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Abstract: Background and Motivation: Parkinson’s disease (PD) is one of the most serious, non-
curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict
cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to
become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further,
due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques,
there have been no well-explained ML paradigms. Deep neural networks are powerful learning
machines that generalize non-linear conditions. This study presents a novel investigation of deep
learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19
framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely
associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis
that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-
COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training
model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in
computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office
and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD
patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We
validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19
environment and this was also verified. DL architectures like long short-term memory (LSTM), and
recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful
designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early
detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very
powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.

Keywords: Parkinson’s disease; COVID-19; cardiovascular/stroke risk stratification; deep learning; bias

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative condition characterized
by movement impairments. In 1817, British physician James Parkinson described the
condition for the first time [1]. PD is characterized by the loss and dysfunction of neurons
(nerve cells) in the substantia nigra, a region of the brain. PD is characterized by problems
with dopamine pathways, which are cells in the brain that communicate with other neurons
by creating dopamine, also called a neurotransmitter [2]. According to data from a variety
of studies, the cost of treating and controlling PD is expensive [3]. Western nations have
more PD cases than Asian countries. [3,4].

A coronavirus 2 (SARS-CoV-2)-related acute, respiratory distress disease was found
in Wuhan, China, in late December 2019 [5,6]. The infection spread fast over the world,
resulting in a global coronavirus pandemic in 2020. Between 31 December 2019, and
11 March 2022, there were nearly 450,229,635 cases of COVID-19 reported globally, with
around 6,019,085 deaths [7]. PD is found in the elder age group and it has been observed that
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PD patients show comorbidities such as diabetes [8], hypertension [9,10], dementia [11,12],
chronic kidney, temporomandibular disorder (TMD) [13], and heart problems [14,15], and
thus need continuous medical treatment to control the PD. However, due to the coronavirus
pandemic, most countries declared a lockdown, and all the medical forces were used to
control the spread of the COVID-19.

During the period of lockdown, less importance was given to PD-affected patients,
leading to heart attack and stroke in PD patients [16]. The connection between cardiovas-
cular disease (CVD), stroke, and PD with COVID-19 seems particularly important due to
several observations. Antibodies against coronavirus were discovered in the cerebrospinal
fluid in PD patients more than two decades ago, implying that viral infections may play a
role in the neurodegenerative process [11,17].

As per recent studies [18–20], PD increases the risk of heart attack and stroke [21,22];
current study indicates that PD is associated with vascular risk factors such as diabetes
and hypertension [23–27]. Thus, CVD/stroke risk early detection becomes even more
important during the joint effects of PD with COVID-19, as it increases the risk of mor-
tality [28]. However, during the joint effects, the covariates cause non-linearity between
the covariates and the gold standard. Thus, special tools are needed for CVD/stroke risk
stratification [4]. Since COVID-19 causes a change in the risk factors in PD patients, we
need a self-adjusting system that can automatically estimate the risk of CVD/stroke in PD
patients when COVID-19 is triggered [29].

In recent years, it has been seen that artificial intelligence (AI) has played an important
role in computer-aided diagnosis [30,31], particularly in the identification and classification
of multiple diseases [32–35]. The application of machine learning (ML) has recently been
explained to have dominated the field of medical imaging, including diabetes [36,37], car-
diovascular disease [38], liver [33], cancers such as thyroid [39,40], vascular screening [41],
ovarian [42], prostate [43], risk characterization using coronary and vascular screening [41],
and carotid angiography [44]. Many medical imaging modalities are available for imaging,
including magnetic resonance imaging (MRI) [45,46], computed tomography (CT) [47],
ultrasonography (US) [48], and CT for lung imaging, all of which can illustrate COVID-19
symptoms and lesions [45,46]. It has been shown that the DL algorithm can segment
COVID-19 lungs and has been utilized to detect the lesions in CT lung images on four
separate occasions [45,49,50]. Since the PD dataset comprises a variety of motor symptoms,
variables that have been observed in previous studies, AI models have also been developed
to predict the disease [51–53]. Therefore, we believe that DL systems will be useful in the
future for forecasting CVD/stroke risk classification in PD patients within the COVID-19
framework, and that developing a design approach will be beneficial in the near future.

The focus of this research was to design, develop, and validate the hypothesis, (i)
CVD/stroke risk stratification of PD patients in the COVID-19 framework and (ii) un-
derstanding the non-linearity of PD combined with COVID-19 symptoms against the
CVD/stroke gold standard; (iii) develop a DL-based lesion detection system and its quan-
tification, which could then be used as a covariate in a machine learning framework; (iv)
DL-based CVD/stroke risk stratification by combining office-based biomarkers (OBBMs),
laboratory-based biomarkers (LBBMs), carotid ultrasound image-based (CUSIP), medicine
usage (MedUSE), PD-based biomarkers, and CT-based COVID-19 lesion biomarkers.

2. Search Strategy

IEEE Xplore, Google Scholar, PubMed, and Science Direct were used to conduct an
overall writing search. ‘CHD’, ‘PD patients and stroke risk stratification, ‘neurodegenerative
disease and symptoms’, ‘AI’, ‘machine learning, ‘deep learning, and ‘neurodegenerative
disease’ were some of the key watchwords used in the study selection process. The research
article was chosen for the studies that cover a wide range of topics, including CVD, and
stroke risk stratification of PD patients in the COVID-19 framework using ML, DL, hybrid
deep learning (HDL), and AI. The categorization of normal vs. PD-affected persons.
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Figure 1 demonstrates the PRISMA model for the research article selection approach.
Almost 204 research articles were identified from the listed sources, and 312 research studies
were identified from additional sources during the identification phase. Articles that cross
the research aim or have duplications were deleted from the total 412 studies. Articles were
evaluated based on the viability of the selection strategy’s goal (336 studies). The papers
that were not AI-based (n = 76) were ignored. Many of the articles did not meet domain
requirements for reasons such as insufficient data, information, or poor presentation. As a
result, the analysis was based on a total of 292 studies.

Figure 1. PRISMA model for selection of the studies, dealing with the effect of COVID-19 on PD for
CVD and stroke risk stratification. (I: Included, E: Excluded).

Information from the data was considered for the PD with COVID-19 studies data,
searches were: (i) name of the author, (ii) publication year of research article, (iii) objective
of the research studies, (iv) effect of COVID-19 on PD, heart, and brain, (v) PD year (vi),
PD with other comorbidities, (vii) diagnosis method, (viii) PD symptoms worsening factor
due to COVID-19, and (ix) treatment of PD with COVID-19. The identified research studies
were assessed using the unique and effective application of the AI, hybrid AI, PD with
other comorbidities diagnosis techniques, and biomarker-based strategies for detecting
CVD and stroke risk stratification of PD patients in the COVID-19 framework.

Figure 2a, studies related to PD with or without COVID-19. Figure 2b represents
studies related to PD leading to stroke and heart disease with or without COVID-19. Every
study was examined using a feasibility analysis and then cross-checked using scientific
validation to ensure that it closely matched our objectives.
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Figure 2. (a) Studies related to PD with or without COVID-19. (b) Studies related to PD leading to
stroke and CVD with or without COVID-19.

3. Pathophysiology of Lung and Parkinson’s Disease during COVID-19

The effect of COVID-19 on PD, the heart, and the brain is still unknown due to
the limited literature, especially since we know that the lungs are badly affected by
COVID-19 [54,55]. Note that PD patients already have several other comorbidities due
to the older age group [6,16,56]. The symptoms related to PD with COVID-19 and other
comorbidities introduce nonlinearity, causing challenges in the ML system for CVD/stroke
risk stratification [16].

3.1. Acute Respiratory Distress Syndrome, Imaging, and Lung Lesions during COVID-19

The effect of coronavirus on lungs results in lower levels of ACE2 proliferating in
the lung parenchyma cells. It leads to exacerbated neutrophil buildup, increased vascular
permeability, and the production of diffuse alveolar and interstitial exudates in the lung.
Pneumonia and acute respiratory distress syndrome (ARDS) are the results of this pro-
cess [57]. As a result of an oxygen and carbon dioxide imbalance, ARDS is characterized
by significant anomalies in blood gas composition that result in low blood oxygen lev-
els [58]. This chronic hypoxia has been shown to cause myocardial ischemia and cardiac
damage [59,60]. In the brain, hypoxia increases the rate of anaerobic metabolism in the
mitochondrial brain cells [61], which results in increased cerebral vasodilation, edema,
and decreased blood flow. There is a risk of cerebral ischemia and the development of
acute cerebrovascular disorders, including acute ischemic stroke [61]. Figure 3 explains the
pathway of ARDS formation.

To diagnose the abnormalities in the lung we need an imaging technique, and x-rays
and computer tomography are the two medical imaging techniques that are most important
in the detection and diagnosis of COVID-19 [47,62]. CT has demonstrated high sensitivity
and repeatability. It also can detect various types of opacities, such as ground-glass opacity
(GGO), consolidation, and other opacities [63,64], that are primarily seen [65,66]. The
potential of ML systems to mimic traditionally established processes is outstanding, and
this allows for faster illness identification and diagnosis [64]. The most significant flaw in
such models is the features extracting method, which is arbitrary and, as a result, time-
consuming [64]. It has recently been demonstrated that DL models can overcome this
challenge [67,68]. In AI, deep learning is a branch that makes use of deep layers to provide
self-driving feature extraction, classification, and segmentation of data input. The details
on DL-based lesion segmentation and quantification will be explained in Section 5.
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Figure 3. Stages of acute respiratory distress syndrome formation [69].

3.2. Vascular Damage Due to COVID-19

Vascular disorders create a threat to the heart and the brain [70]. The aortic arch,
coronary artery, and carotid artery all have similar structures, this connection is extensively
observed because the genetic composition of carotid and coronary arteries is similar (A
to D) [71,72]. Even though they originate from a distinct main artery, these arteries run
in opposite directions (Figure 4). Inflammatory cells such as polymorphonuclear cells, T-
lymphocytes, histiocytes, monocytes, and mononuclear giant cells were found in all samples
in the thrombus formation and all layers of vessels, along with endothelial proliferation
and vascular endothelial, as well as collagen deposition and myofibroblastic proliferation
to varying degrees. Endothelial damage can induce thrombosis in the arteries of the limbs
and the aorta, as well as significant vascular events such as acute arterial hypoxia [73].
These cause LDL deposition and oxidation, plaque development, and arterial lumen
constriction [74,75]. As a result, carotid artery disease may be used as a substitute biomarker
for coronary artery disease in PD patients affected by COVID-19 [76]. COVID-19 is the
cause of thrombosis in the arteries and veins and is also responsible for the unbalanced
inflammatory state (cytokine storm) that also includes endothelial cells (1 to 12) [77].
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Figure 4. The inception of the left and right carotid arteries [69].

3.3. Dopamine in Parkinson’s Disease with or without COVID-19

Dopamine acts as an intermediary between both the brain and the sensory systems
that control and regulate movement [20]. The substantia nigra region of the brain loses
nerve cells, causing PD. This part of the brain is responsible for producing dopamine,
which is created by nerve cells [78]. This is a catalyst in the neuron neurodegeneration
process because of the COVID-19 virus. Dopamine levels in the brain drop when these
neuron cells die or are injured [79]. This shows that the brain area that governs movement
is malfunctioning, resulting in delayed, unwanted, and uneven movements [80]. Nerve cell
death is indeed a slow process. PD symptoms appear when roughly 80% of the substantia
nigra cells in the brain are damaged [39,60].

Figure 5 represents neurons leading to dopamine gradually reducing the basal ganglia,
resulting in motor and non-motor abnormalities, such as, (i) motor system rigidity [1],
bradykinesia [52,81], postural instability [82], faced mask, and hypophonic speech [52],
and (ii) non-motor symptoms including constipation [83], autonomic dysfunction [83],
dementia [84], depression and sleep disorder [83], behavioral problems, as well as issues
adapting to changes and stresses in their environment [1].

The cause of developing PD is still unknown, there is no specific reason why it
happens in the aging population. Environmental factors may potentially increase a person’s
likelihood of developing PD [1]. However, it is still unclear how specific inherited and
hereditary factors contribute to a person’s risk of developing PD [82,83]. The defective
genes are passed down from one generation to the next, and PD can run in families [85].
There have been indications that pesticides and herbicides used in agriculture, as well as
industrial pollutants and traffic, could also be contributing factors to PD [86].
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Figure 5. Effect of loss of dopamine in PD with or without COVID-19 (Courtesy of AtheroPoint,
Roseville, CA, USA).

4. The Relationship between Parkinson’s Disease, Heart, Brain, and COVID-19

The most common consequences of PD on the heart are heart failure, abrupt death,
and edema [87]. As a result, PD is associated with an increased risk of dementia and a
higher than average rate of mortality and morbidity [19,88]. Patients with PD commonly
experience the symptoms and signs of tremor, bradykinesia, rigidity, and uncontrollable
movements [89–91]. All of the pathological variables that contribute to the development
of clinical complexity in PD include inappropriate protein aggregation, oxidative stress,
neuroinflammation, mitochondrial damage, and genetic anomalies [92,93].

4.1. The Relationship between Parkinson’s Disease and CVD

It was shown that in 20–30% of hospitalized patients, 40% of COVID-19-related fatal-
ities were due to cardiac damage [94]. Due to PD, it was observed that there was severe
cardiac damage in ICU patients and it was 13 times higher than in non-ICU patients [95].
Further, it was noticed that due to PD, there was acute cardiac damage in 17%, death in
59%, and only 1% survived out of 191 individuals studied [96]. It was also noted that due
to PD, the mortality risk associated with acute cardiac damage was shown to be far greater
than the risk associated with age, diabetes, chronic obstructive pulmonary disease (COPD),
or previous CVD history [38].

An artery’s epithelium becomes thickened or blocked as a result of plaque aggregation
in the epithelium [97]. The autonomic nervous system (ANS) regulates a range of functions,
including cardiovascular regulation through the heart and carotid artery baroreceptors
(blood pressure valves) [98,99]. When baroreceptors detect a change in blood pressure, a
signal is transmitted to specific brain locations, then the ANS transmits a signal to the heart,
which regulates the heart rate and cardiac output [100,101]. Signals are also carried by the ar-
teries, causing them to spasm and regulate blood pressure [102]. CVD and PD are influenced
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by advanced age, diabetes, and gender. Dysregulation of the ANS can be caused by glucose
metabolism, inflammation, cellular stress, or lipid metabolism [103,104]. The most common
medical problem among older patients is stroke [105]. However, studies investigating
the relationship between PD and stroke have shown conflicting results [106,107]. Strokes,
such as cerebral ischemia, usually coincide with PD pathology according to postmortem
investigations, and those clinically diagnosed with PD commonly have inflammation and
fibrosis [21].

Patients with PD who are exposed to, (i) a cold environment, (ii) muscular activity
in the early morning, (iii) standing positions, and (iv) over age, all have much higher
sympathetic neuronal discharges, which leads to an increased myocardial oxygen require-
ment [108,109]. In the absence of a distinct clinical state, autonomic alterations cause
homeostasis [110,111]. Thus, coronary artery stenosis demands more oxygen consumption
and more coronary blood flow, but due to its shortage of blood flow and blood restriction,
it results in ischemia and arrhythmias [112,113].

People with PD and a COVID-19 infection have a risk factor that causes myocardial
infarction, as shown in Figure 6. The metabolic syndrome is always linked to a group of
cardiovascular risk factors, such as abdominal obesity, high blood pressure (EBP), dyslipi-
demia, and low blood sugar. All of these factors are linked to CVD and a higher risk of
death from CVD and other causes [114]. Table 1 covers several characteristics related to the
relationship between PD and CVD without the COVID-19 effect.

Figure 6. A risk factor in PD with COVID-19 patients responsible for myocardial infarction (Courtesy
of AtheroPoint, Roseville, CA, USA).

Table 1. Parkinson’s disease without COVID-19 leads to CVD.

SN Citations PS ME Relation * Outcome Treatment

1 Huang et al. [83]
(2015) 156 LBBM Plasma cholesterol risk in PD

Total high cholesterol levels have
been linked to a lower risk of

developing Parkinson’s disease,
but statin use has been linked to

an increased risk.

Statins

2 Yan et al. [72]
(2019) 68 LBBM Carotid plaque in PD

As Parkinson’s disease advances,
the thickness of carotid plaques

rises.
NR

3 Potashkin et al.
[83] (2020) 47 LBBM CVD and PD

Both CV and PD share
inflammation, insulin resistance,
lipid metabolism, and oxidative

stress. Moderate coffee
consumption and physical activity

reduce the risk of heart disease
and PD.

NR

4 Park et al. [35]
(2020) NR Population-based

cohort study PD with risk of CVD CVD is linked to PD. Patients with
PD should be monitored for CVD. NR



Diagnostics 2022, 12, 1543 10 of 47

Table 1. Cont.

SN Citations PS ME Relation * Outcome Treatment

5 Değirmenci et al.
[64] NR LBBM Cardiac effect in PD

Cardiac problems are prevalent
among Parkinson’s disease

sufferers.

Levodopa,
MOBI, COMT,
anticholinergic

drugs, deep
brain

simulations

6 Scorza et al. [84]
(2018) NR LBBM Cardiac abnormalities in PD

Cardiomyopathy, coronary heart
disease, arrhythmias, conduction
anomalies, and sudden cardiac

arrest are among the symptoms of
PD/PS.

NR

7 Günaydın et al.
[85] (2016) 65 LBBM CVD risk in PD under levodopa

treatment

PD patients with L-dopa exhibited
increased aortic stiffness and

impaired diastolic performance.
Homocysteine levels may

influence diseases.

NR

8 Fanciulli et al.
[86] (2020) NR LBBM Orthostatic hypertension in PD

Orthostatic hypotension causes
tachycardia, uncommon falls,

disorientation, mental impairment,
vision issues, fatigue, and painful
shoulders, neck, or low back. They
appear when the patient stands up

and leave when the patient lies
down.

Droxidopa,
fludrocortisone,

clonidine,
transdermal
nitroglycerin,

nifedipine

9 Cuenca-Bermejo
et al. [87] (2021) NR LBBM Cardiac changes in PD

Cardiac anomalies have been
observed in PD individuals who

do not have sufficient sympathetic
innervation in the heart.

Hypotension after a meal is
followed by supine hypertension;
rising blood pressure variability,
decreased heart rate and blood

pressure, and chronotropic
incompetence is all indications.

NR

10 Vikdahl et al. [88]
(2015) 147 LBBM CVD risk in PD

Exercise may be beneficial in
lowering the risk of cardiovascular

disease in some people. High
levels of blood cholesterol, tobacco
smoking, and a high BMI have all

been associated with the
progression of PD.

NR

* SN: serial number, PS: patient size, ME: method of evaluation, Relation: effect of PD on stroke, NR: not reported,
SSR: sympathetic skin response, HRV: heart rate variability, OH: orthostatic hypotension, LB: lab-based, MOBI:
monoamine oxidase B inhibitors, COMT: catechol-O-methyl transferase inhibitors.

4.2. The Relationship between Parkinson’s Disease and Stroke without COVID-19

Stroke is one of the major causes of mortality in patients with PD [115,116], and this
is often hemorrhagic stroke [20,117]. It is also the most common reason for long-term
disability in PD patients [93,104]. Due to disturbance in the cerebral blood flow, there is an
initiation of neuroinflammatory cascades that can impair the brain metabolism, which in
turn leads to neuronal death [118–120]. Additionally, motor difficulties in PD patients lead
to patient falls, resulting in traumatic brain injury. These are both major factors related to
stroke risk [121].

Levodopa (also known as L-dopa) is the best treatment for PD [122]. Homocysteine
levels have been reported to rise with the usage of L-dopa [78]. The pathogenic process of
O-methylation of L-dopa to 3-O-methyldopa is linked to S-adenosyl methionine conversion
to S-adenosyl-L-homocysteine and then homocysteine [123,124]. Patients with PD who
take L-dopa and homocysteine have an increased risk of cardiovascular issues [125]. The
most hazardous side effect of L-dopa is ventricular arrhythmia, although uncommon in
a healthy heart, myocardial irritability and ischemia pose a serious threat to people who
have them [126]. Patients with a history of cardiac abnormal activity should be approached
with caution and monitored electrocardiographically [127]. Table 2 shows the link between
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stroke and PD in the absence of COVID-19. Stroke, traumatic brain injury, and heart rate
variability [128] are all linked to PD in the vast majority of research.

4.3. The Relationship between Parkinson’s Disease and COVID-19

The COVID-19 infection had quickly spread over the world since December 2019,
resulting in a worldwide coronavirus pandemic in 2020 [7,129]. PD is a relatively common
chronic illness among the elderly. Figure 7 shows the various motor and non-motor
symptoms observed in PD patients with or without COVID-19. Fever, coughs, autonomic
dysfunction, diarrhea, fatigue, and other symptoms have been recorded across several
investigations as common COVID-19 clinical symptoms. COVID-19 also showed typical
laboratory findings and irregularities on chest CT scans [130]. Figure 8 shows the symptoms
of COVID-19 in PD patients. As seen in the graph, the cough is the most severe symptom,
leading to upper respiratory tract infection, thus PD patients with COVID-19 have more
severe lung lesions [4,131,132].

Figure 7. Motor and non-motor symptoms in PD patients with or without COVID-19 (Courtesy of
AtheroPoint™, Roseville, CA, USA permission granted).

Figure 8. The symptoms of COVID-19 in PD patients.
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Table 2. Parkinson’s disease leading to stroke without COVID-19.

SN Citations PS ME Relation * Outcome TRE

1 Li et al. [112]
(2018) 63 LBBM Stroke and CAD in PD

When it comes to reducing the risk for
heart disease, exercise may be useful
in some cases. It has been discovered

that having high amounts of blood
cholesterol, smoking cigarettes, and
having a high BMI are all connected

with the development of PD.

NR

2 Studer et al. [133]
(2017) 73 LBBM Heart-rate variability and skin

resonance in PD

Both SSR and HRV tests are effective in
detecting ANS failure in PD patients,
not only in the later stages but also in
the early stages. Patients with PD may

benefit from utilizing these tests to
rule out autonomic dysfunction.

NR

3 Liu et al. [134]
(2014) 32 Self-reporting Stroke in PD

Since cerebrovascular and
neurodegenerative diseases coexist,
cerebral infarction is linked to PD.

However, even though levodopa raises
homocysteine levels, it is the most

effective and required symptomatic
treatment for many PD patients.

NR

4 Becker et al. [20]
(2009) NR LBBM Risk of stroke in PD

Homocysteine levels that are too high
in people who have PD may make
them more likely to have a stroke.

There has been a link between high
levels of homocysteine and a higher

likelihood of stroke and heart disease.
Vascular disease and dementia, as well
as a rise in homocysteine levels in the
blood after taking levodopa, are some

of the side effects.

NR

5 Levine et al. [105]
(2009) NR LBBM Traumatic brain injury in PD

Patients with neurological problems
can benefit from exercise training by
feeling less physically and mentally

worn out all the time. People with PD
who engage in cardiovascular activity
report less fatigue as a result of their

efforts.

NR

6 Rickards [135]
(2005) NR NR Stroke in PD

Patients with chronic neurological
illnesses are more likely than the
general population to experience

debilitating depressive symptoms. It is
unclear what causes them, but they
may be multifactorial in some cases.

NR

7 Mastaglia et al.
[136] (2002) 100 Self-reporting Prevalence of stroke in PD

Findings were not directly compared
with those of prior investigations of

stroke-related mortality and morbidity
in the PD group following postmortem

examination.

NR

* SN: serial number, PS: patient size, ME: method of evaluation, Relation: effect of PD on stroke, NR: not reported,
SSR: sympathetic skin response, HRV: heart rate variability, OH: orthostatic hypotension, LB: lab-based.

Several studies have shown the effect of COVID-19 on other comorbidities such as
cardiovascular stroke [36,137], brain and heart injury [54], acute respiratory syndrome [50],
pulmonary embolism [138], pneumonia [132], diabetes [8,139], prediction of coronary
artery disease [140], thyroid cancer detection [44,141], and liver [33], prostate [142,143],
and ovarian cancers [42,144] results in worsening the symptoms of the diseases and more
complications in patients, resulting in a high mortality rate.

COVID-19 significantly exacerbated both motor and non-motor symptoms in PD,
according to the current study, however, cognitive functioning was only minimally influ-
enced [7]. Figure 9a represents various symptoms in PD patients. In terms of vulnerability,
PD might be regarded as a high risk for infection, indicating the involvement of the respi-
ratory system, which is frequently in the area of bradykinesia [130]. COVID-19-positive
PD patients are more likely to be overweight, possess severe COPD, and not take vitamin
D supplements than COVID-19-negative PD patients [145]. The negative correlation be-
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tween COVID-19 and vitamin D supports the hypothesis that hypovitaminosis D may be a
contributing factor to COVID-19 susceptibility [146]. In other groups, obesity and respira-
tory disease are well-documented risk factors for heart disease and stroke [147], and the
negative relation with vitamin D continues to support the suspicion that iodine deficiency
may contribute to COVID-19 susceptibility. Vitamin D insufficiency is frequently found
in people with PD [148], and some researchers have suggested that vitamin D treatment
might protect people against both COVID-19 and PD [149]. The association between PD
and COVID-19 is depicted in Table 3. The majority of research makes observations about
the size of the PD/non-PD dataset, its demographics, and aligned comorbidities. PD is
always associated with comorbidities along with high age [130,150]. Figure 9b shows the
risk factors of PD and COVID-19 with comorbidities [6,129].

Figure 9. (a) The symptoms in patients with joint PD and COVID-19. (b) Risk Factors of PD and
COVID-19 with comorbidities.

4.4. Effect of Comorbidities on Parkinson’s Disease

This section explains the role of various comorbidities that trigger the motor and
non-motor symptoms of the PD patient, and whether the patient falls under the high-
risk category. Dementia develops when neurons die, causing chemical changes in the
brain [11,12]. In the literature, PD is always associated with comorbidities along with high
age. The long duration of PD falls under the high-risk categories [19,24,130,134]. In terms
of vulnerability, PD might be regarded as a high-risk condition for infection, indicating the
involvement of the respiratory system, which is frequently in the area of bradykinesia [130].

Depression is a mental illness that can decrease a human’s capacity to carry out
everyday tasks, and anxiety affects around half of the people with PD [151]. This is
regarded to be separate from being depressed as a result of their illness. Depression, like
uncontrollable shaking, is thought to be a sign of PD. Both are brought on by changes in
brain chemistry [9,10].

Persons with PD have a higher chance of having TMD than people without PD [152].
In most cases, the disc inside the jaw area moves out of position. The muscles in the joint
are essentially ‘pinched’ by the slipped disc, causing them to transmit odd signals to the
brain, resulting in tics or shaking [13,153]. As the dentures wear out or are removed, the
jaw bone collapses into the jaw joint, which is common in older adults having PD [154,155].

People with PD have trouble passing urine since their bladders will not contract as
they should. Furthermore, their sphincter muscles don’t allow urine to pass out [156]. This
is due to low levels of dopamine affecting the bladder’s movement effectiveness, resulting
in a residual quantity of urine remaining in the bladder [157]. This lowers the bladder’s
total capacity and makes it feel as if it has to be emptied often. Unfortunately, if the bladder
is not emptied, there is an increased chance of CKD [156,158]. The main cause of that
disease is neurodegeneration, which damages the brain cells. The symptoms of PD and
Alzheimer’s disease are dementia, anxiety, fear, and sleeping problems [151]. Neurological
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diseases can cause hallucinations and delusions, which are psychiatric symptoms [159].
COVID-19 considerably increases motor and non-motor symptoms in PD.

Osteoporosis and osteopenia are common among PD patients, with women experi-
encing the condition at a higher rate than men [160]. Decreasing movement in PD appears
to be the primary cause of decreased bone density, a process similar to that seen in other
neurological illnesses [161]. Figure 10 shows hypertension (33.17%), CPD (6.98%), paralysis
(5.53%), cerebrovascular disease (42.53%), and diabetes (10.60%) were the most common
comorbidities among PD patients [162].

Figure 10. Effect of comorbidities on PD with or without COVID-19 [162].

Table 3. Studies showing the effect of COVID-19 on PD.

SN Author Year DemographicsAge Sex Type Data
Size

Non-
PD PD PD w/s

COVID
PD

Years Gold Standard

1
Antonini
et al. [56]

(2020)
2020 European 68 MF

PD
with

COVID
10 0 10 10 20

PD + COVID-19 +
Respiratory

dysfunctions

2
Baschi

et al. [7]
(2020)

2020 European 60 MF
PD

with
COVID

34 0 34 34 6 PD + COVID-19 +
Pneumonia

3

Brown
et al.
[163]

(2020)

2020 European 70 MF
PD

with
COVID

102 40 62 51 4
PD + COVID-19 +

Respiratory
dysfunctions

4 Cella et al.
[2] (2020) 2020 European 65 MF

PD
with

COVID
141 0 12 12 4

PD + COVID-19 +
Respiratory

dysfunctions

5

Starmbi
et al.
[129]

(2021)

2021 European 65 MF
PD

with
COVID

105 0 32 32 4 PD + COVID-19 +
Pneumonia

6
Helmich
et al. [6]
(2020)

2020 European NR NR
PD

with
Coved

NR NR NR NR NR
PD + COVID-19 +

Respiratory
dysfunctions

7
Khoshnood
et al. [5]
(2021)

2021 European NR NR
PD

with
COVID

NR NR NR NR NR PD + COVID-19 +
Pneumonia
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Table 3. Cont.

SN Author Year DemographicsAge Sex Type Data
Size

Non-
PD PD PD w/s

COVID
PD

Years Gold Standard

8
Lau et al.

[16]
(2021)

2021 European NR NR
PD

with
COVID

NR NR NR NR 12
PD + COVID-19 +

Respiratory
dysfunctions

9
Sulzer

et al. [4]
(2021)

2021 NR NR NR
PD

with
COVID

NR NR NR NR NR
PD + COVID-19 +

Respiratory
dysfunctions

10

Tsivgoulis
et al.
[131]

(2021)

2021 NR NR NR
PD

with
COVID

NR NR NR NR 6 PD + COVID-19 +
Pneumonia

11

Sorbera
et al.
[130]

(2021)

2021 European 65 MF
PD

with
COVID

18 5 13 9 3 PD + COVID-19 +
Pneumonia

4.5. The Relationship between Combined Parkinson’s Disease and COVID-19 on CVD/Stroke

PD patients with underlying diseases like CVD, diabetes mellitus, and hypertension
are more vulnerable due to COVID-19 as it increases cardiac events [164]. Meanwhile, in
PD the automatic control of the cardiovascular system is disrupted for two primary reasons.
First and foremost, Lewy bodies are usually seen in the brain regions that govern the
system, and these regions have also suffered from neurodegeneration [133]. Furthermore,
inclusions resembling Lewy bodies and neurodegenerative diseases have a direct impact
on the ANS [165]. Therefore in some cases, an attempt to raise blood pressure by the carotid
artery and the heart’s baroreceptors is unsuccessful because the signals are not received [15].
As the ANS malfunctions excessively, this results in neurogenic orthostatic hypotension
(nOH) or a fall in blood pressure when the PD patient walks [14,15].

Many reports regarding hospitalized patients have indicated that 12% to 26% of them
had suffered heart damage. The cytokines generated during the COVID-19 infection
may affect the patients’ intracellular coronary arteries. In individuals with COVID-19-
affected lungs, cardiovascular illnesses have a significant impact on the ARDS [166]. These
processes that lead to SARS-CoV-2 might cause a susceptible plaque to become complex
and burst [55].

ACE2 receptors are highly expressed in dopaminergic neurons and are lowered in
PD due to the degenerative changes [167]. Central nervous system penetration caused
by the acute respiratory syndrome, SARS-CoV-2, may cause considerable harm, worsen
illnesses, and increase the need for dopamine hormone treatment [168]. In many infected
patients, the COVID-19 virus’s capacity to enter the brain through the nasal cavity causes
anosmia/hyposmia and ageusia, addressing the variations which closely mirror one of the
most notable premotor symptoms of PD [2], neurodegeneration as SARS-CoV-2 promotes
the accumulation of alpha-syncline (aSyn), the major protein component of Lewy bodies
in the brain [163,169,170]. Pathways impacted by a viral infection, like proteostasis, are
important in maintaining dynamic equilibrium and activating stress response mechanisms,
which appear to be targeted in neurodegenerative processes [163].

The biochemical link between PD with COVID-19 and CVD is seen in Figure 11. It has
been observed that as the infection of SARS-CoV-2 takes place through the central nervous
system (CNS) and in the basal ganglia region of the brain, it triggers ACE-2 enzymes, which
results in the adaptive immune response that leads to autophagy deficiency, endoplasmic
reticulum stress, and loss of proteostasis [56,130].
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Figure 11. COVID-19 virus pathways leading to stroke and CVD in PD patients (Courtesy of
AtheroPoint, Roseville, CA, USA).

Oxidative stress has been proven in several studies to be the most essential contrib-
utor to the development of PD that leads to CVD [79,171]. Mitochondrial dysfunction is
promoted by excessive generation of reactive oxygen species (ROS) [172]. Nevertheless,
as Yu et al. [173] and Bennett et al. [174] showed, it also stimulates the progression of
atherosclerosis through multiple methods. Furthermore, as seen in Figure 9, mitochondrial
dysfunction causes PD and cardiac injury via four separate pathways.

The substantial nigra’s selective loss of dopaminergic neurons involves oxidative stress
as a critical stage [175] and is explained by path (A) of Figure 11. Resting tremors, stiffness,
and balance problems are the three main signs of PD [176]. Oxidative stress damages beta
cells in the pancreas and promotes the growth of oxidative lipoprotein oxidation (OxLDL)
in route (B). This causes endothelial dysfunction in arteries [177]. Inhibited endothelial
cell intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM)
levels increase the stickiness [178]. These reduce nitric oxide (NO) levels, which support the
development of the atherosclerotic plaque [179]. Furthermore, route (C) and (D) depict the
link between mitochondrial dysfunction leading to infections and generating the cytokine
storm that leads to plaque disturbance, which is a substantial joint risk factor for PD and
cardiovascular disease [180,181]. Excess ROS and mitochondrial impairment are both
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involved in the pathophysiology of PD and CVD [182]. The US is the most widespread
technique used, it is simple to use, has a high resolution, is cost-effective, and is a user-
friendly image collection modality for plaque detection [183]. As a result, it has a broad use
for regular atherosclerotic plaque monitoring and CVD risk analysis [184,185].

5. Deep Learning for CVD/Stroke Risk Assessment in PD Patients with COVID-19

To stratify an early CVD/stroke risk in PD patients embraced by the COVID-19
framework, AI is the most promising and optimal solution due to its ability to handle
non-linearity during the training process [186]. The class of AI was first dominated by
the ML systems consisting of a variety of applications, including diabetes [139,187,188],
neonatology [189], genetics [190,191], coronary artery disease risk stratification [140,192],
classification of carotid plaques [193], and cancer risk stratification in organs such as the
thyroid [39,194,195], breast [196], ovary [142,197], and prostate [144,198], to name a few.
These methods have generic drawbacks such as ad hoc feature extraction during the
training/prediction design.

DL has been shown to have penetrated all walks of life and more recently into health-
care imaging [199,200]. A deep neural network (DNN) is a class of DL that mimics the
human brain [32]. DL uses the power of convolution, max pooling, and different kinds
of channels such as attention maps including spatial and temporal, to automate the fea-
ture extraction, classification, and segmentation paradigms [201,202]. Many studies have
already described the use of AI in the diagnosis and prediction of PD [137,157,203–205]
or prediction of early COVID-19 lesions [49,54,129,206]. Further, DL has also played an
important role in the diagnosis of COVID-19 in the presence of comorbidities, such as
diabetes [36], CVD [38,184,207], rheumatoid arthritis [208], and pneumonia [150]. When
such comorbidities are present in the patients besides PD and COVID-19, it severely affects
the non-linear dynamics. As a result, the role of DL becomes even more important and
prominent in CVD/stroke risk stratification [209]. We, therefore, need better biomarkers
that can measure COVID-19 severity. One such biomarker is the COVID-19 lesion size.
Section 5.1 shows the role of DL for COVID-19 CT lung lesion segmentation and quan-
tification, while Section 5.2 shows the role of DL for CVD/stroke risk stratification in PD
patients affected by COVID-19.

5.1. Deep Learning for COVID-19 Lesion Segmentation and Its Quantification in CT

The power of DL for COVID-19 lesion detection has been shown in previous studies
using different imaging modalities [17,210–213]. In fact, the use of DL has been investigated
for lesion detection in several applications, such as in, (i) common carotid artery [208,214],
(ii) coronary artery [140,213], (iii) brain tumor [212], (iv) skin cancers [211,215], and
(v) CT-based pulmonary imaging [132]. The pulmonary lesions during COVID-19 are
caused by the single-stranded RNA virus SARS-CoV-2, which infects the human cells
induced by angiotensin-converting enzyme II (ACE2), which in turn leads to interstitial
damage [216]. When it comes to the lesion, the stiffness in the lung muscle can be catego-
rized as another lesion due to PD, known as bradykinesia [52,81], where the lung muscles
become weaker.

Here, we focus on CT-based lung lesion segmentation and its quantification, which
acts as a covariate (or feature) during the DL paradigm. In DL, manual delineations of
CT lung lesions are challenging and are also vital for the design of offline DL training
models. Figures 12 and 13 illustrate the highlighted COVID-19 lesions in CT lungs using
manual delineation by experienced tracer 1 and 2, respectively. This is shown in the red
color lesion as an overlay image with a grayscale CT image in the background. When it
comes to COVID-19 lung lesion detection and quantification in CT, Suri et al. [217,218] have
demonstrated the usage of hybrid DL (HDL) models vs. solo DL (SDL) models, exhibiting
its superiority for lung lesion segmentation in CT scans. One of the most important
aspects of DL is the optimization of hyperparameters during training to obtain the best
performance of the DL system. It thus requires optimizing, (i) learning rate, (ii) number
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of epochs, (iii) batch size, and (iv) batch normalization, and (v) adding dropout layers
to prevent overfitting and obtain generalization. Further, to achieve the best DL design,
one must use several sources of biomarkers with a different set of data sources in a large
amount in a big data framework, ensuring a multiresolution framework for faster execution
time [202]. Transfer learning can also be used in CT lesion segmentation for transferring the
knowledge between models, so-called pretrained models, ensuring higher speed [150,219].
Table 4 shows a variety of pretrained DL models such as DenseNet 201, ResNet50 V2,
MobileNet, and VGG-16. SegNet and UNet models are stronger than the CNN models.
The ResNet50 V2 model has higher accuracy compared with the 3-layer CNN and VGG-16
networks.

Figure 12. Manual lesion delineation overlays (red) from tracer 1 on raw CT lung images (Courtesy
of AtheroPoint™, Roseville, CA, USA permission granted).
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Figure 13. Manual lesion delineation overlays (red) from tracer 2 on raw CT lung images (Courtesy
of AtheroPoint™, Roseville, CA, USA permission granted).

Table 4. Pretrained models for COVID-19.

Total CT Scan Samples
SN Authors and

Citations Positive COVID-19 Negative COVID-19 Pretrained Model Accuracy (%)

DenseNet 201 97.00
ResNet50 V2 96.00
Mobile Net 95.001

Halder et al. [206]
(2021) 1252 1229

VGG-16 94.00
VGG-16 87.68

2
Kumari et al. [189]

(2020) 921 921 3-layer CNN 56.16

3 Mishra et al. [211]
(2021) 360 397 Deep CNN 86.00

4 Saood et al. [175]
(2021) 287 314 SegNet 95.00

Unet 92.00
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5.2. Deep Learning for CVD/Stroke Risk Assessment for Joint PD and COVID-19 Patients

DL is a strong framework because it has the ability to derive the automated features
using the inherent knowledge base and further offers a superior training paradigm where
the non-linearity between covariates and the gold standard is dynamically adjusted. One
such typical system for DL design is shown in Figure 14. This architecture consists of:
(a) a training model design utilizing the risk variables taken from six sources such as office-
based biomarkers (OBBM), laboratory-based biomarkers (LBBM), carotid image-based
phenotypes (CUSIP), medication consumption (MedUSE), PD, and COVID-19, derived
from the training dataset, and (b) risk prediction labels as part of the gold standard which
are either heart failure (cardiovascular events) or stroke (cerebrovascular events) [220]. Such
a training system can be non-linearly adjusted and has been shown recently in the context
of cardiovascular risk stratification [38,185,207,221,222]. The image-based phenotypes
derived from the carotid ultrasound scans are considered CUSIP [67] such as carotid
intima-media thickness (cIMT, ave., max., min), intima-media thickness variability (IMTV),
and total plaque area (TPA). The choice of carotid artery non-invasive imaging [48] with
noise-reduction capability is preferred for economic reasons [44,223]. The carotid wall
segmentation aids in the detection of plaque build-up [224,225].

Figure 14. Deep learning model to predict the severity of CVD/stroke in PD with COVID-19
framework (Courtesy of AtheroPoint™, Roseville, CA, USA).
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The DL-based detection of PD can be conducted by using symptoms of PD as an
input parameter for the algorithm. There are numerous investigations that link changes in
voice [226] to a diagnosis of PD. Also, tremor [1], EEG [227], and sketch [228] biomarker
data are important factors in determining if the patient has PD or not. Table 5 lists AI
studies showing PD detection without COVID-19. Performance parameters of 12 studies
aligned with the type of input and AI architectures. The AI-based detection of PD can be
achieved by using symptoms as an input parameter for the algorithm. The majority of the
studies explain voice as an input parameter for the diagnosis of PD.

Table 5. AI techniques and their performance for PD detection without COVID-19.

Attributes (Left to Right) C1 C2 C3 C4 C5 C6 C7 C8 C9
Citations IP AI CLS ACC SEN SPEC AUC MCC F1

Hoq et al. [229] (2021) Voice HDL SVM 94.0 NR NR NR 0.71 0.91
Kamble et al. [230] (2021) HW ML SVM 96.0 NR NR 0.87 NR 0.8

Alzubaidi et al. [231] (2021) Tremor HDL DT 87.9 NR NR NR 89.34 1.17
Khedr et al. [232] (2021) Voice ML SVM 95.8 90.24 92.3 NR 92.03 96

Mei et al. [53] (2021) Voice ML KNN 83.07 NR NR 0.91 NR NR
Singamaneni et al. [1] (2021) Voice ML SVM 94.86 NR NR NR NR NR

Jayachandran et al. [233] (2020) Voice ML NB 78.34 NR NR NR NR NR
Anitha et al. [234] (2020) Voice ML SVM 90.21 1.8 4.39 2.49 NR 1.17
Maitín et al. [235] (2020) EEG ML LR 62.99 0.9067 0.981 NR NR NR

Poorjam et al. [236] (2019) Voice HDL SVM 96.00 NR NR NR NR NR
Aseer et al. [237] (2019) HW SDL SVM 98.28 NR NR NR NR NR
Naghsh et al. [35] (2019) EEG SDL DT 97.38 NR NR NR NR NR
Wang et al. [234] (2017) BM HDL KNN 96.12 NR NR NR NR NR

AUC: Accuracy, SEN: Sensitivity, IP: Input parameter, AI: Artificial intelligence model, CLS: Classifier, SPEC:
Specificity, MCC: Matthew’s correlation coefficient, NPV: Net present value, F1: Dice similarity coefficient; HW:
Handwriting; BM: Biomarker, NR: Not reported, HW: Handwriting, SDL: Solo deep learning, HDL: Hybrid deep
learning, DL: Deep learning, EEG: Electroencephalogram.

5.3. Deep Learning LSTM Architecture

Long short-term memory (LSTM) is one of the DL algorithms that can be used to
assess the risk of CVD/stroke (Figure 15). The ability to analyze several types of datapoints,
such as a single observation, is the fundamental feature of LSTM. This architecture consists
of four main components: cells, update gates, output gates, and forget gates (Figure 15). A
cell is the central component of the design. The values are stored in the cell during random
intervals, and the three gates control the flow of information or features into and out of the
cell [238]. LSTM is composed of four dense layers that are fully coupled and stacked on top
of one another [239,240]. LSTM performs better when it comes to formulating long-term
interconnections in data [241].
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Figure 15. The general structure of LSTM architecture [242].

5.4. The Comparative Analysis of AI Systems with a Different Set of Input Covariates

In previous sections, we demonstrated how patients having PD with COVID-19
increase CVD/stroke-related complications. We propose in Table 6 several AI-based studies
for the CVD/stroke risk stratification of PD patients in the COVID-19 framework. The main
ingredient of this table is the use of input covariates for the AI design for CVD/stroke risk
stratification. Due to the addition of a large number of covariates, the non-linear dynamics
increases and therefore affects the AI models during training and prediction, affecting
the accuracy. We thus need robust DL-based systems for CVD/stroke risk prediction and
stratification. There are six types of covariates that are used for the design of the AI models,
and we call them six types of AI clusters labeled as: (i) OBBM, (ii) LBBM, (iii) CUSIP,
(iv) MedUSE, (v) PD, and (vi) COVID-19. Note that the gold standard in all AI design
solutions while considering these covariates are patients who had a myocardial infarction,
coronary artery syndrome, coronary artery stenosis, or stroke. These clusters are discussed
below:

(i) AI systems that use office-based biomarkers as input covariate
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All the studies in Table 6 use OBBM as an input covariate, and this consists of at-
tributes such as height, weight, BMI, gender, ethnicity, smoking status, hypertension, and
cholesterol levels. An example of OBBM use is Kakadiaris et al. [243], where the authors
proposed an ML-based risk calculator for a multiethnic, community-based population
of men and women examined for incidental atherosclerotic CVD. The authors employed
ACC/AHA risk assessment variables and had an ML accuracy of 86%.

Reva et al. [244] described the first AI-based algorithm for CVD risk assessment
capable of reliably monitoring the collateral flow in androgen insensitivity syndrome (AIS)
patients. This is an automated technique that reduces bias and streamlines the clinical
process, which helps in determining reperfusion-eligible patients. Collateral circulation
is connected to a better functional outcome in acute ischemic stroke patients with major
arterial occlusion. Due to complex neuro-vasculature, evaluating collateral flow can be
difficult and time-consuming. The authors adopted SVM and RF-based ML algorithms for
the classification of AIS patients vs. controls. The model used 300 patient data and reported
an accuracy of 87%.

(ii) AI systems that use laboratory-based biomarkers as input covariate

Biomarkers are chemicals released into the blood by a damaged or stressed heart.
These indicators are used to diagnose acute coronary syndrome and myocardial ischemia.
Cardiovascular biomarker tests can also be used to assess a patient’s risk of developing
CVD or heart ischemia. There are various LBBM related to the heart such as low-density
lipoprotein, high-density lipoprotein, myoglobin, creatine kinase, troponin, atrial natriuretic
peptide, etc. For example, the study by the Unnikrishnan et al. [245] described a method
for assessing CVD risk associated with health indicators, many of which are derived from
the Framingham risk score. These approaches, however, have major limitations as a result
of their low sensitivity and specificity. The study reported a cohort size of 3665 patients
for studying the effect of model training on the local database, computed the Framingham
score, and established the linear regression analysis. The study presented an AI model and
reported an accuracy of 83%.

(iii) AI systems that use carotid ultrasound image phenotype as a covariate

In order to perform a comprehensive risk assessment, we must be able to automatically
and precisely quantify CUSIP [246], which consists of carotid intima-media thickness,
average, maximum, and minimum (cIMTave, cIMTmax, and cIMTmin), carotid intima-
media thickness variability (cIMTV), morphological total plaque area (mTPA), geometric
total plaque area (gTPA), lumen diameter (LD), and inter-adventitia [247]. We need a risk
assessment system that can determine the severity of coronary artery disease in patients
who present to the emergency department. All emergency department examinations
discovered an increase in cardiovascular disease, which was found to be associated with
an increase in phenotypes such as cIMT, gTPA, mTPA, and CRS. This CUSIP is then used
as a covariate in the ML algorithm to further improve the results (Figure 16) [246]. Suri
et al. [248] explained the risk of CVD/stroke in PD patients by using carotid artery imaging,
since it was low-cost, non-invasive imaging for the screening. PD patients will benefit
from the adoption of this low-cost B-mode ultrasonography since it will allow for the
characterization of plaque tissue. This will provide a critical additional understanding of
CVD/stroke risk stratification in PD patients.

(iv) AI systems that use Parkinson’s disease symptoms as input covariate

The PD input covariates are voice, gait, sketch pattern, and abnormalities in EEG. The
motor and non-motor symptoms result in a better understanding of whether patients have
PD or not. Another study by Park et al. [249] used EEG as an input to predict the stroke
severity in the PD patients. It implemented the SVM algorithm for the classification. The
cohort size consisted of only 16 patients, which was relatively small. The study reported an
accuracy of 88%.
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Figure 16. (a) Carotid artery disease is being investigated as a potential surrogate marker for coronary
artery disease. (b) Imaging device where the carotid artery is being scanned with the linear ultrasound
probe. The middle panel shows the B-mode carotid longitudinal US scan and IVUS-based artery
cross-sectional scan [250].

(v) AI systems that use COVID-19 as input covariate

The DL algorithm is used by the vast majority of AI-based systems for COVID-19
identification and categorization. To improve the amount of COVID-19 data available
for training, some researchers have adopted data augmentation techniques. Scientists
must modify the number of convolution layers in accordance with their intuition when
working with this hyperparameter. However, for COVID-19, DL-focused AI systems must
be adjusted based on the link between enhancement, the number of convolution layers,
and classification accuracy. The study by Suri et al. [54] presented an ML model that can be
used to predict the severity of CVD/stroke in COVID-19 patients. In these review studies,
the authors have validated their findings that COVID-19 causes damage to the brain and
heart through four distinct pathways (i.e., neuronal, hypoxia, RAAS, and immunological).
The degree of risk linked with a patient’s symptoms, and invasive imaging techniques,
whether portable or non-portable, must be performed with the utmost care. Even though
medical imaging [251] can considerably improve a patient’s odds of survival, the shortage
of qualified radiologists prevents it from being widely utilized. Furthermore, a study by
Zimmerman et al. [252] explained the significance of comorbidity appears to be associated
with adverse outcomes in COVID-19 patients. The uses of AI, particularly ML, have
the potential to utilize data-rich platforms and alter methodologies in the diagnosis, risk
stratification, prevention, and treatment of CVD. The patient size used was 32. The LDA
method was used for extracting features. The CNN algorithm was used for classification
purposes and the study reported an accuracy of 87%.

Another study by Handy et al. [253] explained the mortality rate prediction of
CVD/stroke in COVID-19 patients. The study explained the atrial fibrillation param-
eter for the benchmarking of the stroke risk prediction method. The DL-based LSTM
algorithm was used for the analysis purpose. The study reported an accuracy of 84%.
Another study by Bergamaschi et al. [254] determined the significance of serial ECG ab-
normalities in hospitalized individuals with COVID-19. These findings showed the role
of ECG abnormalities were detected at admission and even more, were observed at the
7-day ECG, which could assist doctors in stratifying the risk of significant adverse events
in COVID-19. The severity of the SARS-coronavirus-2 infection was found to be linked to
changes in the ECG. To our knowledge, no AI study has been able to give clear and useful
information related to the CVD/stroke risk stratification of PD patients in the COVID-19
paradigm.

Hence, we hypothesize that DL models are capable of performing a specific task, such
as automated disease diagnosis, with greater precision and efficiency than ML models and
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act as a second level of confirmation for the diagnosis [255]. Models trained with deep
learning can be applied to a wide variety of problems, including image-based quantification,
improvements to image acquisition, and differential diagnosis.

Table 6 shows the comparison between the proposed ML/AI algorithms and similar
techniques for CVD/stroke risk prediction. There were published techniques available in
the literature. There are other AI-based CVD/stroke and non-AI-based CVD/stroke risk
stratification methods that use carotid-based biomarkers with conventional risk factors. AI-
based methods have used ML techniques with conventional biomarkers or a combination of
conventional biomarkers with carotid-based image phenotypes [38,184,185,207,209,221,256,257].
The main concept behind these studies was to add the covariates such as cIMT (average,
max., min), IMTV, and TPA along with conventional biomarkers such as A1c, LDL, HDL,
triglycerides, SBP, DBP, BMI, and age. The system designed used standardized classifiers for
training when using the cross-validation approaches. For prediction system design, the test data
was adapted where the training model transformed the test features. These methods are mainly
called the class of AtheroEdge™ 3.0 system designs (AtheroPoint, Roseville, CA, USA). In
the non-AI-based methods for CVD/stroke the risk was determined by computing the
digital total of all the normalized risk values for the image-based biomarkers and then
compartmentalized into different risk classes such as no-risk, low-risk, low-moderate risk,
high-moderate risk, low-of-high risk, and high-of-high risk. This was computed using the
AtheroEdge™ 2.0 system (AtheroPoint, Roseville, CA, USA) [36,220,221,258–265]. Image-
based biomarkers, such as TPA, have shown to have a strong link with eGFR [266], and thus
AI-based solution have adapted the usage of TPA in the modeling process. AtheroEdge
systems were designed to keep both AI-based and non-AI-based methods at a low cost [267].
Note that the importance of the automated biomarker guidelines were recently revisited for
CVD/stroke risk stratification [265], thus the above AI-based and non-AI-based methods
are powerful solutions for CVD/stroke risk assessment.

Table 6. Comparative analysis of AI-based studies with CVD/stroke risk stratification of PD patients
in the COVID-19 framework.

Input Covariates
SN Citations Year OBBM LBBM CUSIP MedUSE PD COV GT PS AI FE CLS ACC

% AUC

1 Yan et. al.
[268] 2019 X X × X × × CVD NA NA NA NA NA NA

2 Park et al.
[249] 2017 X X × × X × Stroke 18 ML RF SVM 88.00 NR

3 Suri et al.
[248] 2022 X X X × X × CVD/stroke NR ML NR NR NR NR

4 Zimmerman
et al. [252] 2020 X X × × × X CVD 32 DL LDA CNN 87.23 NR

5 Aljameel
et al. [269] 2021 X X × × × X CVD/stroke 287 ML KNN SVM 95.00 0/99

6 Suri et al.
[54] 2020 X X X × × X CVD/stroke NR ML/DLNR NR NR NR

7 Handy et al.
[253] 2021 X X X × × X CVD/stroke NR ML/DLLSTM SVM 84.00 NR

8 Unnikrishnan
et al. [245] 2016 X X × × × × CVD 3654 ML LR SVM 83.00 NR

9 Mouridsen
et al. [270] 2020 X X × × × × Stroke, MRI 16 DL NR KNN 74.00 0.74

10 Bergamaschi
et al. [254] 2021 X X × × × × CVD 237 NA NA NA NA NA
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Table 6. Cont.

Input Covariates
SN Citations Year OBBM LBBM CUSIP MedUSE PD COV GT PS AI FE CLS ACC

% AUC

11 Reva et al.
[244] 2021 X X × × × × Stroke, CT 200 ML NB

DT,
RF,

SVM
85.32 NR

12 Kakadiaris
et al. [243] 2022 X X × × × × CVD 6459 ML DT,

RF SVM 86.00 0.92

13 Proposed
study 2022 X X X × X X CVD/stroke NA NA NA NA NA NA

IC: Input covariate, COV: COVID-19, PD: Parkinson’s disease, CVD: Cardiovascular disease, AI: Artificial Intelli-
gence, OBBM: Office-based, LBBM: Laboratory-based, CUSIP: Carotid ultrasound image phenotype, MedUse:
Medication, GT: Ground truth, PS: Patient size, FE: Feature extraction, CLS: Type of classifier, ACC: Accuracy,
AUC: Area under the curve, NA: Not applicable, NR: Not reported, X: Yes, ×: No.

5.5. Implementation and Maintenance of AI-Based CVD Risk Stratification System

Cardiovascular disease (CVD) is the most prominent cause of global mortality and
morbidity. Annually, ~17.9 million people die due to CVD, which accounts for 31% of the
overall deaths worldwide. Atherosclerosis is the main cause of CVD and future cardio-
vascular events. Ultrasound-based carotid artery imaging is a well-established surrogate
imaging for coronary heart disease and is typically adopted in office-based settings. Studies
have recently shown that image-based biomarkers or phenotypes when combined with
conventional risk factors are even more effective in CVD risk prediction. Such image
data, when collected or derived from a cohort, can be even more useful in predicting CVD
risk. Recently such an approach setup for CVD risk assessment using the combination of
carotid ultrasound plaque imaging and conventional cardiovascular risk factors (such as
patients’ demographics and laboratory-based parameters) in the ML framework was pro-
posed. Granularity in expressing CVD risk is crucial for personalized medicine and better
drug monitoring. Thus, one can improve the system by using multiclass–multilabel-based
(MCML) algorithms by assessing carotid ultrasound imaging for predicting the presence of
significant coronary artery disease than traditional risk scoring methods. Specifically, our
aims were to: (i) design a carotid image-based MCML CVD risk assessment calculator, (ii)
study the effect of clustering risk predictors on MCML performance, and (iii) benchmark the
MCML-based calculator against three types of conventional CVD risk calculators (CCVRC)
such as the Framingham risk score, the systematic coronary risk evaluation score, and the
atherosclerotic CVD score.. The AtheroEdge 3.0 ML using camaging is reliable, accurate,
and superior to traditional CVD risk scoring methods for predicting the CVD/stroke risk
due to coronary artery disease.

(i) Implementation of Training System

For generating the training model, one needs to define the type of the training model
based on the number of samples in the training system. This is done under the subsystem
called cross-validation. Typically, the cross-validation is categorized by the symbol “K”.
Examples of cross-validation systems are K2, K3, K4, K5, K10, and TT. K2 means 50%
training and 50% testing data, K3 means 66% training data and 33% testing data, K4 means
75% training data and 25% testing data, K5 means 80% training data and 20% testing data,
K10 means 90% training data and 10% testing data, and finally, TT means “Training equals
Testing protocol”, where training data is 100% and testing data is also 100%. Typically, the
TT protocol is adapted to validate the AI systems.

(ii) Implementation of Prediction System

This is the first study that combined conventional predictors with eight other clinical
clusters of different features in an MCML using the coronary angiogram as the gold
standard. Such a system can then leverage the cohort’s knowledge of nonlinearity between
input predictors and the gold standard in an MCML framework by automatically and
accurately predicting and stratifying the stroke/CVD risk into four granular classes. Thus,
the AtheroEdge 3.0 MCML system uniquely overcomes such nonlinearity in a multiclass
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framework, especially by using the carotid plaque image phenotypes, providing a powerful
paradigm similar to an office-based setup, where only the offline training coefficients are
needed for such an accurate prediction. To address the challenge of class imbalance in the
dataset, which is the most common problem in medical datasets, we used the commonly
used SMOTE algorithm that generated independent samples to balance each of the minority
risk classes.

(iii) Performance

Our study was highly novel and has demonstrated the superior performance of
the MCML-based algorithm compared with previous similar studies. We compared our
study results with five recent ML-based studies using the AUC as a common performance
evaluation metric. Recently, Kakadiaris et al. [38] have presented a 13-year follow-up study
with 6459 participants to predict the CVD risk using an ML classifier and compared its
performance against the ASCVD risk calculators. The authors performed binary CVD risk
stratification using an SVM-based ML classifier with nine conventional CVD risk predictors
and follow-up cardiovascular events as the gold standard.

(iv) Maintenance

Our system works using Python, and Java in a windows 11.0 platform and for mainte-
nance of the system, the following items are kept in mind namely: upgrade of windows
platform, upgrade of open-source python system, upgrade of Java system, upgrade of
the database system from Oracle, update version of the PDF distiller as needed for report
generation. Furthermore, there are bug trackers as usual, which are proprietary and cannot
be shared or released.

5.6. Distribution Strategies of the Potential Benefits of the ML/AI Model

There are several distribution strategies for the potential benefits of commercial ML/AI
models. Since AI models are online systems that need “test data sets” for execution, such
models can be integrated into, (i) cloud-based settings, or (ii) embedded in the scanning
devices, something like “Intel processor chip in Dell computer”.

The cloud-based strategies are most effective because the system can be executed
from “any computer” and “any time”. The cloud-based system can be launched in offline
settings and the ultrasonic data can be physically moved from the ultrasound machines to
the “local computer”. This is one way the data can be distributed to the local computer and
the benefit of ML/AI can be realized.

The second distribution strategy is when the offline training models can be embedded
into the scanning devices that hold the data. This kind of distribution strategy raises the
price of the system, and the cost of maintenance is high due to the evolution of the ML/DL
model generations. The profits are high since AI models are embedded in the system itself.
If the interface of the models is smooth and the graphical user interfaces are ergonomic
or user-friendly, the overall systems can be very powerful. Such distribution strategies
are compact but surely encounter a higher price tag for customers. The shipping of such
scanners has higher maintenance costs and is typically passed to the customers. Upgrades
are more frequent due to scientific evolutions, which are again passed to the customers.

No matter which distribution strategy one chooses for benefitting the AI models,
“cloud vs. embedded-based solution”, and the interface design must incorporate multi-
threaded and multi-tasking architectures enveloping higher CPU clock speed, preferably
GPU-based settings or even pruned models having the explainable AI-based paradigms.

6. Critical Discussion

In this review, we focused on the CVD/Stoke risk stratification of PD patients in
the COVID-19 framework. Furthermore, it is clear from a detailed evaluation of several
investigations that PD patients with COVID-19 are at an elevated risk of CVD/stroke. As a
result, in addition to COVID-19 on PD patients and its monitoring, a low-cost approach
should be used to prevent a patient’s CVD/stroke symptoms from worsening. With the aid
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of a DL-based AI model, these patients may be efficiently monitored, and long-term effects
can be averted. In the presence of the COVID-19 framework, DL can assist in CVD/stroke
risk stratification in PD patients, with improved sensitivity and specificity. Clinicians can
use this model to counsel COVID-19-positive patients with PD along with carotid arterial
imaging, and provide further guidance on the CVD/stroke risk.

6.1. Benchmarking

PD and COVID-19 have been linked in a few studies utilizing OBBM, LBBM, CUSIP,
and MedUSE, according to an overview of the data. AI’s function in the diagnosis of
joint COVID-19 and PD is rarely discussed in the literature. Only a few articles in the
COVID-19 framework use the AI model to describe the severity of PD. Table 7 reports the
benchmarking scheme for selected studies.

Table 7. Benchmarking scheme for selected studies.

SN S0
COVID-19 Symptoms in PD

Patients

PD
Motor
Symp-
toms

PD Non-Motor
Symptoms Risk Factors Gold Standard

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

1
Antonini
et al. [56]

(2020)
X × X X X × X X X X X X X X X

PD + COVID-19 +
Pneumonia

2 Baschi et al.
[7] (2020) X X X X X × X X X X X × X X X

PD + COVID-19 +
Respiratory

dysfunctions

3 Brown et al.
[163] (2020) X X X X × X X X X X X × X X X

PD + COVID-19 +
Pneumonia

4 Cella et al.
[2] (2020) X X X × X X X X X X × X X X X

PD + COVID-19 +
Respiratory

dysfunctions

5 Starmbi et al.
[129] (2021) X × X × X × X × X × X × X X X

PD + COVID-19 +
Respiratory

dysfunctions

6
Helmich
et al. [6]
(2020)

× × X × X × X × X X X × X X × PD + COVID-19 +
Pneumonia

7
Khoshnood

et al. [5]
(2021)

× × X × × × X X X × X × X X X
PD + COVID-19 +

Respiratory
dysfunctions

8 Lau et al.
[16] (2021) X × X X X X × X X X X × X × X

PD + COVID-19 +
Pneumonia

9 Sulzer et al.
[4] (2021) X X X × × X × X × X X × X X X

PD + COVID-19 +
Respiratory

dysfunctions

10
Tsivgoulis
et al. [131]

(2021)
X X X X X × × × × X × × × X X

PD + COVID-19 +
Respiratory

dysfunctions

11 Sorbera et al.
[130] (2021) X X X X X × X X X X X × X X X

PD + COVID-19 +
Pneumonia

S0: Author, S1: Fever, S2: Dry cough, S3: Cough, S4: Shortness of breath, S5: Pneumonia, S6: Delirium, S7:
Bradykinesia, S8: Rigidity in throat muscles, S9: Anxiety, S10: Sleep disorder, S11: Hypertension, S12: Fainting,
S13: Age, S14: PD duration, S15: PD with COVID-19 and comorbidities, S16: PD with COVID-19 mortality risk
factor, X: Yes, ×: No.

6.2. Bias in Deep Learning Systems

The training model design step of the DL algorithms is highly dependent on the
sample size employed. Furthermore, due to a lack of, (i) clinical testing of AI techniques,
(ii) scientific validation, (iii) not satisfying the gold standard, (iv) comorbidities, (v) lack
of big data configuration, and (vi) not judging the proper disease severity ratio, these
all lead to bias in the AI. As a result, when COVID-19-associated PD symptoms (or risk
factors) are examined as inputs into an AI model, it is critical that the AI model be stable,
accurate, and has minimal AI bias [45,224,271–273]. It may also be noticed that the database
contains geographically specific patient characteristics. As a result, the model may produce
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deceptive positive or negative findings for other continents, introducing bias into the
model [274,275].

6.3. The Economic Aspect of AI-Based Diagnosis

The field of artificial intelligence (AI) has an effect on virtually every aspect of life [32],
particularly the application of machine learning and deep learning in medical imag-
ing [32,276]. The use of AI in medical diagnostics is now in the early adoption phase
across several different specialties [1]. The number of AI articles has increased exponen-
tially. Willmen et al. [277] showed a cost-effective saving when using a referral system
using decision support. One reason is the optimized, accurate, and automated solution.
This directly transforms into cost benefits, leading to significant influence on the discipline
of economics. Several examples have shown the cost benefits of AI in different applications
of medicine.

Mital et al. [278] conducted a model-based economic evaluation that used a hybrid
decision tree/microsimulation model for comparing the costs of screening mammogra-
phy using eight different methods. The study showed that using AI in breast screening
for low-risk women is the most cost-effective solution. Areia et al. [279] conducted the
Markov model for colorectal cancer screening with and without AI. The study showed
prevention of 7194 colorectal cancers along with prevention of 2089 deaths, and finally
a saving of 290 million USD. According to a recent study on the internet of things (IoT),
machine learning is helping to speed up the growth of industrial supply chains, which
saves both time and money. Morrison et al. [280] developed a cost-effectiveness analysis of
an AI-based solution [280] for retinopathy of prematurity (ROP) screening. The authors
adapted the decision tree’s machine learning solutions and compared them against three
different kinds of strategies such as ophthalmoscopy, telemedicine, and assistive AI with
telemedicine review. The authors took a cohort of infants using ROP screening in the USA.
The outcome of the study demonstrated the most cost-effective solution was using an
AI-based telemedicine approach. The main reason for this was the avoidance of human
examiners for detecting ROP. Bao et al. [281] showed the role of AI-based assisted reading
of human papillomavirus (HPV) testing and compared it against liquid-based cytology and
manually drawn readings. The study included 2065 women aged 25–64 proving their hy-
pothesis that AI-based solutions are effective both in cost and efficiency. Hoshida et al. [282]
demonstrated the cost-effectiveness of four types of hepatitis B virus (HBV) serological
screening methods in China. The authors designed the Markov cohort model, by taking
into consideration the parameters based on previous studies databases. Lee et al. [283]
proposed an AI-based solution to faulty remote water-meter-reading (RWMR) devices.
The authors adapted a convolutional neural network–long short-term memory network
(CNN-LSTM) by considering 2762 customers over 360 days and collecting 2,850,000 AMI
datasets in semi-rural areas of South Korea. The authors demonstrated an F-measure of
0.82 and Mathew coefficient of 0.83 using CNN–LSTM as part of the cost–benefit analysis.

Cardiovascular disease (CVD) is one of the major causes of mortalities and morbidities
in the world [284]. Annually, CVD causes ~17.9 million mortalities each year [284]. From
our survey, we did not find any cost–benefit analysis paper related to CVD. The early
diagnosis of the risk of CVD/stroke is very important for reducing healthcare expenditures
and saving lives. With AI, CVD detection can be performed early, faster, and at a low
cost. Since only training models are needed that can be stored in the system, the online
CVD/stroke risk prediction can be quickly done in seconds if the test patient data is
available. This is highly economic since the risk stratification can be done in seconds with
granularity. Rural areas are seeing a decline in the number of primary care physicians
employed there. This is because rural families, on average, earn less money than families
living in urban areas. Because AI can provide specific test support in place of procedures, it
can help address the challenges brought about by changes in both the demographics and
the economy. Now with the cloud-based internet solution, the data can be simply loaded
onto the web and the system by calling the offline models to predict the risk of granularity
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for CVD/stroke. This saves tremendous amounts of time and, thus, eventually the cost is
lower [285].

For CVD/stroke risk prediction in PD patients in the COVID-19 framework, the same
set of AI benefits apply here as well. The deep learning automated model can be used for
COVID-19 detection and quantification in CT scans [286]. This is fully automated and a
superior time-saver, which translates into cost savings. The covariate design for ML-based
CVD/stroke risk prediction is a further time-saver, since it can be used for training model
one-time design. These models can then be used for CVD/stroke risk prediction on online
patients, further saving time and cost. The various deep convolutional neural network
architectures were explained in Appendix A.

In summary, the main attributes of economic benefits for using AI-based solutions are,
(i) early detection of the disease, (ii) prevention of surgery at a delayed time, (iii) use of
off-line in-built training models embedded in the systems, and (iv) Usage of cloud-based
AI technologies. While AI is powerful and proving to be an economic solution, there are
ethical concerns [287], lack of regulation, and handing of AI bias [216,271–273,288]. Further,
these solutions should use big data framework [274] and blockchain framework [289] if AI
is taken to its full advantage.

6.4. Strengths, Weakness, and Extensions

The main strength of the current system is the role of DL for CVD/stroke risk as-
sessment in PD patients in the presence of COVID-19. DL offers better training and risk
prediction due to superior non-linear adjustment between the covariates and the gold
standard. Further, the system offers better coverage of covariates such as OBBM, LBBM,
CUSIP, MedUSE, PD covariates, and COVID-19 covariates along with lesion sizes estimated
from the CT scans of the lungs. Further, the role of LSTM, a very powerful approach for the
DL system design for CVD/stroke risk prediction was presented. Lastly, the DL system
is generalized which can be altered by adding more covariates and comorbidities such as
diabetes, rheumatoid arthritis, renal disease, coronary artery disease, etc.

The AI-based solution for CVD/stroke risk assessment of PD patients in COVID-19
framework is the first to introduce the use of a machine learning system for CVD/stroke
risk assessment and is easily amendable for adjustment of more parameters. This means
more covariates can be added and the machine learning system will perform better once
optimized. The deep learning paradigms are powerful solutions for lesion detection.

The first time the system is developed it computes CVD/stroke risk in PD patients in
the COVID-19 framework.

While DL offers strengths to the system, it also needs to be ensured that the system
is optimized always. This requires several iterations of hit-and-trial attempts to achieve
optimal DL solutions. Further, the DL system requires a solid gold standard for, (a) during
CT lesion annotations, and (b) CVD/stroke gold standard collection in cohorts, which
also requires time and cost. Lastly, as pointed out before, DL systems are susceptible
to AI bias due to overperformance in terms of accuracy and lack of interpretability. In
terms of extensions, superior DL systems can be designed using ensemble-based methods.
Big data can be considered as an option for improving the DL system by taking more
sources of data and in a larger sample size. The DL system can be improved by adding the
augmentation designs should the cohort size be small. Lastly, the new wave of pruning
needs to be incorporated into the DL system for smaller-size training storage models [290]
and evolutionary methods [291].

7. Conclusions

The importance of CVD/stroke risk prediction for PD patients in the COVID-19
environment was highlighted in this comprehensive investigation. We also illustrated
how PD with COVID-19 can cause vascular and cerebral strokes. This review highlighted
how PD with COVID-19 may aggravate complexity in CVD/stroke. Thus, PD patients’
CVD/stroke risk categorization in the COVID-19 paradigm is critical. Carotid imaging is a
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non-invasive, low-cost alternative to conventional imaging for monitoring CVD/stroke
in PD patients. This low-cost B-mode ultrasonography also will help characterize plaque
tissue in PD patients with COVID-19, improving CVD/stroke risk assessment. CT scan
images of lung lesions can help diagnose and quantify COVID-19 infection severity, which
is useable as a covariate during DL design. As a result, we explained the role of an AI-based
model that can be used to accurately classify PD patients into risk groups for CVD/stroke
based on their COVID-19 risk profile. The COVID-19 framework was used to describe an
AI-based model for predicting CVD/stroke risk in PD patients. Finally, we discussed the
involvement of joint PD with COVID-19 in the CVD/stroke paradigm, as well as the role
of AI in this context.

Author Contributions: Conceptualization, J.S.S., M.A.M. and. S.P.; Methodology and software, J.S.S.,
M.A.M., L.S., M.B. and M.T. Validation, A.J., M.T., P.A., I.M.S., G.F. and N.N.K., Investigation, P.S.C.,
K.V., J.R.L., K.I.P., M.S., M.T., S.M., M.M., G.T., D.W.S. and J.S.S.; Resources, S.P.; Data curation,
M.A.M., L.S., S.S., S.P., T.O., G.D.K. and J.S.S.; Writing—original draft preparation, S.P., M.A.M., L.S.,
M.A.-M., P.R.K., M.K., D.W.S., M.M.F., S.N. and J.S.S.; Writing—review and editing, S.P., M.A.M., L.S.,
M.T., M.S., A.B., V.A., P.P.S., A.J., P.R.K. and J.S.S. Visualization, D.P.M., A.A., S.K.D., K.V., R.K., J.S.T.,
A.S. (Aditya Sharma), G.T., Z.R., A.D.P., A.N. and J.S.S.; Supervision, S.M., A.S. (Ajit Saxena), V.R.,
V.A., M.F. and J.S.S.; Project administration, S.P., N.N.K., J.S.T., P.P.S. and J.S.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Suri is with AtheroPoint™ LLC, Roseville, CA, USA, which does
cardiovascular and stroke imaging.

Data Availability Statement: No data availability.

Acknowledgments: Mahesh A. Maindarkar, would like to acknowledge the Department of Science
and Technology, Government of India for sponsoring the project under the scheme IMPRINT-2 vide
file no: IMP/2018/000034, Dated: 28 March 2019.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SN Abb Definition SN Abb Definition
1 A1c Glycated hemoglobin 34 VCAM Vascular cell adhesion molecule
2 ANS Autonomic nervous system 35 LBBM Laboratory-based biomarker
3 ANN Artificial neural network 36 LDL Low-density lipoprotein
4 ACE2 Angiotensin converting enzyme 2 37 LSTM Long short-term memory
5 AUC Area under the curve 38 MedUSE Medication use
6 AI Artificial intelligence 39 ML Machine learning
7 ARDS Acute respiratory distress syndrome 40 MRI Magnetic resonance imaging
8 BMI Body mass index 41 NPV Negative predictive value
9 CAD Coronary artery disease 42 NB Naive byes
10 CAS Coronary artery syndrome 43 nOH Neurogenic orthostatic hypotension
11 CCA circumflex coronary artery 44 Non-ML Non-machine learning
12 CPD Chorionic pulmonary disease 45 NN Neural networks
13 COPD Chronic obstructive pulmonary disease 46 NR Not reported
14 CKD Chronic kidney disease 47 NO Nitric oxide
15 CT Computed tomography 48 OBBM Office-based biomarker
16 CUSIP Carotid ultrasound image phenotype 49 OH Orthostatic hypotension
17 CV Cross-validation 50 PD Parkinson’s disease
18 CVD Cardiovascular disease 51 PE Performance evaluation matrices
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19 CNN Convolution neural network 52 PPV Positive predictive value
20 DA Endogenous dopamine 53 PCA Principal component analysis
21 DL Deep learning 54 RA Rheumatoid arthritis
22 DM Diabetes mellitus 55 RF Random forest
23 DBP Diastolic blood pressure 56 RoB Risk of bias
24 DT Decision tree 57 RoS Reactive oxygen species
25 EMG Electromyography 58 ROC Receiver operating characteristics
26 EPB Increased blood pressure 59 RNN Recurrent neural network
27 FoG Freezing of gait 60 SCORE Systematic coronary risk evaluation
28 GGO Ground-glass opacities 61 SBP Spontaneous bacterial peritonitis
29 GT Ground truth 62 RNA Ribonucleic acid
30 HTN Hypertension 63 SMOTE Synthetic minority over-sampling technique
31 HDL Hybrid deep learning 64 SVM Support vector machine
32 ICU Intensive care unit 65 TMD Temporomandibular disorder
33 ICAM Intercellular adhesion molecule 66 TMJ Temporomandibular joint

67 US Ultrasound

Appendix A

Appendix A.1. Deep Convolutional Neural Network Architecture

Figure A1 shows DCNN’s global architecture. It has four convolution layers and an
average pooling layer. The 2D feature map is then flattened to create a 1D map. Two 128-
node hidden layers follow. The “Softmax” layer has two nodes representing symptomatic
and asymptomatic classes.

Figure A1. The general structure of CNN architecture (courtesy of AtheroPoint™, Roseville, CA,
USA) [292].

Appendix A.2. DenseNet Architecture

DenseNet architecture solves deep neural nets vanishing gradient problems. This
model included dense blocks. It has a pool of convolution layers with 3 × 3 filters to 1 × 1
filters followed by batch normalization (BN) and every layer employs “ReLU” activation.
These dense blocks were concatenated using transition blocks. Each transition block
includes 2 × 2 to 1 × 1 filters with dropout layers, convolution, and pooling layers. The
beauty of DenseNet is that there are parallel connections to avoid losing the features.
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Figure A2. The general structure of Densenet architecture (courtesy of AtheroPoint™, Roseville, CA,
USA) [292].

Appendix A.3. Inception V3 Architecture

This model was created to reduce calculation time and parameters. This model
handles large datasets. This model is efficient. When using ImageNet, Inception V3
achieves higher accuracy. The model has blocks. Convolution and max-pooling layers
are included. Figure A3 shows architecture, DL1 to DL6 as depth-wise convolution, C1
as initial convolution, T1 to T3 as transition layer, and D1 to D4 as batch normalization.
In Inception V3, each top-row block represents rows 2 and 3. Row 2 repeats row 3. Each
convolution layer has a stride 1 and padding 0 convolution filter. First, a 3 × 3 convolution
layer with stride 1 and padding 1 is added to the feature map (FM). It reduces FM depth;
the resultant FM and initial FM are fused to make row 2 blocks.

Figure A3. The general structure of InceptionV3 architecture [292].

Appendix A.4. Xception Net Architecture

A modification to IV3 was suggested by Chollet et al. from Google. This modification
would involve replacing the inception modules with modified depth-wise separable convo-
lution layers. There are a total of 36 strata in this architecture. XceptionNet is lightweight
compared to IV3, and it contains the same number of parameters as IV3. The top-1 accuracy
of this architecture is 0.790, and the top-5 accuracy is 0.945, which is better than InceptinV3’s
performance. The Xception system’s architecture is depicted in Figure A4.
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Figure A4. The general structure of XceptionNet architecture [292].

Appendix A.5. Resnet50 Architecture

To solve the vanishing gradient problem the ResNet model is used. Skip connections
are in residual blocks. These skip connections skip training levels and output links. Skip-
ping layers allows the model to learn complex patterns. This TL model uses CIFAR-10 data,
unlike others. Figure A5 depicts ResNet. Architecture pairs two 3 × 3 convolution layers.
These pairs’ outputs and inputs are combined and fed to the following pair. Here, 64–512
filters are listed. After the last 3 × 3 convolution layer with 512 filters and a flattened layer
for vectorizing 2D features, the output is predicted using softmax activation.

Figure A5. The general structure of Resnet50 architecture [292].

Appendix A.6. MobileNet Architecture

This was the first computer vision model developed for TensorFlow for mobile de-
vices. It contains 28 layers and uses the TFlite (database) library. Figure A6 presents the
architecture of MobileNet architecture. This model contains bottleneck residual blocks
(BRBs), also referred to as inverted residual blocks used for reducing the number of training
parameters in the model.
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Figure A6. MobileNet architecture, BRB: bottleneck and residual blocks [292].

Appendix A.7. AlexNet Architecture

Alex Krizhevsky et al. suggested AlexNet for ImageNet in 2012. It is CNN’s initial
architecture for computer vision challenges. This architecture’s error rate is 15.3%. This
architecture transforms AI. It accepts 256 256 images and has five convolution layers and
two completely connected networks. Softmax output layer. Sample architecture is shown
in Figure A7.

Figure A7. AlexNet architecture [292].

Appendix A.8. Suri Net Architecture

The first is a more traditional CNN, and the second is an architecture known as SuriNet.
Although the UNet network is often used for segmentation in medical image analysis, the
SuriNet architecture, which is a modified version of the UNet architecture, was the one
that we relied on for classification. We employed separable convolution neural networks in
the SuriNet architecture that we suggested to cut down on the amount of overfitting and
the number of parameters that were necessary for training. The architecture of SuriNet is
depicted in Figure A8.
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Figure A8. SuriNet architecture [292].
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