
5220  |     Food Sci Nutr. 2021;9:5220–5228.www.foodscience-nutrition.com

1  | INTRODUC TION

Meat and meat products are popular food commodities around the 
world due to their high nutritional value and unique flavor. The high 
demand for meat and meat products makes them an appealing tar-
get for adulteration by dishonest traders for financial gains. Meat 
adulteration has a long history and is still a serious problem around 

the world, despite the fact that it is prohibited by various national 
and international laws. For several years, beef has been targeted for 
adulteration with low- price meats such as chicken, duck and pork 
in order to increase financial return, particularly minced beef prod-
ucts (Shi et al., 2019). Such beef adulteration not only constitutes 
consumer fraud and commercial malpractice, but it also raises con-
cerns for people who are allergic to specific meat species or have 
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Abstract
The purpose of this study was to investigate the potential of taste sensors coupled 
with chemometrics for rapid determination of beef adulteration. A total of 228 
minced meat samples were prepared and analyzed via raw ground beef mixed sepa-
rately with chicken, duck, and pork in the range of 0 ~ 50% by weight at 10% in-
tervals. Total sugars, protein, fat, and ash contents were also measured to validate 
the differences between raw meats. For sensing the water- soluble chemicals in the 
meats, an electronic tongue based on multifrequency large- amplitude pulses and six 
metal electrodes (platinum, gold, palladium, tungsten, titanium, and silver) was em-
ployed. Fisher linear discriminant analysis (Fisher LDA) and extreme learning machine 
(ELM) were used to model the identification of raw and the adulterated meats. While 
an adulterant was detected, the level of adulteration was predicted using partial least 
squares (PLS) and ELM and the results compared. The results showed that superior 
recognition models derived from ELM were obtained, as the recognition rates for 
the independent samples in different meat groups were all over 90%; ELM models 
were more precisely than PLS models for prediction of the adulteration levels of beef 
mixed with chicken, duck, and pork, with root mean squares error for the independ-
ent samples of 0.33, 0.18, and 0.38% and coefficients of variance of 0.914, 0.956, 
and 0.928, respectively. The results suggested that taste sensors combined with ELM 
could be useful in the rapid detection of beef adulterated with other meats.
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religious or ethical aversions (Kamruzzaman et al., 2015). To prevent 
such meat adulteration, rapid and reliable authentication techniques 
are required.

One of the key challenges confronting food regulatory author-
ities in confronting meat adulteration is directly related with meat 
processing techniques. For instance, the development of advanced 
techniques for food processing such as deboning, mincing, chop-
ping, emulsification, and other preprocessing procedures have 
made the identification of meat species become more difficult due 
to the changes in external morphological features (Shi et al., 2019). 
As a result, conventional sensory evaluation and morphological 
discrimination should be replaced by more accurate and sensitive 
analytical techniques. Currently, various adulterant analytical tech-
niques have been reported, as comprehensively reviewed in these 
articles (Alikord et al., 2018; Böhme et al., 2019; He et al., 2020; Li 
et al., 2020; Zia et al., 2020). The most specific and sensitive tech-
niques presented are DNA- and protein- based methods such as poly-
merase chain reaction (PCR) and enzyme- linked immunosorbent 
assay (ELISA) (Boyacı et al., 2014). These methods are reliable, but 
they are time- consuming and require sophisticated laboratory anal-
yses (Zhao et al., 2019). As a result, an analytical technique offering 
rapid result acquisition and convenience must be proposed (Rohman 
et al., 2011).

To that end, rapid spectroscopy methods such as near infrared 
(Alamprese et al., 2016; Ding & Xu, 2000; Leng et al., 2020; Rohman 
et al., 2011), mid- infrared (Al- Jowder et al., 2002), Raman spectros-
copy (Boyacı et al., 2014), multispectral image (Ropodi et al., 2017; 
Ropodi et al., 2015), hyperspectral (Chen et al., 2018; Jiang 
et al., 2019; Kamruzzaman et al., 2016; Kamruzzaman et al., 2015; 
Zhao et al., 2019), and combination of UV- visible, near infrared, 
and mid- infrared spectroscopy (Alamprese et al., 2013) have been 
utilized for determination of beef adulterated with other meats. 
However, for homogeneous biological tissues, NIRS using continu-
ous wave can be used to detect the signal of the deep position is only 
approximate 14 mm (CAO et al., 2006). The limitation of measuring 
depth may be the most significant barrier to the practical applica-
tion of spectral techniques to detect meat adulteration. Electronic 
tongue (E- tongue) is an appealing option because it is quick, simple, 
and above all environmentally friendly.

Since its inception, E- tongue has been widely used for food 
quality analysis as an imitation of taste perception and sensory 
evaluation. E- tongue, on the other hand is equipped with high cross 
sensitive and nonspecific sensors that detect taste compounds/dis-
solved components, as opposed to spectroscopy technology. Some 
notable applications of E- tongue include the prediction of sodium 
chloride, nitrate, nitrite, and anions nitrate contents in minced meat 
of pork (Campos et al., 2010; Labrador et al., 2010); monitoring of 
physical– chemical and microbiological changes in fresh pork meat 
(Gil et al., 2011); assessment of red meat origins (beef, goat, and 
sheep) and their storage time (Haddi et al., 2015); identification 
and prediction of the chemical compositions of beef from different 
breed cattle (Xinzhuang et al., 2015); sensing taste attributes of dry-  
and wet- aged beef (Lee et al., 2019); analysis of nonvolatile taste 

components of dry- cured pork (Tian et al., 2020). John- Lewis Zinia 
Zaukuu and co- authors reported research on the optimization of an 
extraction technique for E- tongue to detect beef adulterated with 
pork, turkey, and chicken. The results of linear discriminant analysis 
models on cooked meat extract was the best method for discriminat-
ing meat mixtures (Zaukuu et al., 2021). However, numerous studies 
have shown that deep learning algorithms are better suited for E- 
tongue data analysis than simple linear models due to the high cross- 
sensitivity of E- tongue sensors (Cetó et al., 2012; Han et al., 2015; 
Han, Huang, Teye, Gu, Dai, et al., 2014; Han et al., 2020; Legin 
et al., 2004; Wesoły and Ciosek − Skibińska, 2018); Furthermore, 
heat- treatment not only increase the complexity of the E- tongue 
measurement but also reduces its reliability. The goal of this work 
was to combine E- tongue and deep learning algorithms with the 
basic extraction technique, namely aqueous extraction, to detect 
beef adulteration. Minced beef- meat samples were prepared and 
adulterated with chicken, duck, and pork separately in the range of 
0 ~ 50% by weight at 10% intervals. Fisher linear discriminant anal-
ysis (Fisher LDA) and extreme learning machine (ELM) were used in 
comparison with modeling to distinguish between unadulterated 
meats and adulterated meats. When an adulterant was detected, 
the level of adulteration was predicted using partial least squares 
(PLS) and ELM and the results compared. Results show that, ELM 
outperformed Fisher LDA and PLS in detecting adulterated beef and 
predicting adulteration levels.

2  | MATERIAL AND METHODS

2.1 | Beef adulteration samples preparation

Silverside, pork ham, chicken, and duck legs were purchased from a 
local agricultural market, Suzhou, China, and transported to labora-
tory in an ice- filled box. The fat and visible connective tissues of the 
silverside and pork ham, as well as the bones and skins of the chicken 
and duck legs, were removed to obtain the lean meats. Afterward, 
a commercial blender (JR16S- 300, Zhejiang Supor Co., Ltd., China) 
was used to pulverize the meats in order to prepare ground meat 
samples. For preparing the adulterated meats, the minced beef was 
mixed with chicken, duck, and pork separately in the range 0 ~ 50% 
by weight at 10% intervals, followed by mincing for 1 min in a 
blender. Twelve samples were prepared for each adulteration level 
of the mixed meats and the four pieces of raw meats, each with a 
weight of 10.0 g. This yielded a total of 228 samples for the E- tongue 
measurements.

2.2 | General chemical analysis

Total sugars, protein, fat, and ash contents were also measured in this 
study to validate the differences between raw meats used in basic 
chemical components. Total sugars were measured using the sulfuric 
acid- phenol method with UV spectrophotometry in accordance with 
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Chinese standards (GB/T 9695.31- 2008); protein, fat, and ash con-
tents were estimated in accordance with Chinese standards 5009.5- 
2016 (Kjeldahl determination), GB 5009.6- 2016 (Soxhlet extraction), 
and GB 5009.4- 2016 (ignition gravimetric method), respectively.

2.3 | Taste sensors measurements and 
feature extraction

In this study, an E- tongue based on multifrequency large- amplitude 
pulse voltammetry (Isenso, Shanghai Ruifen International Trading 
Co., Ltd.) was employed. Three individual frequency segments, 1 Hz, 
10 Hz and 100 Hz, were applied for the signal excitation unit. Each 
segment of the large- amplitude pulse waveform had a maximal value 
of 1.0 V and a minimal value of −1.0 V. The taste sensors of the E- 
tongue were made of metallic electrodes including platinum, gold, 
palladium, titanium, tungsten, and nickel, along with a reference 
electrode (Ag/AgCl) and a platinum counter electrode. The sensor 
array's cross- sensitivity and selectivity aid in the detection of sub-
stances found in the liquid matrix, offering global chemical percep-
tion. During detection, when a voltage was applied over the working 
electrode and the reference electrode with the amplitude of each 
pulse being 0.2, a current was measured between the taste sensors 
and the counter electrode (Han et al., 2020; Tian et al., 2007).

Ten grams of the meat sample were blended with 100 ml of 
distilled water and then homogenized for 2 min using a blender 
(JYL- C022E, Joyoung Co., Ltd, China). The homogenate was then 
centrifuged for 5 min at 10619 g in a centrifuge (H1850, Hunan Xiang 
Yi Laboratory Instrument Development Co., Ltd, China). The super-
natant solution was extracted for E- tongue measurements. Each 
meat sample had a detection time of 26 s (1 Hz, 23 s; 10 Hz, 2.3 s; 
100 Hz, 0.23 s). For further data analysis, four points within each 
loop were obtained as the characteristic values of one working elec-
trode in relation to the concentration and dispersion coefficients of 
the charged and electro- active compounds in the test solution (Han 
et al., 2020; Tian et al., 2007).

2.4 | Chemometrics and software

In the present work, the variable number of E- tongue for one meat 
sample is 720, 40 (characteristic variables of one metal electrode) 
multiplied by 6 (numbers of the working electrodes), and 3 excitation 
frequencies (1 Hz, 10 Hz, and 100 Hz). With such high dimensional 
matrices as inputs, it is difficult to build a robust model for pattern 
recognition. Principal component analysis (PCA) was, therefore, 
applied to the original data firstly in order to reduce the variable 
numbers.

Afterward, Fisher linear discriminant analysis (Fisher LDA) and 
extreme learning machine (ELM) were compared for modeling to dis-
tinguish between raw and adulterated meats. When an adulterant 
was detected, the level of adulteration was further predicted using 
PLS and ELM and then compared.

Fisher LDA and PLS are the classical pattern recognition algo-
rithms, and their foundational theory has been fully discussed in 
these articles (Rahim et al., 2018; Wold et al., 2001).

ELM is a popular machine learning algorithm for feed forward 
neural networks that combines good generalization performance 
with fast learning speed (Huang et al., 2011; Huang et al., 2006). The 
application of ELM can be divided into three parts, which are as fol-
lows. Part 1: Preparing the matrices and configuring the parameters. 
In the case of this study, the outputs of the E- tongue sensors were 
used as input variables. The output variables were the category la-
bels or the levels of adulteration. Other features include optimiz-
ing the number of neurons in the hidden layer and determining the 
hidden layer's activation function; Part 2: Network training. In this 
section, the input weight and bias parameters were generated at 
random and the connection weight between the hidden layer and 
the output layer was calculated to minimize the error between the 
network outputs and the expected ones; Part 3: Performance eval-
uation. For identification of the raw and adulterated meats, perfor-
mances of the ELM must be evaluated by the recognition rate (%) 
calculated by correctly predicting the number over total number of 
measurements as shown in Eq. 1.

where N1 is the number of the correctly identified samples; N2 is the 
number of all samples in the training set or prediction set (Han, Huang, 
Teye, Gu, & Gu, 2014).

For prediction of the levels of adulteration, the performance of 
ELM was evaluated by the root mean square error (RMSE) and the 
correlation coefficients (r) in the prediction set. The RMSE was cal-
culated using Eq. 2,

where n is the number of the samples in the training set or prediction 
set, yi is the reference measurement result for the ith sample, and y ∧

i
 is 

the predicted result of the model for the ith sample (Han, Huang, Teye, 
Gu, & Gu, 2014).

All algorithms in the present study were implemented in MATLAB 
Version 7.14 (Mathworks, Natick, USA) with windows 10.

3  | RESULTS AND DISCUSSIONS

3.1 | Chemicals of the raw meats

The differences in basic chemical compositions of the raw meats col-
lected are shown in Table 1. The protein and fat contents of the raw 
meats differed significantly, according to the results. Results show 
that there were significant differences in protein and fat contents 
between each two. Beef and chicken had the highest protein and 

(1)Discrimination rate =
N1

N2

× 100%

(2)
RMSE =

�

∑n

i=1
(y ∧

� i
− yi)

2

n
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fat contents, while chicken and pork had the lowest protein and fat 
contents. The Ash content of duck and beef was found to be similar 
but significantly higher than that of chicken and pork. Pork had the 
lowest ash content. Beef and pork had the highest and lowest total 
sugar content, respectively. There was no significant difference in 
total sugar content between chicken and duck.

3.2 | Recognition of the adulterated beef

In this section, recognition models for raw and adulterated meats 
were built. PCA was primarily performed on taste sensor data matri-
ces to reduce the dimensional structure of the input variables. The 
cumulative contribution rates (CCR) of the principal components 
(PCs) of PCA results for different recognition targets are shown 
in Figure 1. The top several PCs were selected for modeling, with 
a CCR of more than 90%. Hence, the top 4 PCs were selected to 
build models for identifying raw beef, beef- meat mixtures, and raw 
meats, herein referred to as chicken, duck, and pork, individually; 
and the top 5 PCs were selected for identifying raw meats (beef, 
chicken, duck, and pork), mixed meats (beef- chicken, beef- duck, 
beef- pork), and all groups of the raw meats and mixed meats. PCA 
results showed, the variances of the selected PCs for identifica-
tion of the raw meats (beef, chicken, duck, and pork) were 57.22%, 
14.81%, 8.65%, 6.83%, and 4.61%; variances of the selected PCs for 
identification of the beef adulterated with chicken (beef, beef mixed 

with chicken, chicken) were 61.84%, 14.89%, 7.72%, and 5.86%; var-
iances of the selected PCs for identification of the beef adulterated 
with duck (beef, beef mixed with duck, duck) were 40.77%, 31.18%, 
13.66%, and 5.69%; variances of the selected PCs for identification 
of the beef adulterated with pork (beef, beef mixed with pork, pork) 
were 36.29%, 28.03%, 19.23%, and 7.00%; variances of the selected 
PCs for identification of the mixed meats of beef- chicken, beef- duck, 
and beef- pork were 56.8%, 18.81%, 9.34%, 4.71%, and 2.6%; vari-
ances of the selected PCs for identification of the raw meats and 
mixed meats (beef, chicken, duck, pork, beef- chicken, beef- duck, 
beef- pork) were 40.18%, 29.39%, 12.66%, 5.62%, and 3.3%.

According to the PCA results, the top 4 or 5 PCs could explain 
more than 90% of the total variances of the original variables out-
putted by the taste sensors. This means that the E- tongue data ma-
trix collected is obvious collinear. Because of the inter- sensitivity, 
the output of the taste electrode has a high degree of collinearity 
with each other. Vast amounts of redundant information not only 
increase the complexity of data modeling but also have impact on 
the prediction performance of subsequent models. These results 
revealed that, the six metal electrodes of the E- tongue have nonspe-
cific sensitivity with wide cross- sensitivity toward the water- soluble 
components in the raw meats. This also implies that each taste sen-
sor in the array could be sensitive to the water- soluble components 
extracted from the meat at the same time. On the other hand, it is 
possible that different taste sensors are sensitive to different water- 
soluble components in the meats at the same time.

Protein (g/100 g) Lipids (g/100 g) Ash (g/100 g)
Total sugars 
(g/100 g)

Chicken 18.33 ± 0.28a 5.463 ± 0.09a 1.1 ± 0.01a 0.41 ± 0.02a

Duck 19.67 ± 0.25b 3.411 ± 0.06b 1.17 ± 0.01b 0.4 ± 0.01a

Pork 21.09 ± 0.84c 3.605 ± 0.1c 0.98 ± 0.01c 0.37 ± 0.01b

Beef 23.03 ± 0.52d 4.49 ± 0.11d 1.16 ± 0.02b 0.8 ± 0.01c

Note: Results are expressed as mean values ± standard deviation, n = 10. Values in the same 
column with different superscripts were significantly different (p < .05).

TA B L E  1   Chemical analysis results of 
the raw meats used

F I G U R E  1   The cumulative contribution rates (CCR) of the principal components (PCs) of PCA results for different recognition targets
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Fisher LDA and ELM were used for modeling to distinguish be-
tween raw and adulterated meats. In this work, one- third of the 
samples were randomly selected as test samples, with the remaining 
samples as the training set for modeling. The sigmoid function as 
shown in Eq. 3 was utilized as the activation function of the hidden 
layers during ELM modeling.

According to ELM the theory, the number of hidden neurons has 
a significant impact on ELM performance. As a result, in order to 
achieve the best results, the number of hidden neurons was opti-
mized by the prediction set's maximum recognition rate.

Figure 2 shows the scatter plots of the top two discriminant 
function (DF) scores of the E- tongue data for various recognition 
targets. Figure 2 (B), (C), and (D) show obvious sample differentia-
tion for the purpose of identifying raw beef, beef- meats mixtures, 
and raw meats, where meat refers to chicken, duck, and pork indi-
vidually. Fisher LDA results, on the other hand, were unsatisfactory 
for identifying raw meats (A), beef- meats mixtures (E), and all meat 
groups (F).

ELM was used to recognize raw meats, beef- meats mixtures, and 
all meat groups. The results show that the optional number of hid-
den neurons for recognition of raw meats, beef- meat mixtures, and 
all types of meats, was 16, 49, and 43, respectively. The recognition 
results of the test sets of the ELM models are shown in Figure 3. 
Table 2 shows the recognition rates of the Fisher LDA and ELM mod-
els developed for identifying raw meats and mixed meats.

The results of the recognition models built for the identification 
of the four raw meats reveal that the taste sensors array utilized was 
suitable for measuring the difference between the water- soluble 
substances extracted from the raw meats. This was mainly due to 
differences in the concentrations of the electrochemical compounds 

released from one meat to the next and/or differences in the elec-
trochemical compounds released from each meat product, as 
shown in Table 1. This conclusion is based on the findings of Haddi 
et al. (2015) who studied the voltammograms of metal electrodes 
immersed in meats with species difference and quality discrepancy. 
Furthermore, the E- tongue system's operating principle is a mea-
surement of the current difference between the sensor and the 
reference electrode (Ag/AgCl). The interactions between chemicals 
in the analyzed sample and the sensor affect the taste sensor's cur-
rent. Because of the current of the reference electrode is constant 
regardless of the sample type, the current difference measured is 
linked to the variation of the sensor's current, which is represen-
tative of molecules present in the analyzed sample. As a result, the 
voltammetric E- tongue used in this study could be used to detect 
water- soluble components in meats.

According to the recognition model results (Table 2), ELM models 
performed better than Fisher LDA models in the processing of E- 
tongue outcomes for identification of raw meats and the adulterated 
beef. This is primarily due to the fact that relationships between the 
data matrices were more complex than linear as a result of the com-
plexity of the test samples and the basic principles of the taste sen-
sors, which are all partially and cross- sensitive. ELM has a significant 
advantage over linear discriminant analysis algorithms for processing 
nonlinear problems. It indicates that the effect of prediction in the 
application of E- tongue data analysis from nonlinear multivariate al-
gorithms is better than the effect of prediction from linear multivar-
iate algorithms due to the deep learning algorithm's superior ability 
of self- learning and self- adjusting.

3.3 | Prediction of the adulteration levels

In this section, PLS and ELM were used in comparison with pre-
dict the adulteration levels of beef- meat mixtures. One- third of 

(3)S(x) =
1

1 + e− x

F I G U R E  2   The scatter plots of the top two discriminant function (DF) scores of the E- tongue data for various recognition targets
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the samples were randomly selected as test samples, with the 
remaining samples serving as the training set for modeling. PLS 
components were optimized by cross- validation in model calibra-
tion. The lowest RMSE value corresponds to the optimal number 
of PLS components. The results show that using eleven, four, 
and four latent variables for predicting the adulteration levels of 
beef- chicken, beef- duck, and beef- pork, respectively, the corre-
sponding lowest RMSE of 7.8%, 5.2%, and 7.6% could be achieved. 
Difference of the optimal number of PLS components between 
the beef- chicken and beef- duck or beef- pork caused by the dif-
ferences of chemical components in the binary mixture of meat 
samples (see Table 1). Water- soluble proteins and vitamins, min-
eral salts, aliphatic acids, etc. can be easily dissolved in the distilled 
water. In terms of water- soluble proteins merely, differences in 
charge, content, and low molecular weight protein types from four 
different species of meats (beef, chicken, duck, and pork) has been 
reported (Zhao et al., 2015). The interactions between water- 
soluble compounds of the meats present in the analyzed sample 
and the metal electrodes affect the current of the taste sensors to 
output difference signals.

The sigmoid function as shown in Eq. (4) was utilized as the acti-
vation function of the hidden layers during ELM modeling. The num-
ber of hidden neurons was determined by minimizing the prediction 
set's RMSE. The results show that while the number of hidden neu-
rons was 156, 124, and 248, for prediction of the adulteration levels 

of beef- chicken, beef- duck, and beef- pork, respectively, the optimal 
models could be obtained. The RMSE and correlation coefficients 
in the prediction set of the PLS and ELM models for predicting the 
adulteration levels of the beef- meat mixtures are shown in Figure 4. 
It can be seen from figure that ELM models out performed PLS mod-
els in predicting adulteration levels. This is primarily due to its excel-
lent self- learning and self- adjusting performance when dealing with 
the nonlinear issues.

4  | CONCLUSIONS

The purpose of this study was to investigate the potential of taste 
sensors coupled with chemometrics for rapid determination of beef 
adulteration. To detect the soluble components in the meat samples 
studied, an E- tongue setup based on multifrequency large- amplitude 
pulse voltammetry was employed. The results show that superior 
recognition models based on ELM were obtained, as the recognition 
rates for identification of raw meats and adulterated meats were all 
over 90%; ELM models predicted adulteration levels of beef- meat 
mixtures more precisely than PLS models, with root mean squares 
errors of less than 0.4 percent and coefficients of variance greater 
than 0.9. All of the findings indicate that taste sensors combined 
with ELM could be useful in the rapid detection of beef adulterated 
with other meats.

F I G U R E  3   Results of the ELM models for recognition of the raw meats, beef- meat mixtures, and all types of the meats, respectively

Labels Models Training set (%) Test set (%)

Beef; chicken; duck; pork Fisher LDA 84.38 (27/32) 66.67 (8/16)

ELM 93.75 (30/32) 93.75 (15/16)

Beef; beef- chicken mixtures; 
chicken

Fisher LDA 96.43 (54/56) 96.43 (27/28)

ELM 100 (56/56) 96.43 (27/28)

Beef; beef- duck mixtures; duck Fisher LDA 100 (56/56) 92.86 (26/28)

ELM 100 (56/56) 100 (28/28)

Beef; beef- pork mixtures; pork Fisher LDA 89.29 (50/56) 82.14 (23/28)

ELM 100 (56/56) 96.43 (27/28)

Beef- chicken; beef- duck; 
beef- pork

Fisher LDA 78.33 (94/120) 65.00 (39/60)

ELM 95.83 (115/120) 91.67 (55/60)

All types of the meats Fisher LDA 70.40 (107/152) 69.74 (53/76)

ELM 92.11 (140/152) 90.79 (69/76)

Note: The significance of bold values mean the superior results.

TA B L E  2   Recognition rates in the 
training and test sets of the Fisher LDA 
and ELM models built
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