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Abstract

Environmental stressors impact marine larval growth rates, quality and sizes. Larvae of the

Antarctic bivalve, Laternula elliptica, were raised to the D-larvae stage under temperature

and pH conditions representing ambient and end of century projections (-1.6˚C to +0.4˚C

and pH 7.98 to 7.65). Previous observations using light microscopy suggested pH had no

influence on larval abnormalities in this species. Detailed analysis of the shell using SEM

showed that reduced pH is in fact a major stressor during development for this species, pro-

ducing D-larvae with abnormal shapes, deformed shell edges and irregular hinges, cracked

shell surfaces and even uncalcified larvae. Additionally, reduced pH increased pitting and

cracking on shell surfaces. Thus, apparently normal larvae may be compromised at the

ultrastructural level and these larvae would be in poor condition at settlement, reducing juve-

nile recruitment and overall survival. Elevated temperatures increased prodissoconch II

sizes. However, the overall impacts on larval shell quality and integrity with concurrent

ocean acidification would likely overshadow any beneficial results from warmer tempera-

tures, limiting populations of this prevalent Antarctic species.

Introduction

Human activities have resulted in a substantial increase in greenhouse gas emissions with

atmospheric CO2 concentrations increasing by 40% to over 400 ppmv since the industrial rev-

olution, and these are projected to reach 450 ppmv by 2100 [1,2]. Increased greenhouse gases

raise surface temperatures, and subsequently lead to warmer oceans due to the uptake of atmo-

spheric energy [1]. Increased partial pressure of CO2 (pCO2) can further impact marine envi-

ronments through ocean acidification (OA) [3]. Oceanic pH has declined by 0.1 units since

measurements began, with further reductions of over 0.3 units projected for the end of the cen-

tury [1].

Ocean acidification may directly impact calcifiers due to reduced saturation states (Ωs)

of calcium carbonate in seawater [4]. The Ω is dependent on calcium and carbonate
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concentrations, and their relative solubilities (K’sp) [4]. When undersaturation is reached (Ω<

1), dissolution of calcium carbonate occurs. Ω varies due to differing K’sp among polymorphs

of calcium carbonate [4]. Impacts of OA are particularly pressing in polar regions due to

increased calcium carbonate solubility in cold water [4]. In these regions, the relatively soluble

polymorph aragonite become undersaturated by 2050 [5], and even earlier in winter months

in the Southern Ocean [6].

Increased pCO2 may also have metabolic impacts due to cellular acidosis or hypercapnia

[7,8]. Invertebrates can respond to reduced pH by actively regulating their internal acid-base

conditions, which they do by metabolic consumption or active transport of protons. However,

these are likely to be short term solutions [7], as there would be an increased energetic cost to

this process [9]. Bivalves are particularly sensitive to OA due to their low capacity to regulate

the acid-base balance of their haemolymph, especially at vulnerable early stages [10]. Alterna-

tively, internal acidosis can be buffered by bicarbonate, which is supplied through the dissolu-

tion of skeletal structures [7,11], resulting in reduced shell growth rates and integrity. Elevated

temperatures can also affect rates of metabolism and development [12,13], survival and larval

sizes [14,15]. Exposure to other stressors (including warming) may exacerbate or mitigate the

effects of OA [8,14,16].

In many marine species, the first calcification that occurs during larval development utilises

highly soluble amorphous calcium carbonate (ACC), which converts to aragonite over time

[17], and this may be why early stages are most vulnerable to OA [18]. In bivalves, larval calci-

fication begins at the trochophore stage when specialised ectodermal cells initiate shell forma-

tion [19]. Prodissoconch I (PI), the first larval shell, is complete when the new shell meets at

the margins, completely enclosing the body and forming a straight-hinged D-shape. Larval

shell deposition then continues from the shell margins in conspicuous growth bands, termi-

nating at metamorphosis [19,20]. This part of the shell is termed Prodissoconch II (PII, Fig 1).

Therefore, PI correlates to the size of the larvae at competency, while PII corresponds to shell

growth and the rate of calcification between PI and metamorphosis [21].

Fig 1. SEM image (x370) of the shell of a L. elliptica D-shape larva. Showing prodissoconch I (PI), the

boundary (B) between PI and prodissoconch II (PII) and the narrow band of PII. H and L indicate

measurements of shell height and length, respectively, of PI. Scale bar as indicated.

https://doi.org/10.1371/journal.pone.0175706.g001

Climate change impacts on larval shell development

PLOS ONE | https://doi.org/10.1371/journal.pone.0175706 April 19, 2017 2 / 13

https://doi.org/10.1371/journal.pone.0175706.g001
https://doi.org/10.1371/journal.pone.0175706


The sizes of marine larvae, including bivalves, can be reduced in response to ocean acidifi-

cation (e.g. [22,23,24]). However, reduced larval sizes often coincide with developmental

delays, which suggests they are either a symptom of increased energetic costs associated with

development or are due to reduced calcification (see [25,26]). Examinations of shell structures

using scanning electron microscopy (SEM) have revealed abnormal development of hinge and

valve structures [27], abnormal calcification [28], reduced shell integrity [25] and shell dissolu-

tion [28]. Deformities in shell hinges and valve edges may significantly reduce larval survival,

while reduced shell integrity could increase susceptibility to injuries [25,27,29]. Increases in

such abnormality rates are frequently observed in the SEM under ocean acidification, and it is

likely that they are underestimated in studies that examine morphology using lower resolution

techniques (e.g. light microscopy) [30].

In adult Laternula elliptica, an infaunal Antarctic bivalve with a shell comprised of arago-

nite, exposure of adults to increased temperatures limits metabolic and energetically demand-

ing activities such as reburying, with prolonged exposures resulting in mortality [31,32].

Under reduced pH, adults increase oxygen consumption, protein and chitin synthase gene

expression, with no impacts on mortality [33], and empty valves rapidly dissolve in acidified

seawater [34]. The larvae are large and are protected by a thick egg capsule during develop-

ment [35]. In a study of these larvae using light microscopy, increased temperatures resulted

in faster development, and reduced occurrences of abnormalities. In the same study, reduced

pH slowed development, particularly at elevated temperature, with no effect on abnormality

rates [30]. However, the direct impacts of reduced pH and/or elevated temperature on shell

growth and integrity in live adults or larvae are unknown.

The impacts of future climate change on shell formation and integrity in L. elliptica was

studied using SEM. Shell size and quality was assessed in larvae raised under ecologically rele-

vant scenarios of elevated temperature and reduced pH. Additionally, frequencies of abnor-

malities were compared to previous measurements that were determined by light microscopy.

Materials and methods

Collection

In November 2012, 32 adult Laternula elliptica were collected from the intake jetty at

McMurdo Station (77˚51.093’ S 166˚39.931’ E), Ross Sea, Antarctica. They were transported

to Wellington, New Zealand where they were held in free flowing filtered (0.1μm) seawater at

-1.6˚C and pH 7.98 (ambient conditions at the time of collection) until March 2013, when they

were spawned to provide larvae for this experiment (and [30]). They were fed a liquid algal

mix (Shellfish Diet 1800, Reed Aquaculture, USA), three times per week. Permission to con-

duct field sampling in Antarctica was obtained from New Zealand Ministry of Primary

Industries.

Experimental setup

Eggs were fertilised and the larvae raised under eight different temperature and pH treatments

following methods detailed in [30], with three replicates per treatment. The larvae are lecitho-

trophic and were not fed during the course of the experiment. In addition to a temperature

and pH control (-1.6˚C and 7.98, respectively), elevated temperatures of -0.5 and 0.4˚C were

chosen to reflect end of century projections for the Ross Sea [1]. Similarly, two reduced pH

treatments, 7.80 and 7.65, were chosen [1,5]. Logistical constraints allowed for a maximum of

eight treatments, resulting in the temperature/pH combination 0.4˚C and 7.80 not being used.

Temperature and pH manipulations were performed in eight separate header tanks, supply-

ing insulated 4 L treatment tanks through insulated plastic tubing. pH was controlled with
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Omega pH controllers (Model PHCN-37-AI-230-03) using diffused food grade CO2. Temper-

ature was measured using precision PT100 temperature probes, and modified via Omega

CN740 controllers 2000 W connected to submersible heater elements. An automated system

(see [36]) monitored temperature and pH (total hydrogen scale) in each header tank eight

times per day using LabView software. This automated system measured pH spectrophotomet-

rically and corrected aberrations from target pHs [36]. Flow was maintained at 200 ml min-1.

On days 6, 16 and 45, water was sampled from each of the eight header tanks and preserved

with HgCl2 for analysis of dissolved inorganic carbon (DIC) and alkalinity (AT) (Table 1). Sat-

uration states of aragonite (ΩAr) and calcite (ΩCa) and partial pressure of CO2 (pCO2) at exper-

imental temperatures and salinity were calculated from the average measured sample pH

(n = 360 per treatment) and AT (n = 3 per treatment) using refitted equilibrium constants

[37,38] using analytical methods detailed in McGraw et al. (2010) (see Table 1).

Microscopy

Larvae were raised to the D-larvae stage, the first fully shelled larva in bivalves, as described in

[30]. Ninety-six hours after the point at which approximately 50% of the normally developing

larvae in each treatment had reached the D-larvae stage (i.e., completed PI development); sam-

ples of approximately 200 encapsulated larvae were removed from each replicate and preserved

in 90% ethanol.

Individual larvae from each treatment replicate were examined in a scanning electron

microscope, (SEM: JEOL, JSM-6610LA, Japan) to determine sizes and shell morphology. Lar-

vae were rinsed with deionised water to remove as much of the ethanol as possible. Larvae

were careful excised from each egg capsule using a scalpel blade under a dissecting microscope.

Isolated larvae were then placed in a drop of deionised water on carbon tape on aluminium

stubs (~65 larvae per stub, with separate stubs for each treatment replicate, 24 stubs in total).

The samples were air dried, and excess organic material was removed by plasma ashing (JEOL,

EC-52000IC) for 30 min. Samples were stored in a vacuum desiccator until analysis, then

coated with platinum (10 nm) and imaged.

Under SEM, all of the D-larvae on each stub were counted and scored for instances of

severe damage or malformation. Malformation counts included larvae that deviated from the

expected D-shape and also included larvae that were uncalcified. Also from each stub, 10 intact

larvae with a normal D-shape were then randomly selected for analysis of shell size and quality

Table 1. Seawater conditions for all experimental treatments.

Temp (˚C) pH AT

(μmol kg-1)

DIC

(μmol kg-1)

pCO2 (μatm) ΩAr ΩCa

-1.6 ± 0.01 7.97 ± 0.001 2263.3 ± 8.2 2183.8 ± 8.1 458.4 ± 1.7 1.09 ± 0.01 1.74 ± 0.01

7.79 ± 0.001 2260.3 ± 8.9 2233.0 ± 4.0 714.4 ± 2.8 0.74 ± 0.01 1.18 ± 0.01

7.63 ± 0.001 2266.0 ± 5.8 2271.2 ± 9.4 1045.1 ± 2.7 0.52 ± 0.01 0.84 ± 0.01

-0.5 ± 0.01 7.99 ± 0.002 2265.0 ± 8.3 2174.4 ± 3.8 460.4 ± 1.7 1.14 ± 0.01 1.82 ± 0.01

7.80 ± 0.001 2264.8 ± 6.2 2254.0 ± 22.4 703.6 ± 1.9 0.79 ± 0.01 1.26 ± 0.01

7.64 ± 0.001 2264.0 ± 7.2 2270.8 ± 15.0 1020.7 ± 3.3 0.56 ± 0.01 0.90 ± 0.01

0.4 ± 0.01 7.99 ± 0.001 2260.0 ± 8.4 2173.8 ± 5.8 462.2 ± 1.7 1.18 ± 0.01 1.88 ± 0.01

7.63 ± 0.001 2260.5 ± 9.2 2260.0 ± 4.2 1052.3 ± 4.3 0.57 ± 0.01 0.91 ± 0.01

Average temperature (˚C; n = 360), pH (measured on the total hydrogen scale; n = 360), total alkalinity (AT; n = 3) and dissolved inorganic carbon (DIC,

n = 3); partial pressure of CO2 (pCO2), average ΩAr and ΩCa (n = 3) are calculated from AT and pH. Values presented are mean ± standard error. Salinity

was 34.2 psu.

https://doi.org/10.1371/journal.pone.0175706.t001
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of shell formation (magnification x350-500). The PI length (anterior to posterior) and height

(hinge to ventral edge, see Fig 1) were measured for each larva to assess body size at the onset

of calcification. PII length measurements are typically taken as the length across the larval

body, from edge to edge. This includes the length of PI and the new growth on PII. However,

as variations in PI size would influence total PII length, we measured growth of PII from the

terminal edge of PI to the new shell margin. This measurement was made at three standard

points along the shell edge, and these values averaged to attain a single PII length for each indi-

vidual and an estimate of shell growth.

Images were imported into ImageJ (version 1.47t) and each individual was further assessed

for evidence of damage and malformation of the shell surface. On each image, the total pixel

areas of shell malformation, cracking or pitting were determined and expressed as a percentage

of the total shell area. Values of the 10 individuals from a particular replicate were averaged to

obtain one value for each parameter for each replicate prior to statistical analysis.

Statistical analysis

All statistical analysis was performed using SPSS, version 22. Normality of the data was verified

using Shapiro-Wilk’s test and equality of variance was confirmed using Levene’s test. Differ-

ences in numbers of larvae with a normal D-shape, larval body size (at PI) and shell growth

(PII), as well as shell quality were related to pH and temperature by fitting the data to a general

linear model using pH and temperature as fixed factors, with a pH x temperature interaction

term included. If the general linear model indicated overall individual statistical significance

(p< 0.05) of either temperature or pH, a post-hoc Bonferroni multiple comparison test was

performed to determine effects of pH averaged over temperature and temperature averaged

over pH, on larval shell sizes and quality. Where interactive effects approached significance, a

one-way ANOVA was performed with treatment as a single factor, in order to determine dif-

ferences between each treatment.

Results

Reduced pH significantly increased the proportion of larvae that were malformed or were

unshelled. Development and calcification of the PI and PII shell structures were observed in all

treatments, despite aragonite being undersaturated at both reduced pH levels (Table 1). How-

ever, temperature and pH both had significant impacts on shell development in normal D-

shaped larvae.

Larval quality

The frequency of abnormal D-shaped larvae in each treatment, as well as shell quality, were

both influenced by reduced pH (Figs 2 and 3, Table 2). Over 50% of larvae raised at pH 7.80

and 7.65 were malformed/unshelled compared to only 25–35% of those raised at ambient pH

(Fig 2A). Temperature did not affect the percentage of normally developed D-shaped larvae

(Table 2).

Damage to shell surfaces appeared as heavy pitting and cracking (Fig 3B–3D, cf. with Fig

3A, an example of a normally developing shell). Other forms of aberration included malforma-

tion of shell hinges (Fig 3B, 3D and 3E) and shell edges (Fig 3B–3E). Abnormally shaped

shelled larvae were observed (Fig 3E and 3F), as were unshelled larvae (Fig 3F).

In the ten apparently normally developed D-larvae selected for closer examination, SEM

revealed pitting and cracking on 3.2 to 11.6% of the total shell surface, the magnitude of

which was influenced by reduced pH. Shell damage was significantly greater at pH 7.65 than at

ambient pH (Table 2, Fig 2B). At the intermediate pH (7.80) shell damage was significantly

Climate change impacts on larval shell development
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different, and intermediate between, damage at ambient and 7.65 pH. Temperature had no sig-

nificant impact on shell damage (Table 2).

Shell measurements

Larval shell heights at PI ranged between 173 and 180 μm, and lengths from 189 to 194 μm

(Fig 4). Reduced pH and elevated temperatures had no significant impact on height or length

of PI, nor therefore, on larval size at the onset of calcification (Table 2, Fig 4A and 4B).

During PII growth, larvae added 7.6–11.5 μm of new shell. This growth was significantly

higher at both elevated temperatures relative to ambient, but was not significantly influenced

by pH (Table 2, Fig 4C). PII growth was greatest in larvae raised at pH 7.65 and 0.4˚C and low-

est in those at ambient temperature and reduced pH (-1.6˚C and 7.65, Fig 4C). Total shell

lengths (PI+PII) ranged between 205 and 215μm, with the largest total lengths observed in lar-

vae raised at pH 7.65 and 0.4˚C.

Discussion

Temperature and pH affected shell development and quality in L. elliptica larvae. While larval

body size (measured at PI, when larvae first become fully shelled and competent) was not

impacted by either stressor, shell growth (measured as PII-PI) was greater at elevated tempera-

tures. Reduced pH negatively impacted shell quality, but did not impact growth.

In a previous study [30], abnormality rates in these larvae were assessed using light micros-

copy, and we concluded that abnormality rates were not impacted by pH. Larvae were appar-

ently robust to OA, and temperature had a much greater influence on larval development in

this species [30]. Here, our initial SEM evaluation of larvae with a normal D-shape indicated

higher percentages of abnormal development in ambient pH cf. reduced pH at all temperatures,

Fig 2. Treatment impacts on larval quality. (a) Percentage of malformed D-shaped larvae in each treatment and (b) shell quality assessment of normally

shaped D-larvae from each treatment, where shell damage is equal to the percentage of the shell surface that is pitted, cracked or malformed. The letters

above the columns indicate significance at p < 0.05. The temperature/pH combination of 0.4˚C/7.80 was not used, n = 3. Error bars are standard error.

https://doi.org/10.1371/journal.pone.0175706.g002
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Fig 3. SEM images of D-larvae from various experimental treatments. (a) normally developed D-larva from the control treatment (pH 7.98 and -1.6˚C,

x370), and (b-e) damaged and/or malformed larvae from reduced pH (7.65) treatments at various temperatures (d: -1.6˚C, x430, b: -0.5˚C, x450, c and e:

0.4˚C, x400), (f) extremely malformed (left) and uncalcified (right) larvae from pH 7.65, -1.6˚C (x450). PI: prodissoconch I; PII: prodissoconch II. All scale bars

are 50 μm.

https://doi.org/10.1371/journal.pone.0175706.g003
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as well as uncalcified larvae. Furthermore, of the apparently normally developed D-shaped lar-

vae, the higher SEM magnification showed a high percentage of those from the reduced pH

treatments in fact had cracked shells and pitting (erosion) of the shell surface. Cracking and

pitting was observed on all normal D-shaped larvae raised at pH 7.80 and 7.65, potentially indi-

cating dissolution or weakening of the shell due to the undersaturation of aragonite in both

reduced pH treatments. These results suggest that pH is in fact a major stressor in development

for this species, with larval shells experiencing significant losses in quality, which could impair

function or success.

These observations underscore the importance of methodology in determining the impacts

of OA on larval development. Many investigations may inadvertently underestimate the dam-

aging effects of pH exposure if they focus only on short term larval survival or growth, which

could lead to incorrect assumptions about stress responses. SEM allows a more rigorous assess-

ment, revealing abnormalities not immediately apparent under light microscopy (see [39]),

such as dissolution and damage to fine structures (see [40,41]). SEM may also reveal changes

to the crystal structure and formation indicative of changes in the calcification process (see

[9]).

Abnormalities in shell morphology could significantly influence survival (see [42,43]).

Reduced shell integrity could drastically impair function in larvae (see [27,29]), and subse-

quently reduce settlement and recruitment success. Additionally, larvae may have experienced

trade-offs in muscle and tissue development in order to maintain calcification, resulting in a

weaker animal [44]. Reduced muscle mass or altered shell shapes may increase the energetic

cost of burying in L. elliptica juveniles. It may also expose soft tissues to damage, impacting

successful settlement with negative flow-on effects to the population.

Elevated temperatures had no significant effect on shell quality, although there were indica-

tions that elevated temperature may relieve some of the negative impacts of reduced pH. For

example, at pH 7.65, shell damage was reduced by 34% at the higher temperatures (Fig 2B).

However, under these concurrent elevated temperature/reduced pH scenarios, shell damage

was still 120% greater than in control conditions. Under projected warming and acidification,

larvae will reach competency faster [30] and may experience faster shell growth, but weakness

in the calcified structures could reduce recruitment and significantly increase post-metamor-

phic mortalities, likely overcoming any potential benefits of larger juveniles.

Shell development occurred in all reduced pH treatments despite undersaturation of arago-

nite, indicating calcification was not limited by saturation states. Calcification has been

reported in undersaturated conditions (e.g. [45,46]), although the extent and quality of the

Table 2. Summary table of 2-way ANOVA.

pH Temperature Temp x pH

F2, 16 p F2, 16 p F3, 16 p

Larval Quality

Malformed/uncalcified 4.632 0.027 0.481 0.627 0.098 0.960

Shell Quality 157.789 < 0.001 14.061 0.161 23.517 0.118

Shell Measurements

PI Height 18.966 0.617 48.191 0.310 89.711 0.238

PI Length 44.297 0.450 37.473 0.506 38.678 0.694

PII Growth 0.027 0.989 14.218 0.016 11.851 0.060

Summary table of 2-way ANOVA for factors pH and temperature on the proportion of larvae that were malformed/uncalcified, larval shell quality and shell

measurements of D-larvae. Significant results in bold.

https://doi.org/10.1371/journal.pone.0175706.t002

Climate change impacts on larval shell development

PLOS ONE | https://doi.org/10.1371/journal.pone.0175706 April 19, 2017 8 / 13

https://doi.org/10.1371/journal.pone.0175706.t002
https://doi.org/10.1371/journal.pone.0175706


calcium carbonate can be reduced [39,47]. Shell growth did occur in the L. elliptica larvae at

reduced pH; however, the quality of the calcium carbonate structure was low. While undersa-

turation would promote dissolution of established calcified structures, larvae would have still

been able to calcify using bicarbonate from seawater or made through the conversion of respi-

ratory CO2 [48,49]. Nevertheless, calcification is still dependent on Ω at the site of calcification,

and is maintained through the active pumping of ions in and out of the calcifying fluid [50].

Undersaturation may therefore increase the metabolic costs of calcification [11,51,52]. Addi-

tionally, established calcified structures would be at risk of dissolution.

Larvae in this study were sampled at different ages, but were at equivalent life history stages

(96 hours post D-larvae, see Methods), and had spent similar times in PII development. The

Fig 4. Effects of reduced pH and elevated temperatures on shell sizes. a) Shell height and b) shell length on prodissoconch I (PI) and c) on growth of

prodissoconch II. Letters indicate significance as in Fig 2. The temperature/pH combination of 0.4˚C/7.80 was not used. NS = no significant differences

between treatments, n = 3. Error bars are standard error.

https://doi.org/10.1371/journal.pone.0175706.g004
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measurements of PII therefore are a reflection of the rate of calcification. Under both elevated

temperatures tested, PII growth was greater than that of control temperatures, implying the

larvae may have had higher rates of calcification. Larger larvae may reduce vulnerability in set-

tled juveniles [21,53,54], indicating that recruitment in L. elliptica may be improved under

future warming. The increased growth in larvae in the highest stressed treatments may due to

a hormetic response in which combined stressors crossed a tolerance threshold and activated

repair mechanisms (e.g. [55,56]). However, despite greater PII growth, these larvae still had

significantly high damage and malformation of shell surfaces.

Under future ocean conditions, the overall impacts on L. elliptica larval shell quality and

integrity due to reduced pH would likely overshadow any beneficial results of larger juveniles

or faster growth at elevated temperature. Reduced survival during settlement and recruitment

would limit populations of this prevalent Antarctic species.
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