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Abstract

A method for predicting HIV drug resistance by using genotypes would greatly assist in
selecting appropriate combinations of antiviral drugs. Models reported previously have had
two major problems: lack of information on the 3D protein structure and processing of
incomplete sequencing data in the modeling procedure. We propose obtaining the 3D struc-
tural information of viral proteins by using homology modeling and molecular field mapping,
instead of just their primary amino acid sequences. The molecular field potential parameters
reflect the physicochemical characteristics associated with the 3D structure of the proteins.
We also introduce the Bayesian conditional mutual information theory to estimate the proba-
bilities of occurrence of all possible protein candidates from an incomplete sequencing sam-
ple. This approach allows for the effective use of uncertain information for the modeling
process. We applied these data analysis techniques to the HIV-1 protease inhibitor dataset
and developed drug resistance prediction models with reasonable performance.

Introduction

Drug-resistant viruses have a significant impact on the prognosis of HIV infections [1, 2]. Pre-
dicting drug resistance from their genotypes would allow the selection of appropriate drugs for
efficient treatment. The development of such prediction models has been actively promoted
[3-7], along with growing databases, such as the Stanford HIV Drug Resistance Database,
which collects protein information and evaluates the resistance of drug-resistant viruses [4, 8].
These prediction models include classification or regression models by using various
machine learning methods (support vector machine, deep learning, etc.). The models are,
unexceptionally, based on the primary sequence of a protein, which is converted into numeri-
cal descriptors by means of one-hot encoding or similar techniques and used as predictive var-
iables. Margaret et al. [3] developed a classification model with a high accuracy of
approximately 0.9 by using a deep learning technique and detected mutations responsible for
drug resistance. Geno2pheno, developed by Niko et al. [4], addressed the regression problem
based on a support vector regression (SVR) method and provided a determination coefficient
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of approximately 0.7. These models are available on websites to easily predict the drug resis-
tance profiles of viral variants.

However, the proposed models have two problems. First, their models are based on the pri-
mary protein structure, and therefore lacking information on the 3D structure. Protein func-
tion is derived from the tertiary structure, as is commonly understood in structural
bioinformatics [9], and it is conceivable that the 3D structure is closely related to drug resis-
tance. Second, there has been a problem in processing incomplete sequencing samples during
the modeling procedure. Incomplete sequencing provides multiple candidates at an amino
acid position. The authors have views on whether to disregard these data samples [3] or list all
possible combinations for modeling use [6, 7]. The former might lead to limited learning with
smaller sample sizes, while the latter might overwhelm a model with uncertain data.

With these issues in mind, we propose a novel technique to model drug resistance of HIV.
The structural information of HIV-1 variants was encoded as 3D molecular field parameters
by conducting homology modeling, structural alignment, and molecular field mapping. The
molecular field mapping approach is based on comparative molecular field analysis (CoMFA)
[10]. CoMFA is a 3D-QSAR method developed by Cramer et al. that embeds the molecule of
interest in a grid lattice and calculates the interaction (i.e., steric and electrostatic potentials)
between the probe atoms of each grid point and the molecule. The calculated molecular field
parameters are used as features associated with the physical structure of each molecule.
CoMFA has been generally used for QSAR analysis of low-molecular weight drugs but, in this
study, it was applied to the homologous drug target (i.e., viral protein variants) in a reverse
direction. Each possible candidate from incomplete gene sequencing was weighted in the
modeling process based on their probabilities of occurrence according to the Bayesian condi-
tional mutual information theory. Partial least squares (PLS) [11], random forest (RF) [12],
LightGBM (LGBM) [13], and support vector regression (SVR) [14] were employed to con-
struct the prediction model. We visualized the structural regions with high probability to drug
resistance. The flow of the entire analysis was illustrated using several HIV-1 protease
inhibitors.

Methods
Data collection

HIV-1 drug resistance data, along with the primary structure of HIV-1 protease variants, were
obtained from Stanford University’s HIV Drug Resistance Database [8]. Resistance to HIV-1
protease inhibitors was represented by the fold change (FC) increase of the IC50 compared to
wild type HIV. In addition, following other papers [3, 15], drug resistance was binarized with a
threshold FC of 3.5, where viruses with a higher score were classified as resistant. The number
of screening samples was 1059, 665, 1560, 1608, 1373, 1655, 1604, and 766 for atazanavir, daru-
navir, fosamprenavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir, respectively,
of which the number of “complete” sequencing samples was 463, 264, 726, 759, 600, 781, 758,
and 302, respectively.

Treatment of incomplete sequencing samples

The data collection contained incomplete sequencing samples, such that multiple candidates
existed at certain amino acid positions. We considered the uncertainty of all possible combina-
tions based on their probabilities of occurrence (Fig 1).

The conditional probability of occurrence was calculated for each of the multiple candidates
at position i, given the type of amino acids at the m positions. This idea is based on the concept
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Fig 1. Scheme of treatment of incomplete sequencing samples. All possible combinations were listed from
incomplete sequencing samples, and their information was weighted by the conditional probability of occurrence. The
conditional probability of occurrence of each amino acid at each position was determined based on amino acid
sequences of complete sequencing samples.

https://doi.org/10.1371/journal.pone.0255693.g001

of population genetics, in which viruses prone to drug resistance have a similar genetic
sequence [16].

We consider the type of amino acids as a random variable and let X;c(A,R,N;- - -,Y) be the i-
th random variable in the amino acid sequence. According to the marginal probability density
function p(X;) and the simultaneous probability distribution function p(X;X;), information
entropy H(X;), mutual information content I(X;,X;), and normalized mutual information NMI
(X;X)) [17] are expressed as follows:

H(X;) = >, ex (—p(x;)) - logp(x,) (1)
I(Xi7Xj> = inexlz;cje)(jp(xi’xj) 'logm (2)
NMI(X, X)) = HI((;;)XZ m (0 < NMI(X,.,X].) <1) (3)

The NMIs for all pairs were determined from a collection of complete sequencing samples.
A permutation test [18] was performed to determine the statistical significance (P<0.05) for
the NMIs. For each X;, a set of statistically relevant positions in the sequence (X,,,;) was deter-
mined. X, ; was limited to the top 10 if the length was greater than 10. Finally, the conditional
probability p(X; = x| Xyn,; = x,,) was calculated.

Calculation of molecular field potentials

Modeller 9.20 [19] was used for homology modeling [20]. The template candidates for each
HIV-1 protease inhibitor are summarized in S1 Table. The crystal structures of HIV-1 protease
proven to bind to the drugs were obtained from the PDB database and used as a template. In
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addition, mufft v7.427 [21] was used to align the primary sequence with the templates. For
each protease variant, the template with the highest percent sequence identity (PID) was used
for automated homology modeling using Modeller [22]. The atomic charge of each atom of
the proteases was calculated using PDB2PQR version 2.1.1 [23].

Before the molecular field analysis, all homology-modeled protease variants were superim-
posed on one another [24-35]. The molecular field parameters (i.e., steric and electrostatic
potentials) of each variant were calculated using a method similar to that described by Cramer
et al. [10]. The protease structure was embedded in a 2 A spacing lattice. A probe atom with
the van der Waals properties of sp> carbon and a charge of +1 was placed at each grid point.
The steric and electrostatic interaction energies in the sum between the probe atom and each
atom of the protease variants were calculated as the van der Waals [36] and Coulomb’s poten-
tials [37], respectively.

Construction of prediction models

Data were randomly divided into two parts: 80% for training and 20% for external evaluation.
The feature extraction and hyperparameter selection described later were adopted for the
training data. A prediction model was developed using PLS, RF, LGBM, and SVR with molec-
ular field parameters as predictors and drug resistance as the output. PLS was implemented in
Python 3.7 (S1 File). LGBM model were constructed using LightGBM 2.3.0, while RF and SVR
using scikit-learn 0.23.1.

Feature selection

Feature selection was conducted using only complete sequencing samples. The first concern
was that the calculation of the molecular field parameters diverged when the distance between
the probe and target atoms was too close. In the first feature selection stage, the lower and
upper limits were set to the 5th percentile of the dataset (cutoffs,) and the 95th percentile of
the dataset (cutoffosy,), respectively. In addition, the molecular field parameters with a heavily
biased distribution of potential energies within the samples were removed from modeling,
where the absolute skewness was greater than 2.5. The molecular field parameters with a stan-
dard deviation of 2 kcal/mol or less were also removed [38].

In the secondary feature selection stage, the molecular field parameter dataset was subjected
to machine learning-based recursive feature elimination [39]. The importance of the molecular
field parameters as a feature of modeling was estimated using the linear model (scikit-learn) of
SVR. Feature selection for the steric and electrostatic molecular field parameters was per-
formed independently. For the steric potential, the unimportant data was removed recursively
two at a time, until the remaining number reached one-half of the first stage. On the other
hand, in the case of the electrostatic potential, the data were removed recursively ten at a time,
until the remaining number reached one-eighth.

Machine learning models

The loss function and evaluation function (weighted determination coefficients) of the regres-
sion model are defined as follows:

. 2
Loss funCtlon = Zsz] (yabs.i - ypred,ij)

Z Zpl] (yohsj - ypred.ij)2
Z (yobs,i - )70115)2

Evaluation function (R*) =1 —
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where y,,; and y,. are the observed log;o FC of ICs, for sample i and their average, respec-
tively, and y,,.4; and p;; are the log,o FC and conditional probability for the j-th candidate of
sample 7, respectively.

Hyperparameter optimization

For each machine learning model, the corresponding hyperparameters were optimized using
Optuna version 2.0.0 [40], which implements the tree-structured Parzen estimator (TPE) algo-
rithm. The samples were divided into three groups for 3-fold cross-validation [41]. One group
was used for validation data, while the remaining two were used as training data. The training
data were preprocessed as described in the previous section and then normalized. The valida-
tion data were processed using the conditional parameters used for the training data. Next,
each machine learning model was trained with the training data to minimize the loss function
and, finally, evaluated with the validation data in terms of predictive R*. The cross-validation
was repeated three times, and the average of the predictive R* was used for the evaluation of
hyperparameters. The hyperparameters were updated 30 times in Optuna.

Final evaluation

As mentioned above, 80% of the total data was used for training, and the remaining 20% was
used for external evaluation. After preprocessing and normalizing the training data, each
regression model was built using the hyperparameters determined during the cross-validation
step. Regression models were tested using external data and evaluated by weighted determina-
tion coefficients. Setting the threshold of FC at 3.5, the goodness of the classification was evalu-
ated with accuracy, precision, true-positive rate (TPR), true-negative rate (TNR), false-positive
rate (FPR), false-negative rate (FNR), area under the ROC curve (AUC), and F1 score [42, 43].

Visualization of structural importance in drug resistance acquisition

Molecular field-based analysis allows visualization of sites of importance involved in acquisi-
tion of drug resistance. It should be noted that spatially neighboring grid points show relatively
similar potential energies because the molecular field is continuous. The ability of PLS to con-
struct models considering the collinearity of predictor variables is also useful for detecting
regions of high susceptibility to drug resistance. Standardized partial regression coefficients
obtained with PLS analysis show the degree of importance of drug resistance acquisition for
each spatial coordinate. Upon setting certain thresholds (the 1st and 99th percentiles of the
coefficient), a contour map was created in the 3D molecular field. First, grid points remaining
after feature extraction were used for PLS modeling for drug resistance and subjected to PLS
standardized partial regression coefficients. Next, for all grid points connected by the Delaunay
algorithm, the interior points of the line segments of the mesh were searched where the indi-
cated threshold score was given. Finally, a contour map was created by connecting points less
than 5 A apart and creating a new cluster. The figure was generated using Chimera version
1.15 [44].

The degree of agreement of the contour map with known major drug resistance-related
amino acid positions (30, 32, 47, 48, 50, 54, 76, 82, 84, 88) [8] was assessed. Firstly, the distance
to the nearest contour plane for all o-carbons of the protease was calculated, and their cumula-
tive probability density distribution was obtained. Then, the simultaneous probability for the
major drug resistance positions was estimated and compared with the probability for a ran-
dom selection of the same number of amino acid positions. One hundred thousand random
permutations were generated to estimate the ranking for the drug resistance positions.
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Table 1. Numbers of sequencing samples listed in the database for each HIV-1 protease inhibitor.

Drug Number of complete sequencing samples Incomplete sequencing samples

Number of samples | Total sum of all combinations® | Practical total sum of all combinations®

Atazanavir 463 596 219847 407.97
Darunavir 264 401 210578 275.50
Fosamprenavir 726 834 232626 581.63
Indinavir 759 849 233116 597.86
Lopinavir 600 773 231749 536.13
Nelfinavir 781 874 234104 613.68
Saquinavir 758 846 233304 592.94
Tipranavir 302 464 212140 316.77

a) The total sum of all possible combinations of sequences in each incomplete sequencing sample.

b) The total sum of all possible combinations weighted by their probability of occurrence in each incomplete sequencing sample.

https://doi.org/10.1371/journal.pone.0255693.t001

Results and discussion

Sequence data collection and processing

Table 1 summarizes the sample sizes of the eight HIV-1 protease inhibitors listed in the data-
base. The sample size varied among the drugs since they were not tested for all viral variants. A
considerable number of incomplete sequencing samples were included in the database. Previ-
ous researchers have expanded them into all possible combinations of primary sequences [6,
7]. The incompleteness of gene sequencing might be associated with a mixture of viral variants
or the detection limit of the Sanger method [45]. It should be noted that a simple listing of
combinations would result in unreliable and erroneous information. Indeed, the number of all
possible combinations in incomplete sequencing samples was much larger than that of com-
plete sequencing samples. Being aware of the necessity of data weighting, we introduced the
conditional probability for each sequence based on the concept of population genetics [16].
Using complete sequencing samples, we calculated the NMI for each pair of different positions
in the sequence (Fig 2), performed a permutation test to determine the statistical significance
of the NMIs, determined a set of up to 10 statistically relevant positions for each position, and

(A) Normalized mutual information (B) Statistical significance at P<0.05
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Fig 2. Normalized mutual information on co-occurrence of amino acids between any two positions. (A) Gray-scale
image matrix of normalized mutual information (NMI). (b) Statistical significance of NMI determined by permutation
test at P<0.05 (black).

https://doi.org/10.1371/journal.pone.0255693.g002
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finally obtained conditional probabilities for each occurrence. We weighted each possible
combination with its conditional probabilities and estimated a substantial number of samples
for each drug (Table 1). As a result, we roughly doubled the information compared to the com-
plete sequencing samples.

Calculation of molecular fields and feature selection

The 3D structure of each HIV-1 protease variant was predicted using homology modeling.
Since several crystal structures of drug-protease complexes are available for each drug, the
homology modeling template of each protease variant was chosen according to the primary
sequence similarity. After homology modeling, all variants were superimposed without reform-
ing their 3D structure onto the most common structural template (the bold symbols in S1
Table). The structures were subjected to calculations of the steric and electrostatic molecular
fields in the grid lattice. The molecular field parameters represent the structural similarity/dis-
similarity of protease variants, which allow comparison from a physicochemical perspective.

The grid lattice covering the protease variants required 80 A x 70 A x 56 A in size. In the
case of setting the grid interval to 2.0 A, both steric and electrostatic molecular field parameters
brought the total number to 60,000. Feature selection were performed to increase the efficiency
of machine learning, resulting in a reduction in the number of parameters to approximately
4,000 (S2 Table). Fig 3 shows the coordinates of the extracted features. The coordinates of the
remaining molecular field parameters almost reflected the shape of the proteases, suggesting
that the features were reasonably extracted.

Model performance

The data set was divided into training and external test datasets for each drug (S3 Table). PLS,
LGBM, RF, and SVR, which are widespread and computationally less-intensive algorithms,

Steric field Electrostatic field Steric field Electrostatic field
grid points grid points grid points grid points

atazanavir lopinavir
darunavir nelfinavir
fosamprenavir saquinavir
indinavir tipranavir @

Fig 3. Selected grid points of steric (left) and electrostatic (right) molecular field parameters in the analysis of
drug resistance for each HIV-1 protease inhibitor. The grid points were selected by preprocessing and SVR feature
selection.

https://doi.org/10.1371/journal.pone.0255693.g003
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Table 2. Weighted determination coefficients for prediction in external test dataset (RY).

Drug

Atazanavir
Darunavir
Fosamprenavir
Indinavir
Lopinavir
Nelfinavir
Saquinavir

Tipranavir

Weighted determination coefficient

LGBM* PLS* RF* SVR*
0.792 0.770 0.737 0.759
0.749 0.694 0.711 0.693
0.718 0.667 0.683 0.701
0.830 0.790 0.783 0.806
0.862 0.810 0.829 0.837
0.760 0.743 0.714 0.705
0.776 0.632 0.748 0.676
0.513 0.491 0.470 0.488

Abbreviations: LGBM, LightGBM; PLS, partial least squares; RF, random forest; SVR, support vector regression.

https://doi.org/10.1371/journal.pone.0255693.t002

were selected to build the prediction models. The ranges of hyperparameters in model optimi-
zation are given in S4 Table, and the results are summarized in S5 Table. In PLS, the number
of principal components was determined by 3-fold cross-validation (S5 Table). The weighted
determination coefficients and 3-fold cross-validated predictive determination coefficients for
the training data are summarized in S6 and S7 Tables, respectively. In addition, predictive
determination coefficients for the external test dataset that have never been used for training is
summarized in Table 2. The scatter plots of observed and predicted log;, FC are shown in S1-
S8 Figs. The four models did not significantly differ in their prediction accuracy, but LGBM
appeared to provide better prediction accuracy in all cases. A comparison of performance
between the present and previous models would make sense, even though different or differ-
ently preprocessed datasets were analyzed. The present regression model performed better
than Geno2pheno (predictive R?=0.698) [4]. Geno2pheno has been developed based on a dif-
ferent, smaller dataset than that of the Stanford Drug Resistance Database. Unfortunately, the
present model was slightly inferior to the model proposed by Shen et al. (predictive R* = 0.883)
[7]. Both models used the Stanford Drug Resistance Database, listed all possible combinations
from each incomplete sequence sample, and gave the same answer label for each. The differ-
ence was that we performed the weighting of the data according to their probability of occur-
rence, resulting in different predictive performances.

The effectiveness of the weighting of the data based on their probability of occurrence was
checked using the same training and external test datasets. Two additional types of prediction
models were developed by treating the present training data set in a manner equivalent to the
models of Geno2pheno and Shen et al.: that is, the former used only the complete sequencing
data, and the latter used all combinations without considering their probability of occurrence.
The prediction performance was evaluated on the complete sequencing data of the external
test dataset. In any case, the best approach was to employ all combinations, considering the
probability of occurrence (S8 Table).

Classification models have also been proposed to identify whether viral variants are drug-
resistant [3]. For comparison, we used our regression model for classification purposes by
defining an FC of 3.5 as a threshold. Table 3 summarizes the results of the external validation
assessments. Multiple metrics were used to evaluate the predictive classification performance,
which included metrics suitable for both balanced (e.g., accuracy, precision, true positive
ratio) and imbalanced (e.g., F1) data. As with the regression purpose, the LGBM model was
slightly better than or comparable to the other three machine learning models (Table 3, S9
Table). The accuracy of approximately 0.9 achieved by the models was as high as that of the
previously reported classification model [3].
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Table 3. Goodness of classification by the LGBM model®.

Drug
Atazanavir
Darunavir

Fosamprenavir
Indinavir
Lopinavir
Nelfinavir
Saquinavir

Tipranavir

Accuracy
0.914
0.921
0.896
0.924
0.915
0.906
0.909
0.890

Precision TPR® TNR® FPR® FNR® Auc® F1 score

0.881 0.947 0.883 0.117 0.0533 0.915 0.913
0.810 0.805 0.951 0.0487 0.195 0.878 0.807
0.789 0.921 0.885 0.115 0.0794 0.903 0.850
0.897 0.917 0.928 0.0716 0.0834 0.922 0.907
0.895 0.929 0.903 0.0970 0.0711 0.916 0.912
0.888 0.938 0.873 0.127 0.0624 0.905 0.912
0.832 0.929 0.898 0.102 0.0712 0.913 0.878
0.681 0.567 0.950 0.0497 0.433 0.759

a) LGBM models were used for classification purposes by defining a fold change (FC) of 3.5 as a threshold.

b) Abbreviations: TPR, true-positive ratio; TNR, true-negative ratio; FPR, false-positive ratio; FNR, false-negative ratio; AUC, area under the ROC curve.

https://doi.org/10.1371/journal.pone.0255693.t003

The prediction of drug resistance to tipranavir appeared to be less accurate than that for
other drugs. The poor prediction accuracy of tipranavir might be associated partly with an
imbalance in number between drug-susceptible and drug-resistant variants (1.0 vs 0.19). As
machine learning is a data-dependent analysis, this could simply be a result of chance. How-
ever, it might be interesting to note that tipranavir has a slightly different mode of HIV-1 pro-
tease inhibition. HIV-1 protease forms a dimer with a catalytic site between the two units [46].
Although most HIV-1 protease inhibitors bind to the catalytic site, tipranavir can also inhibit
the formation of the dimer itself [47]. Unfortunately, the present model could not predict the
latter activity. Darunavir also possesses the same mechanism as tipranavir [47, 48], but its
inhibitory effect was well predicted by the current model. Considering that the primary mech-
anism of the two drugs is yet to be determined, the limitations of the current model need to be
considered.

Structural factor analysis of drug resistance

The drug resistance of the virus can be attributed to structural changes in viral proteins associ-
ated with their mutations. Characterization of the structural effects of protein mutations
would be of great use in drug discovery [47]. The proposed models are based on the CoMFA
approach, which allows 3D mapping of the degree of importance of the molecular field param-
eters in the target property/activity [10, 49]. CoMFA has generally been used to analyze and
predict the target binding or bioactivity of a series of small-molecule drugs. The implemented
PLS algorithm detects the link between the substituents around the core scaffold and the target
property. Our model reversed regular COMFA models, where structurally homologous protein
variants that recognize the same drug were superimposed and analyzed. We expected to quan-
titatively evaluate how much drug resistance was affected by changes in molecular fields associ-
ated with the protein mutation.

A contour map generated by PLS analysis of molecular fields allows the identification of
structural impacts on drug resistance acquisition (Fig 4). Fig 4 also shows the structure of the
wild-type protease complexed with lopinavir. Green contours indicate regions in which the
steric interaction of the protease increases drug resistance. In contrast, yellow contours indi-
cate regions where the steric interaction lowers drug resistance (i.e., drug resistance increases
as the steric interaction decreases). The yellow contours were located near the drug-protein
binding interface. The molecular dynamics simulations of Wang et al. [50] revealed that the
enlargement of the binding pocket by amino acid mutations weakens the binding of inhibitors.
On the other hand, the green contours are located at the peripheries of the protein, where
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Fig 4. Contour map of steric effects in drug resistance acquisition. Contours were generated based on PLS
standardized partial regression coefficients. Yellow and green contours indicate 1** and 99" percentiles of standardized
partial regression coefficients, respectively. Steric interaction of the protease with yellow regions negatively affects drug
resistance acquisition, whereas green regions show a positive effect. Dimerized wild-type HIV-1 protease (gray ribbon)
and lopinavir (wireframe) are shown in the same figure. Pink indicates amino acids involved in drug resistance.

https://doi.org/10.1371/journal.pone.0255693.9004

drug-protein interactions are unlikely to occur. We assume that these regions could be a coun-
terpart to the yellow regions. This means that enlargement of the binding pocket might
enhance steric interactions at the periphery. The standardized partial regression coefficients of
the electrostatic molecular field parameters were much smaller than those of the steric molecu-
lar field parameters (data not shown). This suggests that changes in electrostatic interactions
due to mutations might be less involved in drug resistance acquisition.

The pink regions of the main chain indicate the position of amino acids in which the muta-
tion confers drug resistance. To investigate how accurately the contour map explains the
known drug resistance positions, the distance between the contours and the drug resistance
positions was investigated. After estimating the probability distribution of the distance
between the o-carbon and the nearest contour, the simultaneous probability for the selection
of a set of the major drug resistance positions was calculated and compared to that for a ran-
dom selection of the same number of amino acid positions. In terms of proximity to the con-
tour planes, the set of the major drug resistance positions ranked in the top 0.316% of 100,000
random permutations. It indicates that known drug resistance-associated amino acids are
positioned at the vicinity of the contour maps. Thus, the present 3D-based analysis reasonably
represents the structure-activity relationship in the acquisition of drug resistance by viral
mutation.

Conclusion

In this study, we successfully developed a predictive model for HIV drug resistance with rea-
sonable prediction accuracy based on the 3D structure of HIV protease variants. The proposed
method can also be applied to predict the resistance to other anti-HIV agents, such as reverse
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transcriptase inhibitors and integrase inhibitors. It should be noted that the steps of homology
modeling and machine learning processes are computationally intensive. Considering that
reverse transcriptase and integrase are more than twice as large as protease, it would be diffi-
cult to apply the current approach in a limited computational environment.
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