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Sarcopenia is an age-related progressive loss of skeletal muscle mass, quality,

and strength disease. In addition, sarcopenia is tightly correlated with age-

associated pathologies, such as sarcopenic obesity and osteoporosis. Further

understanding of disease mechanisms and the therapeutic strategies in muscle

regeneration requires a deeper knowledge of the interaction of skeletal muscle

and other cells in the muscle tissue. Skeletal muscle regeneration is a complex

process that requires a series of highly coordinated events involving

communication between muscle stem cells and niche cells, such as muscle

fibro/adipogenic progenitors and macrophages. Macrophages play a critical

role in tissue regeneration and the maintenance of muscle homeostasis by

producing growth factors and cytokines that regulate muscle stem cells and

myofibroblast activation. Furthermore, the aging-related immune dysregulation

associated with the release of trophic factors and the polarization in

macrophages transiently affect the inflammatory phase and impair muscle

regeneration. In this review, we focus on the role and regulation of

macrophages in skeletal muscle regeneration and homeostasis. The aim of

this review is to highlight the important roles of macrophages as a therapeutic

target in age-related sarcopenia and the increasing understanding of how

macrophages are regulated will help to advance skeletal muscle regeneration.
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1 Introduction

1.1 Role of macrophages in skeletal muscle

Macrophages originate from monocytes and provide the first line of defense against

pathogens. They also play a significant role in initiating inflammation and resolving

inflammatory responses (Bosurgi et al., 2011; Chazaud, 2020), which connect the innate

and adaptive immunity. During muscle regeneration, macrophages can phagocyte cellular

debris, release numerous cytokines and growth factors, and recruit other immune cells. In
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1996, different subpopulations of macrophages with distinct

spatial and temporal distributions were first observed during

skeletal muscle regeneration (McLennan, 1996). Using lineage

tracing in sequential stages of skeletal muscle regeneration,

lymphocyte antigen 6 complex (Ly6C+) macrophages in the

inflammatory stage were shown to switch to Ly6C-

macrophages in the regenerative stage (Varga et al., 2013). In

addition, Mosser and Edwards proposed the plasticity of

macrophages with pro-inflammatory (M1) and anti-

inflammatory (M2) polarization responses to cytokine

stimulation in vitro (Mosser and Edwards, 2008; Liu et al.,

2014). However, the underlying molecular regulation of which

subset of macrophages regulates skeletal muscle regeneration is

still unknown. In the last decade, the role of macrophage

dynamics during skeletal muscle regeneration has been widely

explored (Saclier et al., 2013; De Santa et al., 2019; Ziemkiewicz

et al., 2021). Inflammatory macrophages were identified after

muscle damage and produced nitric oxide (NO) by metabolizing

L-arginine. Pro-inflammatory macrophages remove cell debris

from necrotic muscles during the inflammatory stage (Juban and

Chazaud, 2021). For instance, Chakarov et al.(2019) identified

two interstitial subsets of macrophages: one population was

localized near nerve fibers and supported their differentiation,

whereas the other population was preferentially localized near

the blood vessels and may support vessel integrity and inhibit

inflammatory cell infiltration into tissues. Further, the

proliferation of myogenic precursor cells (MPCs) increases

upon co-culture with pro-inflammatory macrophages (Arnold

et al., 2007). Numerous studies have indicated that anti-

inflammatory macrophages promote the differentiation and

fusion of MPCs at the restorative stage. Therefore,

macrophage phenotypic switching and crosstalk with MPCs

are required for skeletal muscle regeneration. These results

highlight the functional diversity of macrophages in vivo,

which may be attributed to their niche. Thus, the further

understanding of disease mechanisms of sarcopenia and its

therapeutic strategies requires a more profound knowledge of

macrophages in skeletal muscle. Muscular diseases are often

associated with chronic inflammation and dysregulation of

inflammation (Dort et al., 2019). When skeletal muscle

regeneration is dysregulated during chronic injury, persistent

inflammation mediated by macrophages can result in muscle

fibrosis and impair MPCs. Skeletal muscle regeneration is

perturbed by asynchronous muscle injuries, leading to the

concurrence of pro- and anti-inflammatory macrophages and

increased muscle fibrosis (Dadgar et al., 2014). Muscular

dystrophy is characterized by progressive weakness and loss of

muscle mass associated with genetic deficiency. Dysferlin (Dysf)

is a dystrophy-associated fer-1-like protein that participates in

skeletal muscle repair. Dysferlinopathy in Dysf-deficient mice

skews intramuscular macrophages towards the pro-

inflammatory phenotype (Baek et al., 2017). Long-term

maintenance of the pro-inflammatory state can cause

apoptosis and necrosis of MPCs. Duchenne muscular

dystrophy (DMD) is a severe muscle degenerative disease

caused by a dystrophin mutation that results in ambulation

loss, respiratory dysfunction, and premature death.

Dystrophin plays an important role in maintaining the

hemostasis of MPCs by controlling polarity and asymmetric

division (Dumont et al., 2015b). Clinical data from muscle

biopsies of patients with DMD showed highly activated

inflammatory signaling, through the nuclear factor kappa B

(NF-κB) and transforming growth factor β (TGF-β) pathways
(Chen et al., 2005). Mdx mice with a dystrophin deficiency are

widely used animal models for studying DMD pathology (Petrof,

2002; Hammers et al., 2020; Saclier et al., 2021), where the loss of

NO synthase is observed in dystrophin-deficient muscles (Tidball

and Wehling-Henricks, 2014).

1.2 Macrophage metabolism and muscle
regeneration

The amount of lactate produced by skeletal muscle cells and

macrophages after exercise, causes hyperlactatemia thereby

implying metabolic remodeling during muscle inflammation

(Alamdari et al., 2008; Tékus et al., 2012; Pillon et al., 2013).

Pro-inflammatory macrophages, induced by lipopolysaccharide

(LPS) and interferon (IFN)γ, display enhanced glycolysis to

convert pyruvate to lactate (Van den Bossche et al., 2015;

Eshghjoo et al., 2021; Liu et al., 2021). Lactate-polarized

macrophages exhibit an anti-inflammatory phenotype and

promote muscle revascularization and regeneration (Zhang

et al., 2020). Metabolic and transcriptional screening of

macrophages with M1 polarization in vitro indicated an

upregulation of glycolytic genes and downregulation of

oxidative phosphorylation (OxPhos)-associated genes.

Hypoxia-inducible factor 1-alpha (HIF-1α) signaling is

important for regulating glycolysis and is upregulated in

M1 macrophages (Jha et al., 2015; Jiang et al., 2017).

Enhanced glycolysis and hyper-inflammation with HIF-1α
overexpression in macrophages was also characterized by a

low oxygen consumption/extracellular acidification ratio and

upregulation of pro-inflammatory cytokines, such as inducible

nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis

factor (TNF)-α, and IL-1β (Wang et al., 2017). The

overexpression of glucose transporter 1, the primary time-

limiting glucose transporter, led to increased glycolytic activity

via glucose uptake and secretion of inflammatory cytokines in

LPS-induced M1 macrophages (Freemerman et al., 2014). LPS

increases the level of succinate, an intermediate of the Krebs/

tricarboxylic acid (TCA) cycle in M1 macrophages, because NO

production inhibits succinate dehydrogenase (SDH)-mediated

conversion of succinate to fumarate (De Santa et al., 2019).

Succinate is reported to be an inflammatory signal that

increases IL-1β production via HIF-1α signaling (Tannahill

Frontiers in Cell and Developmental Biology frontiersin.org02

Chen et al. 10.3389/fcell.2022.948819

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.948819


et al., 2013). In contrast, anti-inflammatory macrophages

increase OxPhos, converting pyruvate to acetyl-CoA. Arginase

1 (ARG1) is highly expressed in M2 macrophages and competes

with iNOS for the common substrate L-arginine to produce

ornithine and urea (De Santa et al., 2019). Since carbohydrate

kinase-like (CARKL) could phosphorylate the pentose phosphate

pathway intermediate sedoheptulose to sedoheptulose-7-

phosphate and is highly upregulated in M2 polarized

macrophages, repression of PPP is also considered as a

characterization of metabolic features in anti-inflammatory

macrophages (Haschemi et al., 2012; De Santa et al., 2019).

Differences in the metabolic profiles of pro- and anti-

inflammatory macrophages also cause the accumulation of

intermediates (De Santa et al., 2019). Citrate carriers are

upregulated and SDH is inhibited by NO in pro-inflammatory

macrophages. The flux of the TCA cycle is discontinued in two

stages, citrate and succinate, leading to citrate and succinate

accumulation in the cytosol. Anti-inflammatory macrophages

have intact TCA cycle flux and take up more glucose in the

cytosol than unpolarized macrophages, but less than that by pro-

inflammatory macrophages. Enhanced fatty acid uptake and fatty

acid oxidation (FAO) have been reported in anti-inflammatory

macrophages. Pharmacological inhibition of FAO by etomoxir (a

mitochondrial CPT1 inhibitor) dramatically reduces

ARG1 expression and activity in IL-4-induced

M2 macrophages (Huang et al., 2014). Signal transducer and

activator of transcription STAT6 and peroxisome proliferator-

activated receptor-gamma coactivator (PGC)-1β can activate the

FAO pathway to induce the M2 anti-inflammatory phenotype in

macrophages (Vats et al., 2006). However, recent studies have

indicated that FAO is not essential for the growth of anti-

inflammatory macrophages. Nomura et al. demonstrated that

etomoxir treatment inhibited ARG1 expression and

M2 polarization in FAO-inhibited Cpt2-deleted macrophages

(Divakaruni et al., 2018). In addition, transient expression of

granulocyte-macrophage colony-stimulating factor in the

skeletal muscle after injury increases pro-inflammatory

macrophages and promotes myogenesis (Martins et al., 2020).

TNF-α is also a pro-inflammatory cytokine and has a mitogenic

effect that promotes muscle stem cell (MuSC) and MPCs

proliferation (Li, 2003). In TNF receptor 1 and 2 double

knockout mice, muscle strength exhibited a deficit, and the

expression of myoblast determination protein 1 (MyoD) was

reduced after freeze injury (Warren et al., 2002). IL-6, which is

mostly derived from macrophages, is important for the

regulation of skeletal muscle regeneration via STAT3 (Smith,

2018). IL-6-dependent activation of STAT3 is specifically

required for MuSC proliferation in vitro. In IL-6 deficient

mice, the proliferation of MuSCs was abrogated (Serrano

et al., 2008; Zhang et al., 2013), and IL-6 is also necessary for

the complete differentiation of muscle cells. IL-1β is mainly

secreted by pro-inflammatory macrophages. IL-1β treatment

induces the upregulation of MyoD and myogenin in

C2C12 myoblast cells (Li et al., 2009). MPCs isolated from IL-

1β knockout mice exhibited slower proliferation than those

isolated from wild-type mice. However, long-term exposure to

IL-1β can result in the reduction of myotubes and loss of

sarcomeric actin (Chaweewannakorn et al., 2018). Overall, at

the inflammatory stage of skeletal muscle regeneration, pro-

inflammatory macrophage-mediated responses are crucial for

regulating MuSC activation and MPCs proliferation. IL-10 is an

anti-inflammatory cytokine upregulated during the restorative

stage of skeletal muscle regeneration. IL-10 treatment did not

affect proliferation and MyoD expression in myoblasts.

Additionally, IL-10 ablation could cause a delay in pro-to

anti-macrophage transition and reduce muscle fiber repair

(Villalta et al., 2011; Deng et al., 2012). In the skeletal muscle,

reduced glucose uptake may further impair glucose homeostasis

and protein synthesis, leading to sarcopenia (Summary in

Figure 1). Furthermore, ischemia and aged-related muscle

wasting are conditions characterized by reduced glutamine. In

a recent study, Shang et al. (2020) demonstrated restrictions of

glutamine in the muscle in an aging murine model. Skeletal

muscle with low levels of glutamine caused infiltrating

macrophages to secrete more glutamine, further promoting

MuSC activation in response to injury and sarcopenia during

aging. Collectively, these findings highlight the role of glycolytic

and oxidative metabolism in the regulation of macrophage

function in tissue regeneration. This evidence indicates the

importance of exploring potential therapeutic strategies for

muscular diseases by investigating metabolic products and

intermediates in the metabolic remodeling of macrophage

polarization.

1.3 Sarcopenia

Sarcopenia was first described by Rosenberg as an important

public health problem, causing physical frailty, mobility

limitation, and premature death (Rosenberg, 1997). Risk

factors for sarcopenia include age, gender, and level of

physical activity. There are two core components for

diagnosing sarcopenia; the first is the loss of muscle mass, and

the second is loss of muscle strength. Notably, frailty is defined by

the presence of one or more of the following components:

unintentional weight loss, exhaustion, weakness, and low

physical activity level (Kim et al., 2021). According to cut-offs

from the European Working Group on Sarcopenia in Older

People (EWGSOP) and the AsianWorking Group for Sarcopenia

(AWGS), its prevalence is estimated to be 10–30% worldwide

(Chen et al., 2016; Shafiee et al., 2017). Typical features of

sarcopenic skeletal muscle are fewer and thinner myofibers as

well as altered myofiber type composition toward the type I

phenotype (Purves-Smith et al., 2014). The loss of muscle

strength is usually evaluated by grip strength, gait speed, and

chair stand tests, which remain the simplest and cheapest
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methods; however, muscle mass can be estimated by radiological

techniques, including dual X-ray absorptiometry, computed

tomography (CT), or magnetic resonance imaging (MRI), to

identify patients at risk for sarcopenia-related morbidities and

suggest preventive interventions. Sarcopenic skeletal muscle is

highly associated with 1) Loss of the MuSC pool and reduction of

regenerative ability, 2) Increases in extracellular matrix (ECM)

deposition, 3) Intramuscular adipose tissue infiltration, and 4)

Chronic local inflammation (Addison et al., 2014; Chen et al.,

2021). In the following sections, we discuss the roles of

macrophages in these scenarios as well as their function in

skeletal muscle and sarcopenia.

1.3.1 Loss of the muscle stem cells pool and
reduction of regenerative ability

Skeletal muscle shows remarkable regenerative ability,

including gross structure and functionality, which depends on

a unique and rare cell population called MuSCs or satellite cells

(Charge and Rudnicki, 2004; Collins et al., 2005; Kuang and

Rudnicki, 2008). MuSCs, first described in 1961, are located

between the basal lamina and sarcolemma, close to the

capillaries, and form at higher densities near neuromuscular

and tendon junctions (Mauro, 1961; Relaix, 2006; Bentzinger

et al., 2012; Nederveen et al., 2021). MuSCs play indispensable

roles in muscle growth and regeneration (Mauro, 1961; Dumont

et al., 2015a). Adult MuSCs typically exist in a quiescent state. In

steady state conditions or micro-injury conditions (e.g., exercise),

MuSC homeostasis is achieved by asymmetric cell division, that

is, generating one naïveMuSC to replenish the stem cell pool, and

another activated MuSC proliferates to support skeletal muscle

regeneration. Upon acute or chronic damage, robust quiescent

MuSCs enter the cell cycle and become activated MuSCs.

Activated MuSCs have an increased migratory capacity, which

enables them to migrate to injury sites, proliferate and

differentiate into myoblasts, and then fuse to form new

multinuclear myofibers. After complete regeneration, some of

the activated MuSCs return to a quiescent state to reconstitute

the stem cell pool (Pownall et al., 2002; Rocheteau et al., 2012;

Evano and Tajbakhsh, 2018). Interestingly, MuSCs possess both

asymmetric and symmetric divisions during muscle

regeneration, which is critical for maintaining the stem cell

pool and muscle homeostasis for the next challenge (Cossu

and Tajbakhsh, 2007; Kuang et al., 2007; Motohashi and

Asakura, 2014); however, the mechanisms by which MuSCs

fine-tune the balance between asymmetric and symmetric

divisions are still under investigation.

The quiescence, activation, proliferation, and differentiation

of MuSCs are tightly regulated by sequential changes in skeletal

muscle-specific transcription factors, including paired box

proteins 3 (Pax3), Pax7, and myogenic regulatory factors

(MRFs). MRFs are a family of basic helix-loop-helix

transcription factors consisting of myogenic factor 5 (Myf5),

FIGURE 1
Skewed metabolic regulation and cytokine production in macrophages impairs skeletal muscle regeneration. Pro-inflammatory macrophages
exhibit increased glucose uptake and glycolysis, leading to the accumulation of lactate and entry of glucose-derived pyruvate into the TCA cycle.
Succinate accumulation in pro-inflammatory macrophages stabilizes HIF-1α, whereas anti-inflammatory macrophages increase the uptake of lipids
and augment fatty acid oxidation. Pro-inflammatory macrophages are characterized by glycolytic metabolism, inducible nitric oxide synthase
(iNOS) expression, and the production of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1α. Pro-inflammatory macrophages are critical in
promoting myogenic precursor cells (MPCs) to enhance skeletal muscle regeneration. However, anti-inflammatory macrophages are the
dominating type of macrophage in aged skeletal muscle; pro-inflammatory macrophages showed lower abundance in skeletal muscle and declined
with age (Cui et al., 2019). Therefore, phenotypic and metabolic skewing may impair skeletal muscle regeneration in the elderly population.
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MyoD, myogenin, and Myf6 (von Maltzahn et al., 2013;

Berberoglu et al., 2017; Ishido et al., 2009; Sambasivan et al.,

2011; Zammit, 2017; Asfour et al., 2018). Pax7 is highly expressed

in quiescent MuSCs (Pax7+/CD34+) and is required for their

survival, self-renewal, and differentiation (von Maltzahn et al.,

2013). Upon activation, Myf5 and MyoD levels increase rapidly

in MuSCs (Pax7+/Myf5+/MyoD+) initiating proliferation

(Cooper et al., 1999; Almada and Wagers, 2016). Activated

MuSCs further commit to myoblasts by increasing myogenin

and Myf6 and decreasing Pax7, which eventually forces

myoblasts to exit the cell cycle and fuse with each other to

form new muscle myofibers or fuse with the nearby myofibers

(Abmayr and Pavlath, 2012; Zammit, 2017). Reviving the

number and function of MuSCs has been considered as a

powerful therapeutic approach for muscular dystrophies

through muscle regeneration (Sass et al., 2018; Judson and

Rossi, 2020; Shcherbina et al., 2020). However, the

contribution of declining MuSC pool and their reduced

functionality in the initiation and progression of sarcopenia

remains controversial. The loss of MuSC number during aging

has been shown to lead to the loss of nuclei in large fibers, and

reducing the nuclei length might induce cytoplasmic atrophy and

sarcopenia (Brack et al., 2005). Loss of adult MuSCs during aging

drives aging-related neuromuscular junction degeneration,

which induces skeletal muscle loss (Liu et al., 2017). MuSCs

are also important for lifelong exercise- (Englund et al., 2020) or

overload-induced muscle hypertrophy (Egner et al., 2016; Goh

andMillay, 2017; Murach et al., 2017), suggesting that MuSCs are

critical for skeletal muscle maintenance and homeostasis. MuSCs

contribute to skeletal muscle homeostasis in adults. Although

ablation of MuSCs in adult mice impaired skeletal muscle

regenerative capacity, it did not cause a reduction in the

cross-sectional area of uninjured adult muscle regardless of

myofiber types (Fry et al., 2015; Keefe et al., 2015). However,

it can be speculated that experimental ablation of MuSCs in

mice reduces the bystander effect (da Silva et al., 2019) of aged

MuSCs, thereby compromising the effect of their decline on

sarcopenia.

Unlike stem cells that undergo rapid turnover, such as

hematopoietic stem cells and intestinal stem cells, the quiescent

and persistent nature of MuSCs exposes them to genotoxic

stresses (Fulle et al., 2005) throughout life. This leads to cellular

apoptosis and senescence, a state of irreversible cell cycle arrest, and

ultimately causes aging-related decline in the regenerative ability of

the skeletal muscle. The functional decline of MuSCs is determined

by both intrinsic features, such as heterogeneity, epigenetic signature,

and cell signaling, as well as extrinsic features, such as matrix

remodeling, mechanotransduction, and communication between

different cells within the skeletal muscle (Blau et al., 2015; Hong

et al., 2021; Relaix et al., 2021; Sousa-Victor et al., 2021). The effect of

immune cells such as macrophages which are the most sensitive

population to biological and chronological aging, on muscle

regeneration has not been addressed extensively.

1.3.2 Increases in extracellular matrix deposition
Efficient muscle repair requires the proliferation of

fibroblasts to produce ECM components, such as collagen,

fibronectin, elastin, proteoglycans, and laminin (Frantz et al.,

2010). The former components serve to stabilize the muscle

tissue and act as a scaffold for the new muscle fibers. However,

increased collagen and ECM deposition will cause fibrosis, scar

formation, and impair skeletal muscle function. Moreover,

abnormalities in ECM production and remodeling contribute

to tissue dysfunction. Fibrosis affects a wide range of tissues and

includes cellular and molecular mechanisms such as

degeneration, infiltration of leukocytes, persistent

inflammation, and proliferation of cells that resemble

fibroblasts. Cell-signaling pathways are also under a perpetual

remodeling process influencing ECM formation. Transforming

growth factor β (TGF-β) activates a signaling pathway for cell
proliferation, differentiation, and development and can

promote collagen synthesis for wound healing. The Notch

signaling pathway has also been strongly implicated in aging-

associated fibrosis. For example, Carlson et al. (2008)

demonstrated that TGF-β is increased in the niche of aged

murine MuSCs with reciprocal levels to active Notch, which is

more abundant in the young niche. Moreover, Mourikis et al.

(2012) demonstrated that activation of Notch signaling can

promote MuSC self-renewal and proliferation and inhibits

their differentiation into the myogenic lineage through

repressing MyoD. In addition, Wnt3A stimulation

negatively modulated cell proliferation in young

regenerating muscles and augmented fibrosis. Thus, these

results imply that aging was associated with alterations in

the systemic environment and, because the effects were

reversible, provide the strategic basis for interventions

aimed at improving tissue repair and at reducing fibrosis in

pathological conditions. Interestingly, a recent study

demonstrated that age-associated changes in the ECM

might be regulated by metalloproteinase 2 (MMP-2)

activity. Furthermore, Peck et al. (2022) identified

macrophages as a source of MMP-14 in skeletal muscle,

which can promote ECM remodeling in response to

mechanical loading.

1.3.3 Intramuscular adipose tissue infiltration
In skeletal muscle, aging is accompanied by intramuscular fat

infiltration. In addition, muscle fat infiltration is a common

feature in several myopathies and is associated with muscular

dysfunction and insulin resistance (Fujiwara et al., 2015). Studies

have shown that excessive intermuscular fat accumulation

decreases muscle strength and interferes with insulin

sensitivity and lipid metabolism; thus, intramuscular fat may

contribute to muscle weakness (Ahmed et al., 2018). There could

be a feedback effect between the whole-body metabolism and

local intramuscular fat as a characteristic of many diseases. In

addition, intramuscular fat infiltration may be significantly
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correlated with other diseases, such as cardiovascular disease

(Huynh et al., 2022). Considering the prevalence of

intramuscular fat and its association with muscular

dysfunction and related diseases, it is critical to understand

the regulatory mechanisms governing intramuscular adipose

tissue infiltration and their impact on lipid metabolism in

skeletal muscle; this knowledge may aid in the development of

innovative treatments for combating these pathological

conditions. However, the cellular origin and lipidomic and

transcriptomic changes during fat infiltration in skeletal

muscle remain unclear. Intramuscular adipose tissue and

sarcopenia may adversely impact mobility function and

physical activity. Macrophages are crucial mediators of

chronic inflammation, infiltrating obese adipose tissue and

stimulating metabolic disorders (Li et al., 2022). Adipose

tissue macrophages (ATMs) are thought to be formed from

accumulated circulating monocytes in the adipose tissue, self-

renewal of tissue-resident macrophages, or in situ proliferation

under the influence of monocyte chemotactic protein 1 (MCP-1).

Recent studies demonstrated that intramuscular adipocytes

mainly emanated from a population of fibro/adipogenic

progenitors (FAPs) that reside between muscle fibers (Joe

et al., 2010). Their role in muscle regeneration was, in part,

elucidated in mice. After injury, FAPs proliferate, interact with

myoblasts to promote the formation of new muscle fibers, and

eventually return to a quiescent state or are cleared by apoptosis.

However, the mechanisms controlling their adipogenic potential

are still elusive. In a recent study, Moratal et al. (2018) revealed

that IL-1β+ (M1-prone) macrophages released cytokines that

inhibit FAP adipogenesis via Smad2 phosphorylation, whereas

IL-4+ (M2-prone) macrophages had a pro-adipogenic effect.

1.3.4 Chronic local inflammation
Sarcopenia is caused by the catabolism of muscle proteins

due to inflammation. Metabolism and immunity are two

fundamental systems of metazoans and there appears to be

ongoing crosstalk between these two regulatory systems as

immune cells, such as macrophages, are present in metabolic

tissues. Inflammatory mediators affect muscle protein

metabolism, but their exact effects and signaling pathways are

unclear (Frasca and Blomberg, 2016). In a recent study, Sciotati

et al. (2020) demonstrated that circulating concentrations of IL-6

and TNF-α were significantly elevated in the sarcopenic elderly,

and it was reported that higher IL-6 and C-Reactive Protein

(CRP) levels increased the risk of muscle strength loss. It is

known that exogenous TNF-α, also known as cachectin, impairs

muscle function and promotes tissue loss in skeletal muscle

(Lang et al., 2002). Additionally, TNF-α reduces the

expression of anabolic hormones and growth factors, reduces

MyoD and myogenin expression in regenerating muscles, and

increases MyoD degradation in myoblasts. Of note, aged mice

with genetic TNF-α ablation exhibited reduced sarcopenia and

better satellite cell activation (Wang et al., 2018). Asoudeh et al.

also demonstrated that inflammatory biomarkers, such as IL-6,

TNF-α, and CRP levels, were not associated with sarcopenia in a

human blood sample study. Thus, further studies are required to

confirm the inflammatory factors in skeletal muscle profiles.

1.4 Metabolic regulation in aging

All cellular and biological reactions are fueled by metabolism,

including growth, proliferation, differentiation, and autophagy

(DeBerardinis et al., 2008; Rabinowitz and White, 2010). The

utilization and storage of nutrients is a tightly regulated process

that allows cells to maintain nutritional balance and achieve

systemic homeostasis in the human body (Efeyan et al., 2015).

For example, excess nutrients are converted and stored in the

adipose tissue, liver, and skeletal muscle. Skeletal muscles are not

only viewed as organs responsible for locomotion but also as the

primary site for glucose uptake/storage (Hargreaves and Spriet,

2020). An injury or muscular disease results in muscle

degeneration, where the skeletal muscle initiates an

inflammatory response that activates immune cells within that

area (Arnold et al., 2007). Thus, a better understanding of the

metabolic regulation of immune cells in skeletal muscle might

provide new insights for modulating muscle diseases, such as

sarcopenia.

The phenomenon of aging, which we broadly define as the

progressive loss of function with age, affects most living

organisms. In the field of aging, many critical questions have

been raised based on the conceptual framework concerning the

physiological factors that lead to aging-induced damage,

compensatory responses that restore homeostasis, the

interlinkages between different types of damage and

compensatory responses, and the possible exogenous

interventions to delay aging. The somatotropic axis in

mammals comprises the growth hormone, produced by the

anterior pituitary, and its secondary mediator, insulin-like

growth factor 1 (IGF-1), which is produced in response to

growth hormone by many cell types, notably the hepatocytes.

In model organisms, genetic mutations that reduce the functions

of the IGF-1 receptor, insulin receptor, and downstream

intracellular effectors, such as Akt, mammalian target of

rapamycin (mTOR), or forkhead box (FOX), have been linked

to longer lifespans, further illustrating the critical role of trophic

and bioenergetic pathways in longevity (Johnson et al., 2013).

Furthermore, IGF plays an essential role in the regulation of cell

growth, differentiation, metabolism, and function. DiToro et al.

demonstrated that IGFs regulate Th17, regulatory T (Treg) cells

and type 3 innate lymphoid cells by modulating inflammation

(DiToro et al., 2020). In addition to the IGF-1 pathway, which

helps detect glucose levels, three other related and interconnected

nutrient-sensing pathways are being investigated: mTOR, which

senses high amino acid concentrations; AMP-activated protein

kinase (AMPK), which detects low energy states by sensing high
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AMP levels; and sirtuins, which detect low energy states by

sensing high NAD levels. Interestingly, mice genetically

modified to have low mTORC1 activity with no change in

mTORC2 and those with S6 Kinase 1 (S6K1—the primary

mTORC1 substrate) deficiency are shown to live longer,

suggesting that the downregulation of mTORC1/S6K1 is a

mediator of longevity (Arif et al., 2017). Furthermore, direct

injection of rapamycin into the hypothalamus reverses age-

related obesity by increasing mTOR activity (Yang et al.,

2012). Taken together, these findings suggest that intensive

trophic activity, indicated by the IGF-1 or mTORC1 pathway,

accelerates aging. Further, evidence indicates that AMPK

activation may mediate lifespan extension following

metformin administration in worms and mice (Kulkarni et al.,

2020). Thus, these age-related changes in immune defense,

triggering low-grade inflammation and metabolic disorders in

different immune cells have been discussed further.

2 Conclusion and perspectives

Here, we discuss the different metabolic responses

employed by macrophages and their importance in

regulating the immune system. Activation of macrophages

by environmental signals leads to dramatic reprogramming

of cellular metabolism. The primary goal of metabolic

reprogramming is to provide immune cells with sufficient

energy (ATP) and metabolic intermediates to perform their

effector functions in maintaining tissue homeostasis.

Furthermore, metabolic reprogramming represents a

checkpoint before adopting a new cell fate or exerting

effector functions. Therefore, interfering with or enhancing

specific metabolic programs may be clinically valuable in

suppressing pathogenic autoimmunity or chronic

inflammation in various metabolic and degenerative diseases.

In normal physiological conditions, the immune system is

essential in protecting the body from pathogens and tissue

repair. When the body is infected by pathogens, inflammation is

triggered by immune cells such as macrophages, dendritic cells,

and Th cells. A decline in testosterone, growth hormones,

androgens, and estrogen occurs with age, dropping the

body’s balance towards chronic inflammation, as evidenced

by increased blood levels of proinflammatory mediators, such

as TNF-α, IL-6, and CRP. It has been shown that macrophages

from different tissues possess diverse transcription profiles,

impacting their phenotype and function. Due to their tissue-

specific functions, macrophages exhibit different

transcriptional profiles associated with heterogeneous

phenotypes, making them potential therapeutic targets.

Despite rapid progress over the past decade, our understanding

ofmacrophagemetabolism is still in its infancy. Inmost cases, studies

have focused on the most abundant cell populations found in the

blood or bone marrow rather than on tissue-resident or recruited

cells involved in tissue homeostasis. Additionally, current studies

have investigated the diversity of immune cell lineages or their tissue-

specific functions. Although macrophages and DCs activated by LPS

switch from mitochondrial to glycolytic metabolism, it is unclear

whether similar metabolic reprogramming occurs in tissue-resident

cells in vivo, thereby impinging on phagocytic and processing

functions. Therefore, single-cell sequencing, in combination with

metabolomic studies, is essential to explore the metabolic basis of

immunity across the entire spectrum of innate and adaptive immune

responses. In particular, the transcriptional coupling of metabolism

to cellular effector responses is not unique to immune cells, as

previous studies have identified similar critical roles for metabolic

regulators, including HIF-1α, PPARγ, AMPK, and PGC-1α in

skeletal muscle. Role of fiber-type conversion and exercise

tolerance. These findings suggest that metabolic control of

immune responses represents a broader paradigm in biology,

where the identity, function, and fate of a cell depend on its

underlying metabolic state.
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Glossary

MuSCs muscle stem cells

PAX3 paired box 3

PAX7 paired box 7

MRFs myogenic regulatory factors

Myf5 myogenic factor 5

Myf6 myogenic factor 6

MyoD myoblast determination protein 1

IL-1 interleukin-1

IL-1β interleukin-1-beta

IL-4 interleukin-4

IL-6 interleukin-6

IL-8 interleukin-8

IL-10 interleukin-10

IL-33 interleukin-33

CCL2 C-C motif chemokine ligand 2

mTOR mammalian target of rapamycin

ILC3 type 3 innate lymphoid cells

S6K1 ribosomal protein S6 kinase beta-1

NADPH nicotinamide-adenine dinucleotide phosphate

NOX NADPH oxidases

PPP pentose phosphate pathway

ROS reactive oxygen species

DMD Duchenne muscular dystrophy

TNF tumor necrosis factor

STAT3 signal transducer and activator of transcription 3

STAT6 signal transducer and activator of transcription 6

PI3Ks phosphoinositide 3-kinases

Akt protein kinase B

Ly6c lymphocyte antigen 6 complex

NO nitric oxide

MPCs myogenic precursor cells

LPS lipopolysaccharide

IFNγ interferon-gamma

CARKL carbohydrate kinase-like

FAO fatty acid oxidation

PGC-1α PPARγ-coactivator-1α
PGC-1β PPARγ-coactivator-1β
UDP-GlcNAc UDP-N-acetylglucosamine

AMPKα1 AMP-activated protein kinase-α1
ARG1 arginase 1

Dysf dysferlin

NF-κB nuclear factor kappa B

TGFβ transforming growth factor beta

DCs dendritic cells

PPARγ peroxisome proliferator-activated receptor gamma

CPT1 carnitine palmitoyltransferase I

IGF-1 insulin-like growth factor
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