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Abstract

Background: Forward genetic approaches have limited use for agronomic traits that can’t be reliably scored on a single
plant basis. Thus, mutants in wheat and other crops are more useful for gene function studies by reverse genetic
approach. With a long-term goal to develop a sequence-based mutation detection resource in hexaploid wheat,
we conducted a feasibility study to accurately differentiate induced mutations from the homoeologs’ sequence
variations present among the three wheat genomes.

Results: A reduced representation ApeKI library consisting of 21 Ethylmethane Sulfonate (EMS) induced mutants and
two wild type cv. Indian plants was developed using individual barcode adapters and sequenced. A novel bioinformatics
pipeline was developed to identify sequence variants using 178,464 wheat unigenes as a reference wheat transcriptome.
In total, 14,130 mutational changes [Single Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELs)]
and 150,511 homoeologous sequence changes were detected. On an average, 662 SNPs (ranging from 46 to 1,330) and
10 small INDELs (ranging from 0 to 23) were identified for each of the mutants. A mutation frequency of one per 5 Kb
was observed with 70 % being transitions and 30 % transversions. The pipeline was tested using the known sequence
changes in the three wheat genes. Genes present in the distal regions of the chromosomes were found to be more
prone to EMS compared to genes present in the proximal regions. Redefined parameters identified a total of 28,348
mutational changes (1,349/plant).

Conclusions: We conclude that sequencing based mutation detection is a valuable method to identify induced
mutations at large.

Keywords: Ethylmethane sulfonate, Mutation, Genotyping-by-sequencing, Bread wheat, Unigenes, Bioinformatics
analysis pipeline, EST mapping

Background
The development of functional genomic resources in
wheat is critical for determining function, especially for
genes controlling agronomic traits. The creation of such
resources involves disruption of genes either by muta-
genesis or gene knockout. Extensively used, mutagen-
esis creates a large and discrete spectrum of lesions that
are subsequently detected by forward or reverse genetic
approaches. Ethylmethane Sulfonate (EMS) has been a
long standing and popular choice to create mutagenized
populations in a wide array of species [1–3]. EMS intro-
duces mostly point mutations usually through alkylation
of guanine resulting in GC to AT transitions [4]. To

date, mostly forward screening approaches have been used
in wheat to identify mutants (http://wheat.pw.usda.gov/
GG2/Triticum/wgc/2008/). However, owing to the large
and complex polyploid genome of wheat, phenotypic
screening-based forward genetic approaches are less likely
to identify mutants for agronomically relevant genes. Tar-
geting Induced Local Lesions IN Genomes (TILLING),
one of the reverse genetic approaches, is often the method
of choice to identify mutants in a target gene of known
sequence [5–7]. TILLING combines the use of chemical
mutagenesis followed by application of mismatch detec-
tion assays or high throughput sequencing of PCR ampli-
cons. Along with the requirement of prior gene sequence
information to generate PCR primers, TILLING entails
significant time and effort and seems to be a prohibitive
approach in crops where genome sequence is not avail-
able. In bread wheat (Triticum aestivum L.), despite the
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availability of considerable sequence information in
Expressed Sequence Tag (EST) database, it is difficult
to design genome-specific PCR primers because of the
presence of three very closely related homoeologs.
A diverse set of publicly available mutants is needed in

wheat to help assign function to its genes including poten-
tial candidates of agronomic importance. Recent technical
and bioinformatic advancements have made DNA sequen-
cing cheaper and more robust but not enough to perform
complete genome sequencing of a large sized mutant
population. Thus, a rapid, facile, high throughput, and cost
effective method to detect induced mutations in the poly-
ploid genome of wheat is necessary. Contemporary im-
provements in terms of high throughput sequencing
platforms have facilitated the discovery of large-scale nat-
ural variation in several genomes including model [8] as
well as crop plants such as maize, sorghum, and soybean
in a time and cost effective manner [9–11]. Sophisticated
algorithms with improved accuracy in SNP calling have
been developed and are being applied to identify in-
duced point mutations in diploid and tetraploid species
[12, 13]. Applying high throughput sequencing tech-
nologies coupled with variant detection software will
likely prove to be efficient in detecting mutations in
bread wheat as well. Furthermore, sequence-based de-
tection of mutations will bypass the pre-requisites such
as genome-specific markers needed for TILLING and
other currently used mutation detection methods.
Bread wheat has a very large genome [17 billion base-

pairs (bp)] of which it is estimated that 1–5 % represents
coding sequence [14, 15]. Since mutations present in the
coding regions of the genome are of main interest, any
sequencing-based mutant detection strategy has to target
the coding part of the genome. The use of reduced repre-
sentation libraries followed by sequencing [Genotyping by
Sequencing (GBS)] is one such approach [9]. It reduces
the genome complexity and targets the genic part of the
genome by the use of methylation sensitive restriction
enzymes. This approach also allows sample pooling that
further reduces the per sample cost and it has been suc-
cessfully used to assess natural sequence variation in a
number of species including switchgrass [16], soybean
[17], maize [9], Arabidopsis, and lettuce [18]. It should be
equally beneficial to detect sequence variation present in
mutant populations.
With a long-term objective of developing a community

resource to quickly identify mutants for a target gene;
here we report an efficient approach to identify induced
mutations by accurately differentiating those from the
sequence changes present among the three wheat homo-
eologs. The efficiency of the bioinformatics pipeline was
tested by detecting the known sequence changes in the
three wheat genes with known sequence for all the
homoeologs and paralogs.

Results
Unigene-based reference sequence for hexaploid wheat
As an ordered genome sequence is not available for
hexaploid wheat, we used the NCBI Unigene Build # 63
(http://www.ncbi.nlm.nih.gov/UniGene/UGOrg.cgi?-
TAXID=4565; as of April 2013) as a reference transcrip-
tome. As unigenes represent only the genic portion,
thus the complexity of the wheat genome is further re-
duced. Dataset contained 1,551,792 sequences of which 35
% were mRNA sequences, 26 % 5′ ESTs, 20 % other ESTs,
18 % 3′ ESTs, and 1 % high-throughput cDNA (HTC) se-
quences. These sequences encompassed key developmen-
tal stages of wheat from cultivars Chinese Spring, Recital,
KitaKEI1354, Norstar, Valuevskaya, Thatcher, Atlas66,
Scout66, and Stephens. Alignment and clustering by NCBI
of these sequences resulted in 178,464 unique contigs, of
which about 60 % were singletons and 40 % contained
multiple sequences. Functional annotation was available
for merely 1.8 % of the unigenes. The unigene length
ranged from 103 bp to 11,803 bp with an average length
of about 620 bp. About 40 % of the unigenes were longer
than 500 bp whereas the length of the remaining 60 %
ranged from 103 bp to 500 bp. The unigene set covered
about 110 million basepairs (Mbp) of the genic part of the
wheat genome.

Mapping of the sequence reads
Genotyping-by-sequencing of the 24-plant ApeKI library
using Illumina HiSeq2000 platform (Fig. 1a) generated a
total of 223,301,699 reads. About 97 % of the reads con-
tained the barcode and of these the 74.2 % containing the
remnant ApeKI cut site were selected (Additional file 1)
(see Methods). These 167,389,217 reads were further
sorted into 24 files according to their barcode using a cus-
tom written Perl script. Plant # 15 had poor quality reads,
thus it was not used for further analysis, reducing the data-
set to 23 plants. The barcodes were removed and the read
sequences were trimmed to 64 bases (including the initial
CWGC) (Fig. 1b). The number of reads among mutant
plants ranged from 114,538 (plant # 31) to 15,294,951
(plant # 35) whereas the average number of reads for the
two wild type plants was 2,443,718 (Additional file 1).
Using the Burrows-Wheeler Aligner (BWA) [19], these
reads were aligned with the NCBI wheat unigene-based
reference sequence (110 Mbp). A very narrow range of
mapped reads per plant was observed (7.8–10.5 %)
(Additional file 1) and overall 9 % of the filtered reads
mapped to the reference unigene sequence. Among the
23 plants, the number of identified unigenes ranged
from 1,601 (plant # 31) to 47,880 (plant # 27) consistent
with the number of reads generated from these plants
(Additional file 1).
Sequencing reads of all mutants and two wild type plants

were submitted to the National Center for Biotechnology
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Information (NCBI) Sequence Read Archive (study
SRP056743).

Sequence coverage and depth of unigenes
Selected reads from the 21 mutant and the two wild type
plants aligned with 79,299 unigenes with an average uni-
gene coverage of 28 % (Fig. 2a). Not including the reads
from wild type plants, all the mutants reads aligned with
79,123 unigenes with an average coverage of 27 %
(Fig. 2b). The unigenes coverage varied from 0 to 100 %
with a maximum number of unigenes (20,959 and
21,003 in Fig. 2a and b, respectively) with 11–20 % base
coverage. Eighty-eight percent (69,999 and 69,938 in
Fig. 2a and b, respectively) of the unigenes had coverage
up to 50 % with the mapped reads. A similar distribution
of unigenes in different base percentage coverage class is
observed for 21 pooled mutants with minimum depth of
10 reads (Fig. 2c).
Considering 23 plants, the read depth per unigene

ranged from one to >1000. For 33 % (25,863) of the uni-
genes, the reads depth per unigene was ≤10 whereas for

52 % (41,224) of the unigenes, the number ranged from
11 to 50 (Fig. 3a). A similar pattern of read depth distri-
bution per unigene was observed considering the reads
from 21 mutants (Fig. 3b). 74 % (58,407 in number) of the
unigenes from 21 mutants were retained after filtering for
a minimum depth of 10 reads per unigene and the max-
imum number of unigenes (40,979) fall into 11–50 read
depth class (Fig. 3c).
Reads from the 23 plants were also sequentially

aligned to analyze the pattern of change of depth and
coverage for the mapped portions of the unigenes. Se-
quential addition of samples was performed starting with
the plant containing the least number of mapped reads
to 1,601 unigenes and culminating with the plant con-
taining the highest number of mapped reads to 47,880
unigenes. The number of unique unigenes increased
with the increase in each sample addition up to a certain
limit. Thereafter, the number of unigenes increased at a
decreasing rate. The percent unigene sequence coverage
followed the same pattern whereas the depth per uni-
gene showed the opposite pattern (data not shown).

Fig. 1 Schematic diagram for mutation detection using novel application of Genotyping-by-sequencing (GBS). a DNA of 24 plants including 22
EMS generated M2 and two wild types was digested with ApeKI followed by unique barcode (highlighted in orange, cyan, purple, and green)
and common adapter (highlighted in red) ligation. All samples were pooled together before PCR amplification. Pooled sample library was evaluated
for its quality and size. Sequencing of the library was performed on Illumina HiSeq2000. b Raw data files processed according to the filters described in
Methods section. Differentiation of EMS SNPs from homoeologous SNPs is shown from three mutant plants where homoeologous SNP positions are
marked in red and blue while mutational SNPs are highlighted in purple
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Fig. 2 Distribution of mapped unigenes according to different classes of percent base coverage. a Mapped unigenes from 21 mutant and 2 wild
plants. b Mapped unigenes from 21 mutant plants only. c Mapped unigenes from 21 mutant plants only when minimum depth was set to 10. X-axis
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To verify that our pipeline is capturing all the se-
quence changes including homoeologous as well as
mutational, a read depth analysis with constant cover-
age of 64 bp was performed (Additional file 2). The

number of captured changes per read were signifi-
cantly higher when read depth was increased from 10
to 20, however, the number of changes per read
remained same with depth ≥ 20.
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Differentiating mutations from homoeologous changes
Composite alignments of the selected reads from the 23
plants with the unigene set were evaluated based on dif-
ferent parameters in SAMtools (see methods for details).
Alignment of all the selected reads from 23 plants

with the unigenes revealed a total of 359,769 variants
including 96.74 % SNPs and 3.26 % INDELs. Applica-
tion of a QUAL ≥ 30 filter reduced the number of vari-
ants to 240,439, including 96.48 % SNPs and 3.52 %
INDELs. Of these sequence changes, 204,466 met the
criteria of DP10 per variant location and MQ ≥ 30. Fur-
ther, using the criteria of requiring reads from two or more
plants in an alignment around a sequence change, 201,353
variants were retained. 150,511 of these changes were
sequence differences among wheat homoeologs as were
present in more than one plant. About 97.8 % of these
changes were SNPs and 2.2 % were INDELs. Additionally,
intervarietal changes constituting 33,899 SNPs and 2,813
INDELs were identified. The remaining 14,130 sequence
changes present in only one of the plants were thus
categorized as EMS mutations (see methods). About 98 %
(13,912) of these changes were SNPs and the remaining
2 % (218) were INDELs. Out of 13,912 SNP changes,
homozygous mutations represented as 1/1 or 0/0 only
in single plant constituted 11 % and heterozygous
mutations represented as 0/1 only in single plant con-
stituted 89 %.
Overall, 14,130 mutational changes were observed in

7,027 wheat unigenes with an average of two changes/uni-
gene. For individual plants, the number of unigenes show-
ing mutational changes ranged from 29 in plant # 31 to
980 in plant # 35, consistent with the number of reads
generated in these samples. Of these mutational changes,
the smallest number of mutational SNPs was observed in
plant # 31 with only 46 sequence changes. The highest
number of 1,330 SNPs was observed in plant # 35 (Fig. 4a).
On an average, 662 induced SNP changes were observed
for each plant. The average number of unigenes showing
mutational SNPs per plant was 494. Similarly, a total of
218 EMS induced INDELs were identified ranging from 0
(plant # 31) to 23 (plant # 38) with 10 INDELs per plant
(Fig. 4b). Of these, 79 of the INDELs were due to inser-
tions and 139 were due to deletions. The size of deletions
ranged from one to three bp and the size range for the in-
sertions was one to four bp.

Characterization of the SNPs induced by EMS
Among all single base changes induced by EMS, 69.5 %
(9,667) were transitions and 30.5 % (4,245) were transver-
sions (Fig. 5). The most frequent transition was C → T
(31.5 %) followed by G → A (30.2 %), A → G (19.4 %), and
T → C (18.9 %). Among transversions, C → A (17.2 %)
was the most frequent followed by G → T (16.9 %), G →
C (16.4 %), and C → G (15.2 %). The frequency of other

transversions was: A → T (8.9 %), T → A (8.6 %), A → C
(8.2 %), and T → G (7.9 %).
For each unigene hit by EMS, the longest stretch of

open reading frame was extracted using a custom perl
script to categorize these sequence changes as synonym-
ous or non-synonymous. 37 % were found to be syn-
onymous and 63 % as non-synonymous.

Distribution of EMS induced changes
The 13,912 EMS-induced SNPs were present in 6,961
unigenes with an average frequency of two/unigene. The
number of EMS-induced SNPs/unigene, referred as al-
leles, ranged from 1 to 68 (Fig. 6). About 60 % of the
6,961 unigenes had only one SNP change and 20 % had
two changes. 15 % of the unigenes had three to five alleles
per unigene. Only 5 % of unigenes showed more than six
changes per unigene. The 218 EMS induced INDELs were
present in 212 unigenes with an average frequency of one/
unigene. 146 unigenes had both INDELs and EMS induced
SNPs. Further, the unigenes harboring both INDELs and
SNPs had an average of six SNPs compared to two in the
unigenes containing only SNPs.
Out of 7,027 unigenes with EMS changes, functional

annotation was available only for 240 unigenes (wheat uni-
gene build # 63). Therefore, we classified these unigenes
based on the annotations given to rice genes using a highly
stringent e-value of < 1e-80 using standalone NCBI batch
blast (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LAT-
EST). As a result, an additional 2,332 unigenes were anno-
tated and a large proportion (46 %) of which were
classified as genes performing metabolic processes
followed by 22 % annotated as expressed proteins. 10 % of
each fell under the category of transcription factors and
transposable elements (TE). To localize the EMS hit uni-
genes on the wheat chromosomes, in-silico mapping was
performed using the mapped wheat EST database [20].
Using consensus physical maps, a total of 5,500 ESTs were
mapped on seven groups of chromosomes (Table 1). Stan-
dalone batch blast performed using fasta sequences of
6,961 EMS hit unigenes with the mapped 5,500 EST se-
quences at an e-value of ≤ 1e-100 assigned mapping pos-
ition to 617 unigenes. Mutations within each chromosome
arm region were normalized to the total number of uni-
genes mapped to that region. Wheat homologous group 2,
3 and 4 are more vulnerable to EMS induced changes
compared to group 1 and 5. Homologous group 6 and 7
showed intermediate susceptibility for mutational change
(Table 1). For homologous group 1 and 2, more number
of mutations was mapped on short arm whereas for
chromosome group 4, 5, and 7, more number of muta-
tions was mapped on long arm. For chromosome 3 and 6,
mutations were equally distributed on both arms. By and
large, genes present in the distal regions of the chromo-
somes showed a higher tendency to be hit by EMS
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followed by middle region and the least susceptibility
shown by the genes present in the proximal regions
(Table 1).

Identification of mutations in target genes
We tested accuracy of our pipeline to differentiate mu-
tational changes from homoeologous changes; and eval-
uated the possibility of identifying mutations in target
genes by considering three genes viz. Rht1 (Reduced
height1), TaABCB1 (ATP binding cassette type B1), and
C-Ph1 (Pairing homoeologous1) [21] for which

complete gene sequence was available from the three
genomes of hexaploid wheat. The accession numbers
for Rht1 – A, B and D copies are JF930277, JF930278
and HE585643, respectively. The ability of the pipeline
to correctly detect homoeologous SNPs was tested on
all the intervals of these genes where the sequenced
reads were mapped. With a minimum depth of 10 reads,
maximum coverage was 65 % for Rht1 (Additional file
3), followed by 26 % for TaABCB1 (Additional file 4),
and 16 % for C-Ph1 (Additional file 5). Analysis of the
covered part of the three copies for each of the gene
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sequences from cultivar Chinese Spring revealed 43
homoeologous SNPs for Rht1, 18 for TaABCB1, and six for
C-Ph1. With the minimum depth of 10 reads for each
change, our analysis pipeline revealed 22 homoeologous
SNPs for Rht1 and 14 for TaABCB1. None of the six homo-
eologous changes for C-Ph1 were detected by our pipeline.
One EMS induced SNP was identified for each of the Rht1
and TaABCB1 gene while two EMS induced SNPs were
identified for C-Ph1 gene in the EMS treated plants.
Similar analysis performed with redefined parameter

(GQ ≥ 20) identified 24 homoeologous changes for Rht1,

14 for TaABCB1, and three for C-Ph1.The number of
EMS induced SNPs increased to two for TaABCB1 and
four for Rht1. No mistakes were detected with both the
stringent (GQ ≥ 30) and redefined (GQ ≥ 20) criteria to de-
tect and differentiate homoeologous and induced sequence
changes, thus validating our pipeline to efficiently differen-
tiate homoeologous SNPs from EMS induced changes.
The empirically developed redefined criteria of detecting

changes were then used to identify mutational changes.
With the new procedure, a total of 27,770 mutational SNPs
were identified compared to the 13,912 that were previ-
ously detected. The number of unigenes showing muta-
tional changes increased to 12,812 compared to 6,961.
Furthermore, in the redefined criteria, the number of EMS
induced SNPs, homoeologous SNPs and INDELs, intervar-
ietal SNPs and INDELs increased to 27,770, 156,740 and
4,953, 36,656 and 4,189, respectively. EMS induced SNPs
ranged from 79 in plant # 31 to 2,606 in plant # 27 and the
average number of EMS SNPs detected was 1,322 from an
average of 967 unigenes hit per plant. Though the largest
and smallest insertion and deletion remained the same as
that of the previous criteria, redefined criteria resulted in
360 more EMS induced INDELs (578) ranging from no
INDELs in plant # 31 to 57 in plant # 27. On an average,
each plant had 27 INDELs. If only EMS induced SNPs are
considered, the allelic variation generated per unigene by
EMS varied from a minimum of one to a maximum of 85.
The frequency of unigenes’ class carrying single alleles
reduced by 4 %, two and three alleles each increased by
1 %, four–five alleles increased by 1.5 %, six–ten alleles
remained same, and 11–85 alleles increased by 0.5 % as
compared to the previous classification.

1 allele 2 alleles 3 alleles
4-5 alleles 6-10 alleles 11-68 alleles

Fig. 6 Distribution of allelic variation induced by EMS in unigenes.
Proportion of unigenes carrying different number of alleles is shown
in different colors
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Table 1 Physical mapping of EMS induced mutations to three regions on each arm of consensus chromosomes of all 7 groups of
wheat

Region Mapped ESTs Observed mutations Normalized mutations Mutations/arm Mutations/chromosome

R1 (C-1 L-0.32) 86 0 0.00 0.09 0.61

R2 (1 L-0.32–0.61) 117 2 0.02

R3 (1 L-0.61–1.00) 203 14 0.07

R1 (C-1S-0.48) 39 4 0.10 0.52

R2 (1S-0.48–0.70) 30 9 0.30

R3 (1S-0.70–1.00) 214 26 0.12

R1 (C-2 L-0.36) 50 5 0.10 0.59 1.28

R2 (2 L-0.36–0.76) 224 34 0.15

R3 (2 L-0.76–1.00) 229 77 0.34

R1 (C-2S–0.33) 50 6 0.12 0.69

R2 (2S-0.33–0.75) 98 27 0.28

R3 (2S-0.75–1.00) 161 47 0.29

R1 (C-3 L-0.27) 106 11 0.10 0.58 1.18

R2 (3 L-0.27–0.63) 125 25 0.20

R3 (3 L-0.63–1.00) 328 91 0.28

R1 (C-3S–0.33) 82 10 0.12 0.60

R2 (3S-0.33–0.78) 156 38 0.24

R3 (3S-0.78–1.00) 81 19 0.23

R1 (C-4 L-0.31) 42 14 0.33 0.73 1.12

R2 (4 L-0.31–0.66) 272 49 0.18

R3 (4 L-0.66–1.00) 360 78 0.22

R1 (C-4S–0.37) 57 3 0.05 0.39

R2 (4S-0.37–0.67) 52 10 0.19

R3 (4S-0.67–1.00) 238 35 0.15

R1 (C-5 L-0.35) 31 2 0.06 0.38 0.69

R2 (5 L-0.35–0.75) 94 13 0.14

R3 (5 L-0.75–1.00) 395 70 0.18

R1 (C-5S-0.40) 21 0 0.00 0.31

R2 (5S-0.40–0.71) 75 10 0.13

R3 (5S-0.71–1.00) 113 20 0.18

R1 (C-6 L-0.36) 55 8 0.15 0.50 1.00

R2 (6 L-0.36–0.68) 69 16 0.23

R3 (6 L-0.68–1.00) 159 20 0.13

R1 (C-6S-0.35) 43 8 0.19 0.50

R2 (6S-0.35–0.76) 70 8 0.11

R3 (6S-0.76–1.00) 149 30 0.20

R1 (C-7 L-0.33) 77 19 0.25 0.54 0.98

R2 (7 L-0.33–0.71) 126 18 0.14

R3 (7 L-0.71–1.00) 212 32 0.15

R1 (C-7S-0.36) 106 22 0.21 0.44

R2 (7S-0.36–0.61) 93 14 0.15

R3 (7S-0.61–1.00) 212 18 0.08
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Mutation rate and EMS induced mutation calling error
rate
Alignment of reads from all mutant plants with the wheat
unigenes covered 72,558,853 bp. With the first criteria,
14,130 mutational changes were identified, thus, resulting
in one mutational change per 5.1 Kb of the wheat genome.
With the redefined criteria, 28,348 mutational changes
were identified equaling one change per 2.6 Kb. Only 4 %
(7,027 unigenes out of total 178,464 unigenes) of the wheat
genes showed mutational changes in 21 mutagenized
plants. Error in mutation calling was determined by utiliz-
ing the stringent criterion in the Variant calling protocol
(see Methods) for wild type plants. Using the retained vari-
ants of 201,353 after application of QUAL ≥ 30, DP10 per
variant location, MQ ≥ 30, and presence of reads from two
or more plants in an alignment, the number of variants
showing presence of wild-type reads as well were deter-
mined. Wild-type reads were present for 57,520 variants.
Any mutation showing up in the wild type plants can
only be due to error. Treating the wild-type plants in a
similar manner to mutant plants, if we found an occur-
rence of 0/0, 0/1, or 1/1 only in the wild type plant as
compared to a uniform genotype for the rest of the
mapped samples, we considered it as an error in calling
EMS induced mutation. For 777 variants out of 57,520,
0/0, 0/1, or 1/1 genotype was present only in the wild
type plant resulting in an error rate 1.35 %. While using
the redefined criteria an error rate of 1.45 % was ob-
served in the wild type plant.

Discussion
TILLING has been a popular method to identify mutations
in a target gene sequence. The selected plants undergo ex-
tensive characterization and the identified mutants are
eventually confirmed by sequencing of the target gene.
TILLING requires a significant amount of time to identify
mutants for a large number of genes. With plummeting se-
quencing costs, sequencing based genotyping is routinely
used and mutation detection is beginning to rise [13, 22].
Here application of a GBS approach has been tested and
shown for the first time to be an efficient method for the
discovery of induced mutations in polyploid species such
as wheat. The discovery of induced mutations using this
method and the analysis pipeline are expected to increase
in wheat with the availability of genome sequence for all
the genes in wheat. The method described here and the
pipeline developed can be easily utilized for diploid species.
Large scale mutation detection is feasible using GBS as we
have identified nearly five times larger number of genes
than that of previous studies [23].
Despite the equal amount of DNA used per plant, the

number of reads generated in individual samples compos-
ing the ApeKI library had a higher coefficient of variation
than reported in Elshire et al. 2011. However, a 12-fold

difference was observed in the number of reads generated
in a barley experiment [24]. Also, different sequencing plat-
forms can result in a large variation in the number of reads
generated per sample [25]. One limitation of GBS for mu-
tation detection using single-end reads is that it is not pos-
sible to remove duplicate reads. Non-removal of duplicate
reads could increase the errors caused by PCR but removal
of these reads would also significantly decrease the depth
and subsequently loss in identification of low level muta-
tions. Irrespective of the number of reads generated per
sample, the number of mapped reads showed a consistent
value (9–10 %). However, the number of EMS induced
changes increased proportionally in the plants containing
higher number of selected reads. Alignment of only
15,065,030 reads to the reference transcriptome can be at-
tributed to the lack of a comprehensive wheat reference
genome. In order to investigate how much over or under
representation is exhibited by wheat unigenes in the form
of 178,464 sequences, batch blast was performed using
three types of rice databases viz. rice CDS consisting of
55,986 loci including 16,941 TE loci, rice CDS consisting
of only 39,045 non-TE loci and 35,679 cDNA sequences as
query against wheat unigenes. Comparison of these
datasets was performed under different e-values ranging
from ≤ 1e-10 to ≤ 1e-80 (Additional file 6). 60 % of the
rice genes were covered with the wheat unigenes. The
paradigm shown by adding sequential addition of sam-
ples for unique unigenes, unigene sequence coverage,
and depth suggests that higher multiplexing can be
done during library preparation while cutting the cost
of mutation detection to redistribute the number of
reads towards coverage rather than depth. However,
more coverage of unigenes may also be targeted by
using a two enzyme GBS approach [26].
Next-generation sequencing experiments are becoming

a routine to find rare or novel variants leading to disease
problems in humans [27, 28]. However, sequencing arti-
facts are naturally associated with these experiments and
can conceal the identification of true variants. Usually,
two main parameters – read depth and phred score are
employed to curtail the variants [29–32]. The high penalty
imposed by these filters often removes the real variants.
To overcome these limitations, we used these parameters
in a more liberal way. However, we added an additional
set of filters due to the hexaploid nature of the wheat gen-
ome. By using a combination of moderate read depth,
phred score, MQ 30 and presence of EMS induced variant
only in single plant, we separated a large portion of the
homoeologous variants, while retaining the highest pos-
sible number of EMS induced variants.
For the variant to be induced by EMS, we computed

the GQ for the plant yielding the change which is based
on the likelihood of a particular genotype being called
in comparison to the likelihood of the other two
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genotypes being called: L(0/1) versus L(0,0) and L(1,1).
The low GQ suggests a low confidence in those calls,
which may be due to poor individual sequencing reads.
So all the EMS variants were retained that showed a
high GQ (30). We chose to have a read depth of 10 as-
suming at least 3X coverage from each of the three
homoeologous copies. EMS induced change was called
when the change was present only in single plant as it
is very unlikely that a similar mutation will be consist-
ently produced at the same particular location. In
addition to rapid identification, sequencing based mu-
tation detection also offers simultaneous mapping of
these mutations.
We expect that one of the possibilities of not detecting

all the homoeologous SNPs in the three genes tested with
the redefined criteria is due to the alignment of only those
copies of the gene that do not possess the homoeologous
SNP or no homoeologous SNP exists at that location due
to the intervarietal differences. However, the reads mapped
to respective genes showing homoeologous changes can be
easily used to generate SNP based markers for genotyping
studies, provided those changes are conserved in different
cultivars. While various pipelines are available that can be
employed to differentiate between true and false variants
[33, 34], we focused on developing an analysis pipeline that
is easy to use, adopt and applicable particularly for poly-
ploid species.
Our analysis clearly indicates that genes differ in their

susceptibility to EMS as the range was much wider (1–68
and 1–85 in first and redefined criteria, respectively) com-
pared to average number of two SNPs/unigene. It is also
evident that EMS mutations are unevenly distributed
among the wheat genes and on wheat chromosomes. Only
7,027 unigenes out of 79,123 showed EMS changes. Fur-
ther, genes present at the distal ends of the chromosomes
showed higher rates of mutation compared to those
present in the proximal region. Characterization of this
mutant population through the screening of several uni-
genes revealed mutation densities of average one mutation
per 5 Kb (Additional file 7). This mutation density is
higher than those found by earlier studies based on TIL-
LING [7, 35–37]. The expected array of mutations in an
EMS-treated population is primarily GC/AT transition. In
wheat, the majority of the identified mutations are GC/AT
transitions [7]. In this study, we also found a preponder-
ance of GC to AT transition (43 %), though at a lower
level. Large deletions (>100 Kb) and insertions (~500 Kb)
were reported in rice [13], but our pipeline does not seem
to be capable of detecting huge INDELs however it clearly
shows small INDELs caused by EMS mutagenesis. The
ability to detect two or more allelic versions caused by
EMS in 40 % of the unigenes emphasizes the potential of
this strategy to accelerate the pace of wheat functional
genomics.

Our first analysis identified a total of 13,912 EMS in-
duced SNPs in the 21 plants with a range of 46 to 1,330.
With an error rate of 1.33 % and about 63 % of the muta-
tional changes in the non-synonymous bases, the effective
EMS induced SNPs would be 8,648. Since, on average 28
% of the unigene sequence was covered for 79,123 uni-
genes, extrapolation of these numbers for 100 % unigene
coverage will result in 30,885 effective number of muta-
tions. For 178,494 unigenes, 69,675 mutational changes are
expected.

Conclusions
This study represents a simple but accurate pipeline to re-
liably differentiate the mutational changes from the homo-
eologous changes in a polyploid species. We conclude that
sequencing based mutation detection is a valuable method
to identify induced mutations at large. By utilizing this re-
verse genetic approach in the future, more mutagenized
populations can be characterized in a time efficient man-
ner. EMS mutations show bias for different genes present
at different locations on the chromosome. Genes present
at the distal ends of the chromosomes showed higher rate
of mutation compared to those present in the proximal
regions. Therefore, EMS will serve as a desirable mutagen
if the genes of interest are localized towards the telomeric
regions.

Methods
Plant material and library preparation for sequencing
Twenty-two EMS mutagenized M2 plants in the back-
ground of hexaploid wheat cultivar ‘Indian’ along with
two non-mutagenized control ‘Indian’ plants were used
for the study. Genomic DNA was extracted from 2 to 4
week old leaves of the 24 plants, as described earlier
[38]. DNA of each plant was normalized to a concentra-
tion of 10 ng/μl.
The standard procedure was followed to generate a

Genotyping-by-sequencing (GBS) library [9]. Briefly,
24 unique barcoded adapters with 4 to 8 bp barcode
(Additional file 8) was generated by mixing of comple-
mentary oligonucleotides (Sigma) such that each adapter
has an ApeKI overhang sequence at its 5′ end. Similarly,
the common adapter was generated with ApeKI overhang
at 5′ end. PCR will amplify only those restriction digested
DNA fragments that have barcode adapters added on one
end and common adapters added on the other end. The
complementary oligonucleotides for each adapter were
annealed to a concentration of 300 ng/ul. The annealing
was performed by heating the sample to 95 °C for 2 min
followed by cooling to 25 °C at the rate of 0.1 °C/s before
holding the reaction at 25 °C for 30 min. Both the bar-
coded and the common adapters were mixed in an equi-
molar ratio. About 3.6 ng of the mixed adapters was
transferred to each of the 24-wells of a 96-well plate and
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dried by placing the plate in a refrigerator for 2–5 days.
100 ng of genomic DNA for each plant was added to the
same 24-wells, dried and was restriction digested at 75 °C
for 2 h in 20 μl reactions each containing 1X NEB buffer
3, and 4 U ApeKI. In the same wells, adapter ligation was
performed by adding 1X T4 DNA ligase buffer, 640 U of
T4 ligase in a total volume of 50 μl made with sterile dis-
tilled water. After ligation the 24 plants were pooled, puri-
fied with QIAquick column (Qiagen PCR cleanup kit) and
PCR amplified using the following conditions - 72 °C for 5
min, 98 °C for 30 sec followed by 18 cycles of 98 °C for 30
sec, 65 °C for 30 sec, 72 °C for 30 sec with a final exten-
sion at 72 °C for 5 min. Quality of the library was evalu-
ated on Agilent 2100 bioanalyzer (Additional file 9) as
described earlier [9].

DNA sequencing and data processing
Paired-end sequencing (100 bp reads) was performed on a
single flowcell channel of HiSeq2000 (Illumina, Inc., San
Diego, CA). Initial quality checks were performed using
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc). The single-end barcode sequence data was
filtered and trimmed to 64 bp [9]. Only the reads perfectly
matching to one of the barcodes and containing the ex-
pected four-base remnant of the ApeKI cut site (CWGC)
were selected. Reads containing “N’s” in the first 72 bases
and adapter/adapter dimers were discarded.

Read alignments to the wheat unigenes
The wheat unigene set consisting of 178,464 sequences was
downloaded from NCBI FTP server (ftp://ftp.ncbi.nih.gov/
repository/UniGene/Triticum_aestivum/; as of April 2013)
and used as a reference transcriptome. Using Burrows–
Wheeler string transformation (BWT), the sequence was
indexed to accelerate its alignment by transforming the
highly redundant sequences into a compressed format. Fol-
lowing the indexing of the reference transcriptome, the
reads were then mapped to the reference transcriptome
using Burrows-Wheeler alignment tool (BWA 0.5.9) with
the default settings and the read alignment data was saved
in the SAM (Sequence alignment/map) format. SAMtools
‘flagstat’ command was used to fetch mapping statistics
from the binary version i.e. BAM format of the aforemen-
tioned format.

Average coverage and depth of unigenes
Alignment data was processed using SAMtools. This in-
cluded converting, sorting, and merging the alignment
data. The merged sorted.bam file containing mapped
reads from the 23 plants and ‘genomecov’ function in
BEDTools (version 2.17.0) [39] was used to compute sum-
maries of the aligned sequences coverage for the reference
transcriptome. The average depth and coverage per uni-
gene data was computed using custom Perl scripts. For

each read-mapping interval, alignment of all three
homoeologous copies was tried to achieve by keeping a
minimum of 10 reads. Since short read sequencing tech-
nology was employed, one to several intervals within a
gene were covered by the reads showing end to end as
well as overlapping alignment. The percent coverage per
unigene was determined by dividing the number of bases
covered by the mapped reads (including both the end to
end and overlapping alignments) to the total number of
bases of the respective unigenes. For depth, reads within
the overlapping and non-overlapping alignment regions
were counted separately. Then, average depth per unigene
was calculated by dividing the number of reads present in
all the regions to the number of regions. Further, to calcu-
late the number of unigenes with alignment of 10 or more
reads, all the regions within a unigene having less than 10
reads were excluded from the analysis.

Differentiation between homoeologous and EMS induced
changes
Sequence variant detection, genotype calling and EMS
induced variant identification were processed with SAM-
Tools (version 0.1.19) [40] ‘mpileup’ function and custom
Perl scripts. The output of variants was stored in the vari-
ant call format (vcf) that consisted of meta-information for
individual variant with respect to reference sequence in the
form of various parameters. These parameters were repre-
sented in different columns in the vcf file as position of the
variant in the unigene, reference (REF) allele, alternate
(ALT) allele, phred scaled quality score (QUAL), combined
depth across samples (DP), number of samples with data
(NS), and other relevant information consisting of mapping
quality (MQ), genotype (GT) represented by 0 for the REF
allele and 1 for the ALT allele, and genotype quality (GQ).
0/0 genotype represents presence of reference alleles only
whereas 0/1 represents presence of both wild type as
well as alternate allele in the sample, and 1/1 represents
presence of only alternate allele in the sample. A variant
(SNP/INDEL) was called when occurrence of 0/1 or 1/1
genotype in the mutant plants at a particular position
along the length of the unigene was observed as compared
to 0/0 genotype for the reference. To avoid/minimize the
detection of false positives, only the sequence changes with
QUAL ≥ 30 were selected. Furthermore, we required that
the aligned reads should have MQ ≥ 30 and at least 10
reads should be aligned at that locus from more than one
sample. A change that was present in only one of the mu-
tant plants as compared to a uniform genotype for the rest
of the mapped samples was considered to be EMS induced
after application of a threshold of GQ ≥ 30. GQ was
encoded as a phred quality score (−10log10

(p)). A sequence
change present in reads corresponding to more than one
of the 23 plants was scored as a homoeologous change. In
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comparison to the unigenes, any sequence change present
in all of the reads was categorized as intervarietal changes.
In-house perl scripts developed for this analysis pipe-

line are available upon request.

Mapping of ESTs on consensus physical map
For each of the seven groups of chromosomes, a consensus
physical map was constructed. Deletion breakpoints were
placed on each of the chromosome arm so as to physically
divide it into approximately three equal regions-R1, R2,
and R3, where R1 was represented as proximal region to
centromere and R3 as distal region. After combining the
mapping data from three homoeologs of each chromo-
some, each EST was localized to the shortest possible
chromosome interval and placed on either of the three re-
gions of chromosome arm. ESTs showing discrepancies for
location among three homoeologous chromosomes were
not considered for analysis.

Availability of supporting data
The data set(s) supporting the results of this article are
included within the additional files of this article.
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