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A statistical model of protein families, called profile con-
ditional random fields (CRFs), is proposed. This model
may be regarded as an integration of the profile hidden
Markov model (HMM) and the Finkelstein-Reva (FR)
theory of protein folding. While the model structure of
the profile CRF is almost identical to the profile HMM,
it can incorporate arbitrary correlations in the sequences
to be aligned to the model. In addition, like in the FR
theory, the profile CRF can incorporate long-range pair-
wise interactions between model states via mean-field-
like approximations. We give the detailed formulation of
the model, self-consistent approximations for treating
long-range interactions, and algorithms for computing
partition functions and marginal probabilities. We also
outline the methods for the global optimization of model
parameters as well as a Bayesian framework for param-
eter learning and selection of optimal alignments.
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Protein sequence alignment is one of the most fundamen-

tal techniques in biological research. Since the early meth-

ods have been proposed1–3, techniques for protein sequence

alignment have made a huge progress toward the detection

of very weak homology4,5. Today, most advanced methods

incorporate some kind of information obtained from multi-

ple sequence alignments in terms of sequence profiles6 or

position-specific scoring matrices (PSSM). In sequence pro-

files, such as used in PSI-BLAST7, scores for amino acid

substitutions are made to be position-specific so that subtle

evolutionary signals can be embedded in each site8. This in

turn makes homology search more sensitive. Profile hidden

Markov models (HMM)4,9 further elaborate the sequence

profile methods so that deletions and insertions are also

made position-specific. Although powerful, these methods

do have some limitations. The profile methods (including

profile HMMs) assume that each position in a profile is

independent of other positions which makes it difficult to

incorporate long-range correlation among different sites.

The importance of long-range correlations is evident when

one takes into account the tertiary structure of a protein in

which residues far apart along the sequence are in contact to

define the specific native structure. In practice, one can sup-

plement a plain sequence profile with some structural infor-

mation as in three-dimensional (3D) profile10 or threading11,

but such combined approaches remain inherently ad hoc.

In case of profile HMMs, it is extremely difficult, if not

impossible, to employ such an approach since the inclusion

of site-site correlations, both short-range and long-range,

may break the probabilistic framework of the model.

In order to incorporate long-range correlations into an

HMM-like model in a well-defined manner, we present in

this paper the theoretical formulation of a model based on

conditional random fields (CRF)12. Various CRF-based

models have been successfully applied to many problems in

biological domains including pairwise protein sequence

alignment13, gene prediction14, and protein conformation

sampling15, to name a few. CRFs share many of the advan-

tages of HMMs while being able to handle site-site correla-

tions. In the context of profile CRFs, we need to distinguish

two types of site-site correlations. One is the correlations

within the sequence which is to be aligned to a CRF model;
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the other is those among the sites within the model. The pro-

file CRF model proposed in this paper has no limitations for

incorporating the both types of correlations, although some

approximations are necessary for the latter type in practical

applications. Without the model sites correlations, the pro-

file CRF model may be regarded as a generalization of the

profile HMM. Unlike profile HMMs, profile CRFs can

incorporate many kinds features of the sequence in terms of

feature functions. With the model sites correlations, the pro-

file CRF model may be regarded as a generalization of the

self-consistent molecular field theory of Finkelstein and

Reva16–18, which, in turn, is a generalization of the Ising

model in one-dimension (1D).

In this paper, we first present the model structure of the

profile CRF, provide some examples of possible feature

functions, and derive some approximations for treating

long-range correlations between model sites. Next, we

present algorithms for computing partition functions, mar-

ginal probabilities, and optimal alignments, followed by

methods for parameter learning based on multiple sequence

alignments. Since our purpose here is to present the formu-

lation and algorithms, actual implementation of the method

and experimentation thereof are left for future studies.

Nevertheless, we believe that the method presented here

should serve as a firm basis for the analysis of protein

sequences and structures.

Theory

Profile conditional random field model

We model a protein family (or a multiple sequence align-

ment) in an analogous manner as profile HMMs4,9 (Fig. 1).

A profile CRF model M is formally defined as a tuple of

four components:

M = (M, S, F, θ) (1)

where M is the length of the model M,S = {Mk, Ik, Dk} is a

set of states indexed by model sites k = 0, 1, ..., M, M + 1.

For each site k (1 ≤ k ≤ M), there are a matching state Mk, an

insertion state Ik, and a deletion state Dk. For k = 0, there are

only one matching state M0 and one insertion state I0; for k =
M + 1, there is only one matching state MM+1. The matching

states at the termini M0 and MM+1 are also called start state

and end state, respectively, for the reason that will be appar-

ent in the following. The model sites with k = 1, ..., M may

be regarded as the core sites of the protein family. The third

component, F, is a set of feature functions which are associ-

ated with model states (S). Each feature function maps an

amino acid sequence and its site indexes to a real number

depending on model sites. The last component, θ, is a set of

parameters or external fields, each of which is associated

with a feature function in F. Together with feature func-

tions, the external fields are used for evaluating alignments

between the model and amino acid sequences. The details of

these terms will be clarified below. In a profile CRF model,

the feature functions must be given a priori and the values

of external fields are learned from a multiple sequence

alignment (MSA).

The objective is to align a protein sequence x = x1 x2 ... xL

(called target sequence) to the model. An alignment between

a target sequence x and a CRF model is an ordered sequence

of pairs of target sites and model states (called site-state

pairs in the following):

A = {(0, M0), (1, y1), ..., (i, yi), ..., (L + 1, MM+1)} (2)

where yi = Sk {Mk, Ik, Dk}k=0, ..., M+1. The pair (i, yi) reads as

“the target site i is matched to the model state yi.” It is

assumed that if i ≤ j and yi = Sk and yj = Sl, then k ≤ l.

An alignment always starts at the start state and ends at the

end state so that the pairs (0, M0) and (L + 1, MM+1) are fixed

in any alignments. In an alignment, not all transitions from

one site-state pair to another are possible. Allowed transi-

tions are listed in Table 1 and depicted in Fig. 1 by arrows.

By convention, the match to a delete state (i, Dk) means that

Figure 1 The model structure of a profile conditional random field (CRF). Squares, diamonds, and circles are matching, insertion, and deletion
states, respectively. The start and end states are labeled with “S” and “E” in the squares.
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the deletion resides between the i-th and (i + 1)-th positions

of the sequence. For example, an alignment of an 8-residue

target sequence to an M = 7 profile CRF model might be

given as

A = (x, y)

= {(0, M0), (1, I0), (2, M1), (3, M2), (3, D3), (4, M4),

(5, M5), (6, I5), (7, I5), (8, M6), (8, D7), (9, M8)}.

(3)

As can be inferred from this example, (i, Mk) indicates that

the i-th residue matches the k-th core site of the model, (i, Ik)

indicates that there is an insertion at the i-th site in the tar-

get sequence, and (i, Dk) indicates that there is a deletion

between i-th and (i + 1)-th sites of the target sequence.

In terms of ordinary sequence alignment, the alignment in

Eq. (3) may be expressed as

where the ‘–’ signs in the upper and lower rows indicate

insertions (corresponding to Ik) and deletions (Dk) in the

model sites.

Alignments are evaluated in terms of a set of feature

functions F = { , , }. Three types of feature func-

tions are distinguished, namely, singlet feature functions

(x, i), doublet feature functions (x, i), and pairwise

feature functions uS,S′(x, i, j). The singlet feature function

(SFF) (x, i) is a real-valued function representing some

feature α of the target sequence when yi = S; the doublet fea-

ture function (DFF) (x, i) is also a real-valued function

representing some feature β when  = S and yi = S′. Here,

i – is the predecessor of i defined as

In general, α may depend on S and β may depend on

S and S′. The singlet and doublet feature functions are called

local or short-ranged since the former represents interac-

tions at one model site and the latter, interactions between

two adjacent model sites for which transitions are allowed.

The pairwise feature function (PFF) (x, i, j), representing

some feature γ, is defined for yi = S and yi = S′. While singlet

and doublet feature functions are local, pairwise feature

functions are non-local in the sense that S and S′ can be any

pair of the model states, not necessarily those for which

direct transitions are allowed.

Each of singlet, doublet or pairwise feature functions is

coupled with a parameter called an external field:  for ,

 for , and  for . That is, θ = { , , }.

The product of a feature function and its coupled external

field yields the score of the corresponding feature when a

particular target site is aligned to a model state. For exam-

ple, the product (x, i) is the score of the feature α when

the target site i is aligned to the model site S. In the formula-

tion of CRF, it is convenient to employ an analogy to statis-

tical physics. Thus, the negative total score of an alignment

is interpreted as the total energy, and the normalization fac-

tor for the conditional probability of alignments as the parti-

tion function of the target sequence.

Given an alignment between the model and the sequence,

the total energy of an alignment A = (x, y) = {(0, M0), ...,

(i, yi), ..., (L + 1, MM+1)} is defined by

E(y,x,θ) = 

− (6)

where the summation over {i} means summing along the

alignment (x,y) (there can be multiple occurrences of the

same index i due to the matching to deletion states); the

double summation for i < j is also similarly defined. The

partition function of this system is thus given by

Z(x,θ) = exp[−E(y,x,θ)/T] (7)

where the summation is over all possible alignments, and

T is the temperature (in energy unit). The conditional proba-

bility of obtaining a particular alignment A = (x,y) for a

given x is

which is also called the likelihood of the alignment in the

following. The log-likelihood is defined by

L(θ|x,y) = log P(y|x,θ)

 = −E(y,x,θ)/T − log Z(x,θ). (9)

From here on, we assume T = 1 unless otherwise stated.

The derivatives of the log-likelihood with respect to the

parameters, / , are useful both for parameter learning

and for deriving approximations. For singlet terms, they are

given as

 = (10)

where  is Kronecker’s delta and P(S|x, i) is the marginal

probability that i-th site of the target sequence is aligned to

the state S of the model, i.e., yi = S. Similarly for the doublet

terms,

Table 1 Allowed transitions of site-state pairs. i and k indicate a site
of a target sequence and a site of a CRF model, respectively

(i, M
k
) → (i + 1, M

k+1
)

(i, M
k
) → (i + 1, I

k
)

(i, M
k
) → (i, D

k+1
)

(i, I
k
) → (i + 1, M

k+1
)

(i, I
k
) → (i + 1, I

k
)

(i, I
k
) → (i, D

k+1
)

(i, D
k
) → (i + 1, M

k+1
)

(i, D
k
) → (i + 1, I

k
)

(i, D
k
) → (i, D

k+1
)

– M1 M2 M3 M4 M5 – – M6 M7 (4)
x1 x2 x3 – x4 x5 x6 x7 x8 –

i – = { i (if yi = Dk), (5)
i − 1 (if yi = Mk or Ik).
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 = 

(11)

where P(S, S′|x, i) is the marginal probability that  = S
and yi = S′. Finally for the pairwise terms,

 =

(12)

where P(S, S′|x, i, j) is the marginal probability that yi = S
and yj = S′. Either when parameters are optimal for a given

alignment or when the alignment is optimal for given param-

eters, we have /  = 0.

Feature functions

Although we are focused on the formulation of the profile

CRF model, it is instructive to provide some concrete exam-

ples for feature functions. It should be stressed, however,

that the actual selection of feature functions will require

careful experimentation to maximize the effectiveness of

the profile CRF framework.

Singlet feature functions

Singlet feature functions represent compatibility measures

between a model state and a target sequence. It may depend

on the whole target sequence as well as on single amino acid

residues. One simple SFF may be such that

(x, i) = (13)

where R is one of the 20 standard amino acid residue types.

It is implicitly assumed that this feature function is defined

only when yi = Mk. The same assumption applies throughout

the following discussion.

If the target sequence is accompanied by its PSSM, the

above SFF (Eq. 13) can be generalized as

(x, i) = PSSM(i,R) (14)

where PSSM(i,R) is the value of the PSSM for residue type

R at site i.

SFFs can also depend on multiple sites of the target

sequence. For example, let us partition amino acid residues

into either hydrophobic (1) or hydrophilic (0). Let b7(x, i)

be a binary word encoding19
 function of the 7-residue

sub-sequence xi–3 ... xi+3. Then, the SFF

(x, i) = δ0000000, (x,i) (15)

may enhance insertions at highly hydrophilic regions of the

target sequence. Similarly, the SFF

(x, i) = δ0011011, (x,i) (16)

may enhance the matching at α-helical regions since

the binary pattern 0011011 is typical in α helices. There are

27 = 128 types of binary words for 7-residue segments, and

we can incorporate all of these in a single profile CRF model.

If either predicted or observed structural information is

available for the target sequence, we may define, for exam-

ple,

(x, i) = δH, SS(i) (17)

where SS(i) indicates the secondary structure of site i.

Doublet feature functions

Doublet feature functions represent the feasibility of tran-

sitions from one site-state pair to another. One trivial exam-

ple is those that do not depend on the target sequence at all.

For example, the DFF

(x, i) = 1 (18)

may be regarded as a feature representing a gap (insertion)

opening. Similar sequence-independent DFFs can be defined

for all the allowed state transitions.

Of course, DFFs can be made to be target sequence-

dependent. Take the binary word encoding example again.

For example, the following DFF

(x, i) = δ001101, (x,i) (19)

may help to suppress deletions at α-helical regions, since

the pattern 001101 is typical in α-helices in which deletions

are less likely to occur.

Pairwise feature functions

With pairwise feature functions, it is possible to incorpo-

rate some kind of correlations between two states that are

not directly connected by transitions. Such correlations are

most easily grasped in the context of the tertiary structure of

a protein. Suppose that there is a known structure in a pro-

tein family to be modeled as a profile CRF, and that struc-

ture contains a pair of contacting residues which correspond

to the matching states Mk and Ml. We may define

(x, i, j) = (20)

where R and R′ are amino acid residue types. We can define

different PFFs for different kinds of interactions such as

hydrogen bonds, salt bridges, hydrophobic contacts, etc.

Also, sequence-dependence may be made more complex.

We can combine contacts with binary word encoding,

for example.

Approximations for pairwise interactions

If there are no pairwise terms, exact partition functions

and exact optimal alignments for profile CRF models can be

computed efficiently by dynamic programming just as in

profile HMMs. With pairwise terms present, however, the

computation of exact solutions is intractable. In order to

make computations feasible, we need to make some approx-

imations. More specifically, we will derive a Bethe approxi-

mation, which is further simplified to a mean-field approxi-

mation.

∂L θ x y,( )
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β
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∑

∂L ∂θ

sMk

R
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PSSM R( )

sIk
0000000
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sIk
0011011

b7
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H

tMk Ik,
–

tMk Dk 1+,
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b6
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contact R R′,( )

δxi R, δxj R, ′
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Observe, first, that the pairwise terms can be rearranged as

(x, i, j) =

 (x, i, j) . (21)

When the alignment is optimal, we have (θ|x, y)/  = 0
(Eq. 12), hence the following:

(x, i, j)  = (x, i, j)P(S, S′|x, i, j).

(22)

Using this relation, the pairwise terms are arranged as

(x, i, j)  = (x, i)P(S|x, i).

(23)

where (x, i) is the renormalized singlet feature function

defined by

(x, i) = (x, i, j)P(S′|S,x, i, j). (24)

The conditional marginal probability P(S′|S,x, i, j) is defined

by

Using (x, i) and introducing a coupled external field ,

let us define a tentative total energy:

(y,x,θ) =

 + .

(26)

By calculating the log-likelihood (Eq. 9) based on this

energy and its derivative with respect to  (Eq. 10),

and enforcing the optimality condition (θ|x, y)/  = 0,

we have

(x, i)  = (x, i)P(S|x, i). (27)

Substituting this relation into Eq. (23), we have

(x, i, j) = (x, i). (28)

Therefore, the pairwise energy terms can be converted into

renormalized singlet energy terms as long as the alignment

is optimal. For non-optimal alignments, we approximate the

total energy by

E(y,x,θ) ≈ (y,x,θ) (29)

with  = 1. The renormalized singlet feature function (Eq.

28) explicitly accounts for the pairwise joint probability,

and hence it may be called a Bethe or quasi-chemical

approximation. Furthermore, if we assume two alignment

sites are independent, we can decouple the joint marginal

probability as

P(S,S′|x, i, j) ≈ P(S|x, i)P(S′|x, j). (30)

This is a mean-field approximation. Substituting this into

Eqs. (25, 28), we have the following mean-field energy:

(x, i) ≈ (x, i, j)P(S′|x, j). (31)

An advantage of this approximation is that we need not to

compute the joint marginal probabilities. By using either the

Bethe (Eq. 24) or the mean-field (Eq. 31) approximations,

the energy of the alignment is expressed as

E(y,x,θ) ≈

 + .

(32)

Note that there are apparently no external field parameters

for the renormalized SFFs ( (⋅)); they are included in the

definitions (Eqs. 24, 31). Since the mean-field feature func-

tions are effectively singlet feature functions, we can apply

the standard procedure for learning and alignment, provided

that the mean-fields are known. Of course, the mean-fields

are not known in advance so that we need to obtain the par-

tition function by an iterative procedure. That is,

1. Arbitrarily set (⋅).
2. Calculate the partition function and marginal probabil-

ities based on the previously calculated (⋅).
3. Based on the partition function and marginal probabil-

ities in the previous step, update (⋅) by Eq. (24) or

Eq. (31).

4. Iterate steps 2 and 3 until convergence.

The algorithms for computing the partition function and

marginal probabilities are a subject of the next section.

Algorithms for alignment and learning

Computation of partition function, marginal probabili-

ties and optimal alignment

The partition function (Eq. 7) and marginal probabilities

can be calculated efficiently by dynamic programming (or

transfer matrix method). In this section, we assume that

pairwise terms are approximated as renormalized SFFs

(Eqs. 24, 31), and they are treated as ordinary SFFs. First

we define the transfer matrix:

Ti(S,S′) = exp[ei(S,S′)/T] (33)

where S′,S S, T is the temperature, and

ei(S,S′) = (x, i) + (x, i). (34)

The partition function (Eq. 7) is then expressed as

Z(x) = (35)

where the summation is over all possible model states of

each residue of the target sequence. In order to compute the

partition function Eq. (35), we define an auxiliary function

P(S′|S,x, i, j) =
P(S,S′|x, i, j)

. (25)
P(S|x, i)
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ũyi

γ
x i,( )

γ
∑+

i{ }
∑– μ yi– yi,

β
t yi– yi,

β
x i,( )

β
∑

ν̃S

γ

∂L ∂ν̃S

γ

ũS
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ũS

γ

∈

λS ′
α

sS ′
α

α
∑ μS S′,

β
t S S ′,

β

β
∑

Ti yi– yi,( )
i{ }
∏

y{ }
∑



BIOPHYSICS Vol. 542

Zi,j(Sk, Sl) where i, j = 0, ..., L + 1 and Sk {Mk, Ik, Dk}, Sl

{Ml, Il, Dl}. Zi, j(Sk, Sl) is the partition function of the sub-

sequence xi xi+1 ... xj where its termini i and j are fixed to the

model states Sk and Sl, respectively. These conditions are

given as

Zi, i(Sk,S) = , (36)

Zj, j(S,Sl) = . (37)

By the construction of the model, the following boundary

conditions hold in particular:

Z0,0(M0, M0) = 1, (38)

ZL+1, L+1(MM+1, MM+1) = 1. (39)

The partition function Z(x) is given as

Z(x) = Z0,L+1(M0, MM+1). (40)

Based on the boundary condition Eq. (36), the following

forward recurrence equations for Zi, j(Sk,Sl) hold for j = i, ...,

L + 1 and l = k, ..., M+ 1:

Zi, j(Sk, Sl) = Zi, j–1(Sk, Ml–1)Tj(Ml–1, Ml)

+ Zi, j–1(Sk, Il–1)Tj(Il–1, Ml) + Zi, j–1(Sk, Dl–1)Tj(Dl–1, Ml);

(41)

Zi, j(Sk, Il) = Zi, j–1(Sk, Ml)Tj(Ml, Il)

+ Zi, j–1(Sk, Il)Tj(Il, Il) + Zi, j–1(Sk, Dl)Tj(Dl, Il); (42)

Zi, j(Sk, Dl) = Zi, j(Sk, Ml–1)Tj(Ml–1, Dl)

+ Zi, j(Sk, Il–1)Tj(Il–1, Dl) + Zi, j(Sk, Dl–1)Tj(Dl–1, Dl).

(43)

It is understood that the terms involving non-existent states

and/or incompatible state transitions (e.g, Z1,1(M0, D0),

Z1,0(I0, I0), etc.) are ignored. Similarly, together with the

boundary condition Eq. (37), the backward recurrence equa-

tions are given for i = j, ..., 0 and k = l, ..., 0 as

Zi, j(Mk, Sl) = Ti+1(Mk, Mk+1)Zi+1, j(Mk+1, Sl)

+ Ti+1(Mk, Ik)Zi+1, j(Ik, Sl) + Ti(Mk, Dk+1)Zi, j(Dk+1, Sl);

(44)

Zi, j(Ik, Sl) = Ti+1(Ik, Mk+1)Zi+1, j(Mk+1, Sl)

+ Ti+1(Ik, Ik)Zi+1, j(Ik, Sl) + Ti(Ik, Dk+1)Zi, j(Dk+1, Sl);

(45)

Zi, j(Dk, Sl) = Ti+1(Dk, Mk+1)Zi+1, j(Mk+1, Sl)

+ Ti+1(Dk, Ik)Zi+1, j(Ik, Sl) + Ti(Dk, Dk+1)Zi, j(Dk+1, Sl).

(46)

For convenience, let us define the forward auxiliary func-

tion Fi(Sk) and the backward auxiliary function Bi(Sk) by

Fi(Sk) = Z0, i(M0,Sk), (47)

Bi(Sk) = Zi, L+1(Sk, MM+1). (48)

Using Fi and Bi, and Zi, j, we can calculate marginal proba-

bilities. The joint marginal probability is obtained as

In particular, when i = j and Sk= Sl, we have

Similarly, for states with allowed transitions S and S′ (Table 1),

Using these marginal probabilities, the renormalized SFFs

for pairwise terms (Eqs. 24, 31) can be computed.

The optimal alignment for a given model and a target

sequence is the one that yields the minimum energy, which

corresponds to the free energy of the system at zero temper-

ature (T = 0). The recurrence equations for the optimal align-

ment can be derived as the zero-temperature limit of the for-

ward recurrence equations using the following formula20:

 = . (52)

That is, if we define a function

Ai(Sk) = [T log Fi(Sk)], (53)

the energy of the optimal alignment A = (x, yopt) is given by

E(yopt, x) = −AL+1(MM+1). (54)

More concretely, we first set the boundary condition

A0(M0) = 0, (55)

and apply the zero-temperature limit to the both sides of

the forward recurrence equations for Fi(Sk)= Z0,i(M0,Sk)

(Eqs. 41–43), we have

Ai(Mk) = max{[Ai–1(Mk–1) + ei(Mk–1, Mk)],

[Ai–1(Ik–1) + ei(Ik–1, Mk)], [Ai–1(Ik–1) + ei(Dk–1, Mk)]};

(56)

Ai(Ik) = max{[Ai–1(Mk) + ei(Mk, Ik)],

[Ai–1(Ik) + ei(Ik, Ik)], [Ai–1(Dk) + ei(Dk, Ik)]}; (57)

Ai(Dk) = max{[Ai(Mk–1) + ei(Mk–1, Dk)],

[Ai(Ik–1) + ei(Ik–1, Dk)], [Ai(Dk–1) + ei(Dk–1, Dk)]}.

(58)

By tracing back the site-state pairs that yield the optimal

values of Ai(Sk) at each step, we can find the optimal align-

ment yopt.

Parameter learning with multiple sequence 
alignment

Global optimization of parameters

The parameters of a profile CRF are the set of external

fields ,  and  (of course, we need to specify the

feature functions to start to with). The input for parameter

learning is a multiple sequence alignment (MSA) of a pro-

tein family, from which the model architecture must be

P(Sk,Sl|x, i, j) =
Fi(Sk)Zi, j(Sk, Sl)Bj(Sl) . (49)

Z(x)

∈ ∈

δSk S,

δS Sl,

P(Sk|x, i) =
Fi(Sk)Bi(Sk) . (50)

Z(x)

P(S,S′|x, i) =
(S)Ti(S, S′)Bi(S′)

. (51)
Z(x)

Fi
–

∈ 0+→
lim e

ai ∈⁄

i
∑log∈ ma

i
x ai

T 0→
lim

λS
α

μS ′ S,

β
νS S ′,

γ
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somehow specified “by hand.” In this process, we need to

specify which columns of the MSA correspond to matching

states. After the columns of matching states are determined,

matching, insertion and deletion states can be assigned to

each column of each sequence in the MSA.

After the model architecture has been determined, the

learning can be done by maximizing the likelihood using

the sequences of the input MSA. Let these alignments be

(x(p), y(p)) where p = 1, ..., n is the index of sequences.

The joint log-likelihood is given by

L(θ |{x(p), y(p)}) = − [E(y(p), x(p), θ) + log Z(x(p), θ)].

(59)

Since the total energy is a linear function of the parameters,

and −log Z is the free energy of the system which is always

convex, the total log-likelihood is also a convex function of

the parameters. This implies that we can obtain the globally

optimal parameter sets by gradient-based methods. In prac-

tice, minimizing the bare log-likelihood may results in over-

fitting of the parameters to the training set. Therefore, we

define an alternative objective function K(θ|{x(p), y(p)}) which

includes prior probability density of the parameters for

regularization:

K(θ|{x(p), y(p)}) = L(θ|{x(p), y(p)}) + log P(θ) (60)

where P(θ) is a Gaussian prior:

P(θ) = 

× . (61)

Here, the hyper-parameters ,  and  are the

(expected) standard deviations of the corresponding exter-

nal fields, and must be specified a priori (however, if we

use a hierarchical Bayes model, these hyper-parameters can

be automatically adjusted based on the training data). Since

we can calculate the gradient of this log-likelihood, it is pos-

sible to use gradient-based optimization techniques. Since

K(θ|{x(p), y(p)}) (Eq. 60) is still convex, the globally optimal

parameters are guaranteed to be found by gradient descent

methods.

Bayesian learning

It is also possible to apply the Bayesian learning frame-

work21. That is, instead of using a single, globally optimal

parameter set, we can use a set of suboptimal parameters to

make robust predictions. From Bayes’ formula, we have

P(θ|{x(p), y(p)}) ∝ exp[L(θ|{x(p), y(p)})]P(θ). (62)

Using this equation, a Bayesian alignment for the target

sequence x may be selected so as to maximize the following

probability:

P(y|x, {x(p), y(p)}) = P(y|x, θ)P(θ|{x(p), y(p)})dθ.

(63)

Suboptimal parameters may be obtained by Markov chain

Monte Carlo simulations in the θ-space, using

−log K(θ|{x(p), y(p)}) as the “energy” of the system. Since

the gradients of the log-likelihood can be computed,

a hybrid Monte Carlo method is also at our disposal for

efficient sampling.

We can also employ hierarchical Bayes learning which

can automatically adjust the the hyper-parameters for the

prior,  and , based on the training set21.

Discussion

In this paper, we have formulated the profile CRF to

model protein families with possible long-range correla-

tions such as structural information. The profile CRF model

is clearly an extension of both the molecular field theory of

Finkelstein and Reva (FR theory)16–18 and the profile

HMM4,9, and hence an integration of these. Here, we shall

discuss the relationship of the present model with these two

earlier models.

The FR theory is particularly focused on 3D structures of

proteins. Accordingly, its model is explicitly represented in

the 3D space as a set of lattice points. The lattice points

mostly correspond to residues in secondary structure ele-

ments (SSEs), and these points may be regarded as “match”

states in the present framework. The FR model does not

allow gaps within each SSE, only insertions are allowed in the

regions between two SSEs. The energy functions (≈ feature

functions) are physics-based ones, and the parameters are

not optimized to fit some training data, but obtained from

physical experiments. Therefore, the FR models are more

suitable for studying physical aspects of protein folding and

structure prediction, but less so for more general-purpose

sequence analysis. Nevertheless, almost all the theoretical

foundations of the FR theory such as calculation of partition

functions, marginal probabilities, mean-field approximations,

but except for parameter learning, are shared by profile CRFs.

After all, the both models are extensions of the 1D Ising

model.

The analogy between 1D Ising model and a more general

sequence alignment problem was pointed out by Miyazawa22,

which was further extended to the problem of sequence-

structure alignment with a mean-field approximation23. Later,

Koike et al.24 applied this analogy to compute partition func-

tions and marginal probabilities in protein structure com-

parison with the Bethe approximation. By complementing the

FR theory with these techniques, the alignment algorithm

can be made more general, and one such generalization is

the profile CRF model. The improvements made by profile

CRFs on the FR theory are thus clear: more general treat-

ment of model states, possible insertions and deletions at

any sites, and parameter learning based on MSA.
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Profile HMMs, being a class of generative models, need

to calculate the joint probability of alignment P(x,y) while

profile CRFs, being a class of discriminative model, directly

calculates the conditional probability P(y|x). In special cases,

with the definition of the conditional probability P(y|x) =
P(x, y)/P(x) in mind, we may regard Z(x) as P(x) and

exp[−E(y,x)] as P(x,y). More specifically, if we define only

the following feature functions (and no others) with appro-

priate values for external fields, we can construct a CRF that

is equivalent to a given HMM:

1. Define singlet feature functions  for matching and

insertion states as in Eq. (13). For deletion states, just

define a constant SFF (always equal to 1).

2. Define sequence-independent feature functions  for

each transitions as in Eq. (18).

3. Set the singlet external fields as  = log (R) ( (R):

the emission probability of the HMM).

4. Set the doublet external fields as  = log  ( :

transition probability of the HMM).

However, this equivalence breaks down as soon as we

incorporate other feature functions into profile CRFs since

the Boltzmann factor exp[−E(y,x)] may no longer satisfy a

condition of probability measure (i.e., normalization to 1).

Thus, HMMs are a very special class of CRFs.

In summary, we have presented the profile CRF model.

This model is flexible enough to accommodate almost any

features of target sequences including PSSM, local sequence

patterns, and even long-range correlations. It can also incor-

porate various features of a modeled protein family such

as local structures and long-range pairwise interactions.

Although concrete implementations are yet to be done, we

expect this model to be a useful alternative to conventional

methods for analyzing and understanding protein sequences

and structures.
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