S. integra
planted in Pb-treated soils were significantly greater than that
planted in the control soils. Heavy metal accumulation in
the plant was related to heavy metal concentration in soil.
The Pb accumulation of S. integra grown in soil containing
1,500 mg kg−1 Pb was 1.98 times as much as that grown
in soil containing 500 mg kg−1 Pb. The results got here
clearly show that S. integra has great potential to tolerate high
Pb concentrations.

Soil Chemical Properties
The contents of available potassium and available nitrogen
were affected by the interaction of Pb contamination level
with soils from different parts of the experiment (rhizosphere,
bulk, and unplanted), while available phosphorus and CEC
were only affected by Pb contamination or by differences
in the soil samples (Supplementary Figures S1A–E). Overall,
Pb contamination had a negative effect on CEC, available
potassium, and available phosphorus, and had a positive effect
on available nitrogen. However, root activity promoted them
all, except CEC.

Pb Content in Rhizosphere, Bulk, and
Unplanted Soil After Phytoremediation
The total Pb concentration after the phytoremediation decreased
by 84.61 mg kg−1 in rhizosphere and 29.24 mg kg−1 in
bulk soil in the low Pb treatment (LT), but it occurred
only in the rhizosphere soil in the high Pb treatment (HT)
(Figure 2A). However, there was no significant difference
between bulk and unplanted soil in the high Pb treatment.
Four different fractions of Pb from soil samples were
extracted and analyzed (Figures 2B–E). Phytoremediation
decreased the acid-soluble Pb concentration of planted soil
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FIGURE 2 | Different fractions Pb content in rhizosphere, bulk, and unplanted soil after phytoremediation. (A) Total Pb. (B) Acid-soluble Pb. (C) Reducible Pb.
(D) Oxidizable Pb. (E) Residual Pb. LR, rhizosphere soil in the low Pb treatment; LN, bulk soil in the low Pb treatment; LU, unplanted soil in the low Pb treatment;
HR, rhizosphere soil in the high Pb treatment; HN, bulk soil in the high Pb treatment; HU, unplanted soil in the high Pb treatment. Different letters indicate that the
values differ significantly at p < 0.05.

in the high Pb treatment, but showed the opposite effect
on the low Pb treatment. It increased the concentration
of oxidizable Pb and decreased the concentration of
residual Pb in planted soil compared with unplanted soil.
The concentration of acid-soluble Pb, oxidizable Pb, and
residual Pb were all higher in bulk than in rhizosphere
soil, except residual Pb in the high Pb treatment. The
concentration of reducible Pb showed no significant difference
between planted soil and unplanted soil in the low Pb
treatment. However, it was higher in the bulk and lower in

rhizosphere soil compared with unplanted soil in the high Pb
treatment, respectively.

Partitioning of Pb in Rhizosphere, Bulk,
and Unplanted Soil After
Phytoremediation
The ratio of Pb under four fractionations was similar in different
samples (Figure 3). Quite a large amount of residual and
reducible Pb was found in the soil, but very little oxidizable and
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FIGURE 3 | Effect of S. integra phytoremediation on speciation of Pb (%) in the low and high Pb treatments. LR, rhizosphere soil in the low Pb treatment; LN, bulk
soil in the low Pb treatment; LU, unplanted soil in the low Pb treatment; HR, rhizosphere soil in the high Pb treatment; HN, bulk soil in the high Pb treatment; HU,
unplanted soil in the high Pb treatment. Different letters indicate that the values differ significantly at p < 0.05.

acid-soluble Pb. Planting S. integra promoted the proportion of
bioavailable fractions in the low Pb treatment, but not in the high
Pb treatment. Compared with the unplanted soil, the acid-soluble
Pb proportion in the rhizosphere and bulk soil was increased
by 1.0 and 0.75%, respectively, and the residual Pb proportion
was decreased in the low Pb treatment. Furthermore, the acid-
soluble Pb proportion of the rhizosphere soil was highest in
the low Pb treatment, but decreased in the high Pb treatment
when compared with the unplanted soil. The acid-soluble Pb
proportion was higher in the low Pb treatment than in the high
Pb treatment, whether in the rhizosphere or bulk soil, while the
residual Pb proportion showed the opposite trend. The reducible
and oxidizable Pb proportion showed a similar trend, and they
were all promoted by phytoremediation in the rhizosphere and
bulk soil when compared with unplanted soil.

Sequencing Summary of the
Pyrosequencing Data and Alpha
Diversity Indices
The high-quality reads generated by 16S rRNA gene amplicon
sequencing were classified according to a 97% sequence identity
threshold, which produced 5,505 bacterial operational taxonomic
units (OTUs). A total of 5,505 different OTUs belonged to 660
genera, 396 families, 257 orders, 117 classes, and 41 phyla.
Of these OTUs, only 0.1% belonged to archaea. The coverage
rang were between 94.45 and 95.57%, showing that most of the
bacterial taxa were detected in the soil samples (Table 1).

Alpha-Diversity of the Bacterial
Community and Venn Diagram
The observed species, Chao 1, and Shannon index were used
to compare alpha-diversity of the bacterial community among
different samples, and they were only significantly influenced by
Pb contamination levels (Supplementary Figure S2A). Chao 1
appeared decreasing trend with increase of Pb levels regardless
of sampling from different parts of the experiment. However,
observed species and Shannon’s index were only decreased in the
high Pb treatment, and showed no significant difference between
the CK and low Pb treatments. The shared genera of bacterial
communities were performed by Venn diagrams among samples
(Supplementary Figure S2B). The vast majority of the genera
were common to all samples, which was likely caused by the same
soil source and similar experimental conditions.

Bacterial Community Structure
The non-metric multidimensional scaling (NMDS) analysis
revealed a clear differentiation of bacterial community
structure (Figure 4A). The bacterial community composition of
rhizosphere, bulk, and unplanted soil samples from different Pb
contaminations formed distinct clusters in the NMDS ordination
plots, implying that the bacterial community structure was
affected by the root activity and Pb contamination. To provide
a functional understanding of the microbial community in the
different samples, the metabolic functions were predicted by the
software Picrust and the KEGG database (Langille et al., 2013).
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TABLE 1 | Summary of the pyrosequencing data and alpha diversity indices.

Index Treatments

CR CN LR LN HR HN HU

Total raw tags 194,996 152,915 256,015 192,393 198,422 172,903 143,422

No. of OUT 2865.33 ± 123.45 2806.33 ± 62.13 2739.33 ± 16.25 2754.66 ± 32.02 2561.33 ± 35.50 2580 ± 44.17 2657 ± 94.72

No. of phylum 28 ± 0.73 30 ± 1.2 29 ± 1.62 29 ± 0.25 26 ± 1.78 30 ± 2.13 29 ± 1.25

No. of class 86 ± 2.56 81 ± 3.21 90 ± 3.0 86 ± 1.56 82 ± 1.45 84 ± 2.12 88 ± 2.41

No. of order 227 ± 5.26 230 ± 6.58 231 ± 4.58 232 ± 4.89 230 ± 3.56 221 ± 3.12 236 ± 4.25

No. of family 244 ± 3.26 246 ± 5.26 250 ± 5.42 237 ± 3.65 239 ± 3.24 235 ± 4.58 256 ± 5.12

No. of genus 360 ± 4.26 340 ± 5.23 359 ± 6.23 353 ± 4.26 345 ± 5.89 358 ± 6.48 325 ± 5.74

Chao1 3823.29 ± 113.26 3822.51 ± 92.21 3728.72 ± 76.33 3754.08 ± 34.72 3538.95 ± 12.98 3551.97 ± 123.80 3620.19 ± 82.11

Observed species 2759.63 ± 121.03 2699.3 ± 60.06 2637.76 ± 19.96 2647.36 ± 35.95 2462.26 ± 38.03 2480.26 ± 38.25 2553.4 ± 91.01

Shannon 9.85 ± 0.12 9.72 ± 0.07 9.66 ± 0.004 9.73 ± 0.03 9.44 ± 0.08 9.46 ± 0.06 9.53 ± 0.11

Coverage (%) 95.12 ± 2.12 94.45 ± 2.47 95.57 ± 3.12 94.25 ± 3.54 95.54 ± 2.58 94.32 ± 3.78 94.47 ± 2.89

CR, rhizosphere soil in CK; CN, bulk soil in CK; LR, rhizosphere soil in the low Pb treatment; LN, bulk soil in the low Pb treatment; HR, rhizosphere soil in the high Pb
treatment; HN, bulk soil in the high Pb treatment; HU, unplanted soil in the high Pb treatment.

From the metabolism heat map (Figure 4B), we can see that
microbial metabolism has significant differences in different
samples, especially amino acid metabolism and carbohydrate
metabolism. They were also clustered in relation to the Pb
contamination levels and root activity. The microbial metabolism
of the low Pb treatment was more similar to CK.

The sequencing reads obtained from all samples classified at
the phylum level were attached to 14 bacterial phyla (Figure 4C).
The dominant phyla with relative abundance more than 1% of the
overall community in each sample were similar, while the relative
abundance shifted. The relative abundance of Proteobacteria was
highest, and was increased by root activity which was higher
in rhizosphere soil, and promoted in the low Pb treatment
compared with CK (Table 2). However, Actinobacteria showed
the opposite trend, being higher in bulk soil, and improved in the
high Pb treatment compared with CK. The interaction of soils
from different parts of the experiment and Pb contamination
had a significant effect on Acidobacteria and Patescibacteria
(Table 2). Overall, Acidobacteria was decreased in the high
Pb treatment regardless of whether in rhizosphere soil, bulk
soil, or unplanted soil, but not in the low Pb treatment.
Patescibacteria was increased only in the high Pb treatment
and higher in the bulk soil. Both the relative abundance
of Gemmatimonadetes and Chloroflexi were higher in the
bulk soil, while only Gemmatimonadetes was decreased by Pb
contamination. Bacteroidetes was higher in the bulk soil and
increased in the high Pb content (Table 2).

Specific Bacterial Assemblages in
Different Samples
The metastasis were used to analyze the specific bacterial
assemblages whose relative abundance showed significant
changes between rhizosphere and bulk soil in different treatments
(Table 3). There were 88, 62, and 91 specific bacterial assemblages
at a general level in CK, the low Pb treatment, and the high
Pb treatment, respectively. In order to measure the effect of
Pb contamination and root activity on the relative abundance

of specific bacterial assemblages, two-way ANOVA was used to
test 17 general bacteria that emerged in the top 10 microbes of
relative abundance in each sample. From Tables 3A,B, we can
see that Lysobacter, Pseudomonas, Allorhizobium, Steroidobacter,
Skermanella, and Acidovorax were affected by the interaction of
Pb contamination and root activity. The others were affected
by Pb contamination and/or root activity. Overall, the relative
abundances of partial bacterial genera were increased by Pb
contamination and root activity; examples were Lysobacter,
Pseudomonas, Allorhizobium, Acidovorax, and Ensifer, especially
Pseudomonas and Ensifer which increased to more than 1%,
while others were decreased by Pb contamination, such as
Steroidobacter and Skermanella. Pb contamination had no
significant effect on the relative abundance of Nitrospira,
Ramlibacter, Microvirga, Ellin6067, and MND1 in the low Pb
treatment, but had a positive effect in the high Pb treatment. In
addition, root activity also had a positive effect on the relative
abundance of Ramlibacter, Microvirga, and MM2. The relative
abundances of uncultured_bacterium and uncultured were higher
in all the treatments, while they were uncultured and not
promoted by the root activity.

Relationships of Specific Bacterial
Assemblages and Soil Properties
The relationships of soil properties and specific bacterial
assemblages were measured by redundancy analysis (RDA)
(Figure 5). Eigenvalues of RDA showed that axes 1 and 2
explained 65.7 and 22.1% of the variance of the microbial
quantities data, respectively. Available nitrogen (AN) and pH
were significant (F = 5.315, p = 0.008 and F = 3.755, p = 0.048,
respectively) in explaining the relative abundance of specific
bacterial assemblages, and could account for up to 14.9 and
12.6%, respectively. The contributions of other factors to the
observed variation were as follows: residual Pb 12.5%, acid-
soluble Pb 12.4%, total soluble Pb 12.2%, reducible Pb 11.7%,
oxidizable Pb 11.8%, available potassium 10.1%, CEC 6.5%, and
available phosphorus 9.8%.
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FIGURE 4 | Bacterial community structure. (A) Non-metric multidimensional scaling (NMDS) ordination plots derived from Unifrac distance matrix, (B) microbial
metabolism heat map, and (C) the relative abundance of bacteria in rhizosphere, bulk, and unplanted soil with different treatments at phylum level. CR, rhizosphere
soil in CK; CN, bulk soil in CK; LR, rhizosphere soil in the low Pb treatment; LN, bulk soil in the low Pb treatment; HR, rhizosphere soil in the high Pb treatment; HN,
bulk soil in the high Pb treatment; HU, unplanted soil in the high Pb treatment.

From Figure 5, we can see that Lysobacter, Pseudomonas,
Allorhizobium, Acidovorax, and Ensifer, which were promoted
by Pb and root activity, had a strong positive correlation with
the available nitrogen and Pb content, and had a negative
correlation with CEC, pH, available potassium, and available
phosphorus. Furthermore, uncultured bacterium, which was
the dominant genus, also had a strong correlation with the
available nitrogen and Pb content. Lysobacter, Pseudomonas,

Allorhizobium, Acidovorax, Ensifer, Ramlibacter, Microvirga, and
MM2 had stronger correlations with each other.

DISCUSSION

Salix integra has been reported to be potentially valuable for
phytoremediation of Pb contaminated soils (Shi et al., 2017;
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TABLE 2 | The relative abundance of main phyla in different samples.

Phyla Proteobacteria Actinobacteria Acidobacteria Gemmatimonadetes Chloroflexi Bacteroidetes Patescibacteria

CR 0.09 ± 0.02ab 0.012 ± 0.0005c

CN 0.12 ± 0.02a 0.012 ± 0.0021c

LR 0.12 ± 0.02a 0.019 ± 0.0078c

LN 0.11 ± 0.001ab 0.011 ± 0.00007c

HR 0.06 ± 0.01c 0.107 ± 0.0047a

HN 0.08 ± 0.02bc 0.033 ± 0.0013b

HU 0.08 ± 0.01bc

R 0.43 ± 0.038a 0.15 ± 0.02b 0.068 ± 0.015b 0.061 ± 0.005b 0.060 ± 0.01a

N 0.37 ± 0.049b 0.19 ± 0.04a 0.078 ± 0.012a 0.068 ± 0.006a 0.046 ± 0.017b

CK 0.39 ± 0.042b 0.17 ± 0.03b 0.087 ± 0.004a 0.046 ± 0.015b

LT 0.45 ± 0.037a 0.15 ± 0.02b 0.077 ± 0.006b 0.046 ± 0.008b

HT 0.37 ± 0.041b 0.21 ± 0.04a 0.056 ± 0.007c 0.066 ± 0.013a

P (PbC) 0.001 0.001 0.099 <0.001 0.015 0.021

P (DCS) 0.001 0.001 0.044 <0.001 0.317 0.009

P (PbC*DCS) 0.591 0.427 0.004 0.401 0.924 0.309

CK, Pb 0 mg kg−1; LT, Pb 500 mg kg−1; HT, Pb 1500 mg kg−1; R, rhizosphere soil; N, bulk soil; CR, rhizosphere soil in CK; CN, bulk soil in CK; LR, rhizosphere soil in
the low Pb treatment; LN, bulk soil in the low Pb treatment; HR, rhizosphere soil in the high Pb treatment; HN, bulk soil in the high Pb treatment; HU, unplanted soil in the
high Pb treatment. PbC, Pb contamination effect; DCS, soils from different parts of the experiment; PbC*DCS, the interactive effect of Pb contamination and soils from
different parts of the experiment. Different letters indicate that the values differ significantly at p < 0.05. Values represent mean ± SD (n = 3).

Cao et al., 2018, 2019), which is supported by the results of our
study (Supplementary Table S1 and Figure 2). However, the
potential of S. integra for heavy metal extraction relies not only
on its fast-growth, large biomass and deeper, more integrated
root systems and powerful tolerance to Pb, but also on the
underground processes that promote root uptake of the heavy
metal. A high-throughput sequencing approach was therefore
used to measure rhizospheric bacterial community that may
influence the accumulation of heavy metal in S. integra.

Planting S. integra decreased the total Pb concentration
both in rhizosphere and bulk soil in the low Pb treatment,
which could be explained by the effects of root activity not
being limited to the root surface, though the effect declined
when the distances increase (Yang et al., 2017). Furthermore,
our previous study also showed that microbial quantity and
metabolism were promoted both in the rhizosphere and bulk
soil in the low Pb treatment (Niu et al., 2019). However, it only
occurred in the rhizosphere soil under high Pb treatment. The
efficiency of phytoextraction relies greatly on the bioavailability
of heavy metals. The concentration and proportion of acid-
soluble Pb with the highest bioavailability were not decreased for
S. integra uptake but increased in planted soil when compared
with unplanted soil in the low Pb treatment, which may be
attributed to higher transformation rate than uptake for the
acid-soluble fraction. However, the opposite trend appeared
in high Pb treatment. The important components of root
exudates, such as organic and amino acids can promote the
transformation of acid-soluble Pb from other species of the
heavy metals in the low Pb treatment (Luo et al., 2017, 2019,
2020; Liu et al., 2018; Moshiri et al., 2019). However, the plant
root may exude carboxyl groups and phenols to inhibit the
transformation of acid-soluble Pb due to its high toxicity, and
thus protect themselves in the high Pb treatment (Liu et al., 2017;
Moshiri et al., 2019).

The soil microbes alter their structure to acclimatize different
levels of heavy metal pollution and root environments, which
is consistent with the previous studies (Edwards et al., 2015; Li
et al., 2017; Liu et al., 2018; Lin et al., 2019; Cao et al., 2020). The
shift of microbial composition led to metabolic function variation
(Tipayno et al., 2018; Liu et al., 2020), and further caused Pb
speciation differences in different treatments. It could explain
the difference of acid-soluble Pb concentration between the low
and high Pb treatments. Heavy metal pollution inhibits the
metal-sensitive species, and stimulates metal-resistant species,
microbial diversity therefore affects (Xie et al., 2016; Cao et al.,
2020). Bacterial diversity was not affected by root activity,
contrary to the rhizosphere bacterial community associated with
Sedum alfredii (Hou et al., 2018), and that may result from the
differences of plant root and soil environment.

Dominant bacterial species were similar among different
treatments, which may be related to the same soil environment
(Fan et al., 2016), and their relative abundances shifted
that contributed to the selection of root activity and Pb
contamination. Most of the specific bacterial assemblages
between rhizosphere and bulk soil were promoted by root
activity and/or Pb contamination, and are suitable for use
in plant-microbial combination remediation, for example
Proteobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and
Gemmatimonadetes. The relative abundance of Proteobacteria
was the highest of any treatment (more than 35%), which were
also reported to be the dominant phyla in soils contaminated
by polycyclic aromatic hydrocarbons, Cr, Cu, Pb, and Zn,
always exceeding 50% in Pb contaminated soils (Bourceret
et al., 2016; Fan et al., 2016; Tipayno et al., 2018; Lin et al.,
2019). We, therefore, infer that it plays an important role in
phytoremediation by S. integra. Actinobacteria are also increased
after phytoremediation by Sedum in Cd-contaminated soil
(Hou et al., 2018). Many of them can produce IAA to stimulate
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TABLE 3A | The relative abundance of specific bacterial assemblages.

Uncultured bacterium Uncultured Ensifer Nitrospira Ramlibacter Microvirga Ellin6067 MND1 Gaiella MM2

Pb CK 15.99 ± 2.66b 14.32 ± 0.66a 0.59 ± 0.19b 1.62 ± 0.23a 0.48 ± 0.21a 0.5 ± 0.08a 0.5 ± 0.07a 4.33 ± 0.80a

LT 15.17 ± 1.20ab 12.98 ± 0.71b 0.93 ± 0.37b 1.54 ± 0.26a 0.49 ± 0.14a 0.43 ± 0.08a 0.44 ± 0.08a 3.92 ± 0.60a

HT 18.09 ± 1.86a 12.63 ± 0.67b 1.34 ± 0.31a 1.05 ± 1.13b 0.27 ± 0.13b 0.29 ± 0.07b 0.29 ± 0.07b 2.46 ± 0.42b

Compartment R 14.83 ± 1.61b 12.98 ± 1.15b 1.19 ± 0.39a 1.26 ± 0.22b 0.55 ± 0.16a 0.54 ± 0.11a 0.84 ± 0.15b 0.55 ± 0.30a

N 18.00 ± 1.65a 13.64 ± 0.70a 0.72 ± 0.32b 1.56 ± 0.36a 0.28 ± 0.10b 0.44 ± 0.09b 1.25 ± 0.14a 0.10 ± 0.06b

PbC P <0.001 0.035 <0.001 <0.001 <0.001 0.003 0.747 0.057 <0.001 <0.001

DCS P <0.001 0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.538 0.301

PbC*DCS P 0.093 0.266 0.1 0.051 0.468 0.189 0.079 0.088 0.415 0.15

B

Lysobacter Pseudomonas Allorhizobium Steroidobacter Skermanella Acidovorax Hydrogenophaga

Treatment CR 0.35 ± 0.08c 0.2 ± 0.03b 0.28 ± 0.12b 1.48 ± 0.23a 1.17 ± 0.27a 0.11 ± 0.03c 0.20 ± 0.03b

CN 0.34 ± 0.01c 0.11 ± 0.02b 0.14 ± 0.03c 0.86 ± 0.13c 0.73 ± 0.09c 0.02 ± 0.01cd 0.11 ± 0.02b

LR 0.53 ± 0.04b 1.25 ± 0.59a 0.66 ± 0.07a 1.15 ± 0.10b 0.94 ± 0.13ab 0.82 ± 0.09a 1.25 ± 0.59a

LN 0.39 ± 0.004c 0.25 ± 0.03b 0.19 ± 0.03bc 1.17 ± 0.12b 1.08 ± 0.12a 0.11 ± 0.04c 0.25 ± 0.03b

HR 0.52 ± 0.07b 1.10 ± 0.37a 0.61 ± 0.04a 0.82 ± 0.10c 0.68 ± 0.06c 0.24 ± 0.06b 1.11 ± 0.37a

HN 1.09 ± 0.09a 0.09 ± 0.07b 0.14 ± 0.06c 0.72 ± 0.06c 0.69 ± 0.05c 0.006 ± 0.01d 0.09 ± 0.07b

PbC P <0.001 0.002 <0.001 0.003 0.184 <0.001 <0.001

DCS P <0.001 0.052 <0.001 <0.001 0.004 <0.001 0.009

PbC*DCS P <0.001 0.041 0.001 0.003 0.009 <0.001 0.025

CK, 0 mg kg−1; LT, Pb 500 mg kg−1; HT, Pb 1500 mg kg−1; CR, rhizosphere soil in CK; CN, bulk soil in CK; LR, rhizosphere soil in the low Pb treatment; LN, bulk soil in the low Pb treatment; HR, rhizosphere soil in the
high Pb treatment; HN, bulk soil in the high Pb treatment. PbC, Pb contamination effect; DCS, soils from different parts of the experiment; PbC*DCS, the interactive effect of Pb contamination and soils from different
parts of the experiment. Different letters indicate that the values differ significantly at p < 0.05. Values represent mean ± SD (n = 3).
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FIGURE 5 | The relationships of soil properties and significance change
bacterial of the relative abundance by Redundancy analysis. AN, available
nitrogen; AK, available potassium; AP, available phosphorus.

plant growth, as well as siderophores to form stable complexes
with heavy metals (Rajkumar et al., 2010). Patescibacteria and
Bacteroidetes have been reported as dominant phyla in heavy
metal-polluted soils (Ellis et al., 2003; Idris et al., 2004), although
their relationship with root activity was small in our study.
Gemmatimonadetes was decreased by Pb contamination, but Hou
et al. (2018) found it was positively associated with Cd levels.
These conflicting results may be caused by the difference in the
metal levels and soil physicochemical properties and the history
of contamination in the different studies (Fan et al., 2016).

At a general level, partial bacterial genera, such as Lysobacter,
Pseudomonas, Allorhizobium, Acidovorax, and Ensifer were
increased by Pb contamination and root activity. Among
them, Pseudomonas and Ensifer which increased to more than
1% played key roles during phytoremediation by S. integra.
Moreover, Pseudomonas strains have been developed as
bioinoculants for phytoremediation, bioremediation of metals,
and methylmercury degradation (Boeris et al., 2016; Cabral
et al., 2016; Sun et al., 2017). Uncultured bacteria with higher
abundance in all the treatments were promoted only by Pb
contamination, but their functions cannot be ignored. From all
of these observations, we can infer that indigenous soil microbial
communities played very important roles in promoting heavy
metals absorption by S. integra.

In this study, the specific bacterial assemblages were promoted
by available nitrogen and decreased by high pH, which is
consistent with previous studies (Guo et al., 2019; Huang
et al., 2019; Wang et al., 2019a; Zhen et al., 2019). Available
nitrogen and available phosphorus are a significant energy source
for microbes and play an important role in regulating their
adaptation to different levels of heavy metal contamination (Guo
et al., 2017; Lin et al., 2019). We also found that the specific
bacterial assemblages, such as Pseudomonas, Allorhizobium,
Acidovorax, Ensifer, Ramlibacter, Microvirga, and MM2, all

had stronger correlations, which implied that plant-microbe
combined remediation cannot rely on only a kind of microbe.
We could, therefore, shift microbial composition by adjusting soil
properties, for example adding available nitrogen, so promoting
S. integra absorption of Pb.

CONCLUSION

During phytoremediation, the relative abundance of dominant
microbial species shifted. The bacteria were promoted by
root activity and/or Pb contamination, especially many genera
from Proteobacteria, which are suitable for using in plant-
microbial combination remediation. Indigenous bacteria have
great potential, therefore, in the application of combined
S. integra-microorganism remediation of lead-contaminated soil
by adjusting soil properties, for example available nitrogen
and pH. Further study on promoting plant-indigenous bacteria
combined remediation through by adjusting soil properties and
its practical application will be conducted.
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