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Abstract: Biosurfactants are amphiphilic secondary metabolites produced by microorganisms.
Marine bacteria have recently emerged as a rich source for these natural products which exhibit
surface-active properties, making them useful for diverse applications such as detergents, wetting
and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are
often lacking, the already available information deduced from biochemical analyses and genome
sequences of marine microbes indicates a high structural diversity including a broad spectrum of
fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise
biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by
marine microorganisms and describes various biotechnological applications with special emphasis on
their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation
strategies are suggested in an attempt to extend the existing biosurfactant portfolio.

Keywords: marine biosurfactants; structural diversity; glycolipids; lipopeptides; oil degradation;
biotechnological application; biosynthetic mechanisms; heterologous expression; synthetic biology

1. Introduction

Microorganisms produce a large variety of secondary metabolites that are of interest for the
biotech and pharma industries. A prominent example comprises biosurfactants, a very diverse group
of lipids which have a polar, amphiphilic character in common containing both hydrophilic and
hydrophobic domains within one molecule. As a consequence of the amphiphilic structure, these
compounds lower interfacial tension allows, for instance, solubilisation of hydrophobic substances
in water [1]. In nature, the biosynthesis of amphiphilic substances could open ecological niches for
the production of microorganisms in different habitats, for example, by exploitation of hydrophobic
substrates, enabling motility, or avoiding competitors [2,3].

More than 2000 distinct biosurfactant structures are currently known, covering chemically different
families of compounds, but also groups of congeners, that is, structurally closely related compounds
with minor structural variations [4]. This structural diversity of biosurfactants implies a large variety of
biological and physicochemical properties. Frequently highlighted properties of biosurfactants include
low critical micelle concentrations (CMC), strong surface tension reduction, metal ion complexation,
prominent bioactivities, and low eco-toxicity. A low CMC implies that such biosurfactants exert their
function at much lower concentrations than many chemically produced surfactants [5]. Bioactivities of
biosurfactants include antibacterial, antifungal and anti-tumour effects. At the same time, ecological
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aspects are considered as important, as biosurfactants can be produced from renewable resources
and they exhibit low eco-toxicity in connection with supreme biological degradability preventing
environmental accumulation [6,7].

These properties form the basis of the pronounced interest in this class of metabolites [8] for
biotechnological applications, for example, as detergents, wetting agents for hydrophobic surfaces
or fibres, and emulsifiers. In addition, they are used in food, cosmetics, and as pharmaceuticals [8].
To date, research regarding the technological access to biosurfactants has mostly focused on soil-isolated
microbes, predominately species of Bacillus, Pseudomonas, or yeasts. More recently, however, marine
habitats are considered as a prolific source for the discovery of microorganisms with a specialized
metabolism and physiology that produces a variety of useful compounds such as biosurfactants [9–12].
This article aims to provide an overview of the structural diversity of low molecular-weight
biosurfactants produced by marine microbes reported until May 2019. Furthermore, applications
for the degradation of marine oil spills are expounded. Finally, strategies for future biotechnological
exploitations of such compounds are discussed.

2. Structural Diversity of Biosurfactants

Biosurfactants produced by different microorganisms exhibit an immense spectrum of diverse
chemical structures. The amphiphilic character of biosurfactants is typically formed by both hydrophobic
and hydrophilic components with the hydrophobic part usually comprising saturated or unsaturated
fatty acids, hydroxy fatty acids, or fatty alcohols with a chain length between 8 and 18 carbon atoms. The
hydrophilic components are constituted either by small hydroxyl, phosphate or carboxyl groups, or by
carbohydrate (such as mono-, oligo-, or polysaccharides) or (poly-)peptide moieties. Biosurfactants are
predominantly anionic and non-ionic compounds. It has been assumed that cationic biosurfactants
exhibit higher toxicity and are thus found only rarely [4].

Besides the grouping by charge, surface-active secondary metabolites can be broadly classified
into high and low molecular weight biosurfactants [13,14]. The structural diversity of the latter group
can be further subdivided into fatty acids, lipoamino acids, lipopeptides, and glycolipids as outlined
in more detail in the following section.

2.1. High Molecular Weight Polymeric Biosurfactants/Bioemulsifiers

High molecular weight polymeric (HMW) biosurfactants, suggested to be referred to as
bioemulsifiers to distinguish them from low molecular weight metabolites [15], are produced by
many bacteria of different species. They constitute polysaccharides, proteins, lipopolysaccharides,
lipoproteins, or complex mixtures of these compounds referred to as lipoheteropolysaccharides.
The prototypical HMW bioemulsifier emulsan is produced, for instance, by Acinetobacter calcoaceticus
RAG-1, an isolate from the Mediterranean Sea [16,17]. It consists of a heteropolysaccharide backbone
with a repeating tri-saccharide unit. This repeating unit probably consists of N-acetyl-d-galactosamine,
N-acetylgalactosamine uronic acid and a di-amino-6-deoxy-d-glucose [4,18] with fatty acids (FA)
covalently linked to the polysaccharide through ester linkages. In spite of the structural complexity,
the genes encoding emulsan synthesis by A. calcoaceticus RAG-1 were identified and shown to be
organised in a single wee gene cluster of 27 kilo base pairs [19].

Amphiphilic proteins may also be regarded as polymeric surfactants. They constitute a remarkable
class of little-explored and biotechnologically hardly targeted biosurfactants. Naturally occurring foams
often contain proteins with foam-stabilising properties. A particularly interesting example from the
non-microbial world is ranaspumine produced by tropical frogs that use foam nests to protect their eggs.
Another likewise foaming protein is latherin, mainly known from horse sweat [20]. Hydrophobins
are small proteins secreted by different filamentous fungi [21] which are also surface-active and may
represent promising targets for biotechnology [22].
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2.2. Low Molecular Weight Biosurfactants

Low molecular weight (LMW) biosurfactants range from simple free fatty acids and phospholipids
to amino acids linked to lipids, to lipopeptides, and glycolipids.

Fatty acid and phospholipid derivatives may act as surface-active substances. Strong reduction
of surface and interfacial tensions were, for instance, observed for branched fatty acids known as
corynomycolic acids with chain lengths of C12–C14 [23–25].

(Hydroxy) fatty acids bound to proteinogenic or non-proteinogenic amino acids form lipoamino
acid biosurfactants, for example, ornithine lipids, lysine lipids, N-acyltyrosines or cerilipin containing
ornithine and taurine produced, for example, by Myroides sp., Gluconobacter cerinus and Nitrosomonas
europaea [26–29].

Lipopeptides are a very prominent group of LMW biosurfactants derived from amino acids.
These often cyclic depsipeptides are produced by various clades of microorganisms including the
bacterial genera Bacillus, Lactobacillus, Streptomyces, Pseudomonas and Serratia. As a result of their
non-ribosomal origin, they often contain non-proteinogenic amino acids such as d-enantiomers. Many
lipopeptides show not only a reduction of surface tension, but also significant bioactivities [30,31],
with the antibiotics daptomycin from Streptomyces roseosporus and polymyxin B from Paenibacillus
polymyxa as prominent examples [32,33]. Surfactin produced by different species of the genus Bacillus
is considered as one of the most effective biosurfactants of all, stated to reduce the air/water surface
tension from 72.5 mN/m down to 27 mN/m [34,35].

Glycolipids, similar to the emulsan repeating unit, consist of mono- or oligosaccharides and
a lipid moiety. Typical sugars forming the hydrophilic part are glucose, mannose, galactose, glucuronic
acid, or rhamnose, while the hydrophobic part consists of saturated or unsaturated fatty acids, hydroxy
fatty acids or fatty alcohols. The best-explored groups comprise sophorolipids, mannosylerythritol
lipids, trehalose lipids and rhamnolipids [4].

Sophorolipids contain the di-saccharide sophorose and, predominantly, 17-hydroxyoleic acids.
They usually form lactones, but also occur in the acidic form, that is, without ring closure [36]. The yeast
Starmerella bombicola is the most prominent producer of sophorolipid [37]. Mannosylerythritol lipids
(MELs) are also mainly known from fungal species, such as Pseudozyma sp. and Ustilago maydis.
MELs comprise 4-O-β-d-mannopyranosyl-d-erythritol in their carbohydrate moiety, which displays
diverse acylation patterns and a variety of chain lengths of the acyl groups [38,39]. Trehalose lipids
contain the di-saccharide trehalose, which is acylated with long-chained, straight or α-branched
3-hydroxy fatty acids called mycolic acids and are mainly known from Actinobacteria like Mycobacterium,
Arthrobacter and Rhodococcus species [40,41]. Rhamnolipids are best known from the pathogenic
bacterium Pseudomonas aeruginosa but are also reported from different Burkholderia spp. [42].
They comprise one or two α-l-rhamnose units, commonly coupled to two 3-hydroxy fatty acid moieties
via a glycosidic linkage that defines different congeners with a chain length between 8 and 16 carbon
atoms [42,43]. The length of acyl chains within a certain range appears to be species-specific to some
extent [44]. Moreover, decorations like methylations and acetylations are reported occasionally [42].
Further reported glycolipids include glucose lipids, cellobiose lipids, polyketide glycosides, isoprenoid
and carotenoid glycolipids [45].

The phylogeny of biosurfactant-producing microorganisms is as diverse as the chemical
composition of these metabolites. Beyond the already mentioned examples, known biosurfactant
producers are, for instance, Firmicutes like Lactococcus sp., Proteobacteria like different Pseudomonads
or Serratia spp., Actinobacteria like Streptomyces spp., and fungi like Cryptococcus sp. [46]. Producer
strains were isolated from many different habitats, i.e. fresh water, soil, pathogen biofilms, leaf surfaces
and industrial effluents, oil wells and marine environments [47,48].

3. LMW Biosurfactants from Marine Sources

Several decades ago, marine habitats had already attracted attention as a prolific repository
harbouring surface-active molecules [49–52] and different aspects regarding these molecules have
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since been reviewed including the occurrence and isolation of producers [53], pharmacological
activities [54] or other particular applications [53,55–57]. The production and potential applications
of HMW bioemulsifiers have been reviewed elsewhere [12,58]. The focus of this report is on LMW
biosurfactants. The following section provides an overview of the molecular structures (selected
examples in Figure 1), the respective microbial producers, and their marine habitats (Table 1).

Fatty acids may be seen as the simplest amphiphilic metabolites. The surface-activity of two marine
microbes was attributed to secreted fatty acids: The marine yeast Aureobasidium pullulans YTP6-14
was shown to produce massoia lactones as surface-active compounds, which are lactonised hydroxy
fatty acids [59], usable as a fragrance. Cobetia sp., a Gammaproteobacterium, secretes linear 3-hydroxy
fatty acids [60]; hydroxy fatty acid dimers designated as rubiwettin R1 were isolated from cultures of
Serratia rubidaea [61], which is identical to the marine bacterium described in 1944 as Serratia marinorubra.

Lipoamino acid production was also reported for a few marine bacteria. The flavobacterium
Myroides sp. was found to produce a crude oil emulsifying metabolite consisting of the non-proteinogenic
amino acid ornithine linked to a 3-hydroxy-13-methyltetradecanoic acid diester [62]. Furthermore,
production of nearly identical proline lipids with long chain fatty acids (1) was described for two bacteria
of remarkable evolutionary distance, namely the Gammaproteobacterium Alcanivorax dieselolei and the
Actinobacterium Brevibacterium luteolum [63,64].
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Figure 1. Structural diversity of marine low molecular weight (LMW) biosurfactants. 1–4 representative
lipoamino acid and lipopeptide biosurfactants: 1 proline lipid (Alcanivorax dieselolei); 2 rhodofactin
(Rhodococcus sp.); 3 surfactin (Bacillus subtilis); 4 didemnin B (Tristrella sp.). 5–8 representative glycolipid
biosurfactants: 5 di-rhamnolipid (Pseudomonas aeruginosa); 6 glucose lipid (Alcanivorax borkumensis);
7 glucosyl palmitate (Serratia marcescens); 8 tri-glucose-tetraester (Rhodococcus sp.); 9 2-l-quinovose -
phenazine ester (Streptomyces sp.).
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Table 1. Surface-active secondary metabolites produced by marine microorganisms and the respective site of isolation.

Producing Species 1 Compound 2
Alkane-Dependent 3

Sampling Site 4 Reference
Isolation Production

fatty acids

Aureobasidium pullulans massoia lactone coastal seawater, Koh Sichang, Gulf of Thailand [59]
Cobetia sp. strain MM1IDA2H-1 3-hydroxy fatty acids x eulitoral pond, Montemar, Chile [60]

Serratia rubidaea rubiwettin R1 n.a. n.a. [61]

lipoamino acids

Myroides sp. SM1 ornithine lipid x x seawater, Thailand [62]
Alcanivorax dieselolei proline lipid x x surface water, Yellow River delta, Bohai Sea, China [63]

Brevibacterium luteolum proline lipid x tunicate, north coast of São Paulo, Brazil [64]

lipopeptides

Brevibacterium luteolum Thr-Pro- Pro-Leu/Ile-Leu/Ile- Ala-
Phe x tunicate, north coast of São Paulo, Brazil [64]

Brevibacterium aureum Gly-Gly-Leu-Pro x sponge, southwest coast of India [65]
Rhodococcus sp. TW53 rhodofactin(miao)Ala-Ile-Asp-Met-Pro x x deep sea sediment, Pacific Ocean [66]

Nocardiopsis alba phenyl alanine dipeptide x sponge, southwest coast of India [67,68]
Bacillus pumilus pumilacidin seawater [69,70]
Bacillus pumilus surfactin-like sponge, Hautman Reef, Australia [71]

Bacillus licheniformis NIOT-06 surfactin sponge, North Bay of Port Blair, South Andaman [72]
Bacillus stratophericus Surfactin(miao)pumilacidin x harbour, Sfax, Tunisia [73]

Bacillus sp. CS30 surfactin deep sea sediment, Formosa ridge, South China Sea [74]
Bacillus siamensis surfactin(miao)bacillomycin F fish intestine, Guangzhou, China [75]

Bacillus licheniformis lichenysin x deep oil well, Northern Germany [76]
Bacillus circulans fengycins marine samples, Andaman Nicobar Islands, India [77]

Bacillus megaterium iturin seawater, Andaman Nicobar Islands, India [78]
Bacillus sp. KCB14S006 iturins saltern, Incheon, South Korea [79]

Bacillus amyloliquefaciens SH-B74 plipastatin A1 deep sea, South China Sea [80]

Paenibacillus polymyxa polymyxin B red algae [81]
fusaricidin B

Brevibacillus laterosporus tauramamide tube worm, Loloata Island, Papua New Guinea [82]
Aneurinibacillus aneurinilyticus aneurinifactin x sea sediment, Gulf of Mannar, India [83]

Bacillus amyloliquefaciens didemnin B x oil-contaminated water, Red Sea, Egypt [84]
Tistrella mobilis didemnin B seawater/tunicates, Red Sea, Pacific Ocean, and marine sediments in Japan [85]

Achromobacter sp. HZ01. Gly-Gly-Leu-Met-Leu-Leu x oil-contaminated water, Mabianzhou Island, southern China [86]
Pseudomonas sp. massetolide red algae, tubeworm, Moira Island and Masset Inlet, Canada [87,88]

Pontibacter korlensis pontifactin(miao)Ser-Asp-Val-Ser-Ser x contaminated seawater and sediment, coastal sites of Karaikal, India [89]
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Table 1. Cont.

Producing Species 1 Compound 2
Alkane-Dependent 3

Sampling Site 4 Reference
Isolation Production

fatty acids

glycolipids

Pseudomonas aeruginosa rhamnolipid x x contaminated seawater, Zhoushan Islands, China [90]
Pseudomonas aeruginosa rhamnolipid x coastal sediment, Odisha, India [91]
Pseudomonas aeruginosa rhamnolipid offshore sediment, Xiamen, China [92]
Pseudomonas sp. BTN-1 rhamnolipid sediments, Baia Terranova, Antarctica [93]

Pseudomonas sp. MCTG214(3b1) rhamnolipid x x coastal seawater, Sarasota Bay, Florida, US [94]
Buttiauxella sp. glucosyl ester lipid mangrove forest, Qeshm Island, Iran [95]

Serratia marcescens glucosyl ester lipid coral, Mandapam, India [96]
Serratia rubidea rubiwettin RG1 n.a. n.a. [61]

Alcanivorax borkumensis glucose lipid x x sediments, isle of Borkum, North Sea, Germany [52,97,98]
Alcanivorax rhamnolipid x x chronically polluted harbour water, Elefsina Bay, Aegean Sea, Greece [99]
Paracoccus sophorolipid x x chronically polluted harbour sediment, Elefsina Bay, Aegean Sea, Greece

Arthrobacter sp. EK 1 trehalose lipid tetraester x x seawater, North Sea, Germany [49,50]
Arthrobacter sp. SI 1 trehalose lipid diester x x seawater, North Sea, Germany

Rhodococcus sp. strain PML026 trehalose lipid x seawater, Plymouth, UK [100]
Rhodococcus sp. BS-15 tri-glucose lipid tetraester, x deep sea sediment, Okinawa Trough [101]

Actinoalloteichus hymeniacidonis Doktolipids(miao)(rhamnose lipids) coastal sediment, Dokdo island, South Korea [102]
Streptomyces sp. IA49E di-rhamnolipid x coast with petrochemical facilities, Galveston Bay, Texas, USA [103]

Streptomyces sp.CNB-253 phenazine-l quinovose ester shallow sediments, Bodega Bay, CA, USA [104]
Staphylococcus lentus threose diester snail, Mandapam, Tamil Nadu, India [105]

Cyberlindnera saturnus cybersan (galactose lipid) x polluted coastal sediment, Tamil Nadu, India [106]
1 designation of the producing microorganism. 2 designation and/or chemical composition. 3 isolation indicates the producer strain was isolated from alkane/crude oil contaminated
environments or from enrichment using such compounds as a sole carbon source; production indicates cultures were supplemented with hydrophobic carbon sources (x = yes). 4 as stated
in the respective publications. n.a., data not available.
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Dominant phyla among the producers of lipopeptides are Actinobacteria [64–67] and Firmicutes
like Bacillus sp. [69–84]. Actinobacterial compounds include rhodofactin produced by Rhodococcus sp. (2)
and a notable lipopeptide of N. alba that was recently stated to contain a phenylalanine dipeptide [65,68],
and hence appears structurally special among the multitude of linear and cyclic lipo-oligopeptides.

Many of the lipopeptides described to be isolated from marine Firmicutes do not occur exclusively
in marine strains: They were initially isolated from non-marine strains, prior to the identification
of their production in marine relatives. This pertains, in particular, to surfactins (3), lichenysin,
fengycin, iturins, pumilacidin, plipastatin, polymyxin B, fusaricidin and bacillomycin F. However,
the respective studies unveiled novel producers of these surfactants [69–81], which may be useful,
for example, for environmental applications such as surfactant-producing inoculum (see Section 6)
because of their adaptation to high salinities or low temperatures. The known portfolio of the Firmicutes’
lipopeptides was expanded by the discovery of completely new compounds produced by marine
isolates, often associated with distinct bioactivities. For example, tauramamide and ester derivatives
thereof as well as aneurinifactin [82,83] have been introduced first as antibiotics. Didemnin B (4)
was first described as an anti-tumour agent [107], but recently reported to be the surface-active
agent of a Bacillus amyloliquefaciens strain isolated from the Red Sea after enrichment of cultures on
crude oil. Prior to this publication, didemnin B was commonly considered to be produced by the
alphaproteobacterial genus Tistrella isolated from geographically widely distributed sites (Caribbean,
Pacific, Red Sea) [85].

Beyond Tistrella spp., there are only a few further reports on marine proteobacterial producers
of lipopeptides: Achromobacter sp. HZ-01, a hydrocarbon-degrading Betaproteobacterium [86,108],
and epiphytic marine Pseudomonads that were shown to produce a group of antibacterial viscosin-like
lipopeptides designated as massetolide A-H [87]. The serine-rich lipopeptide pontifactin was likewise
described as an antibiotic; it is produced by the Flavobacterium Pontibacter korlensis, which was isolated
from petroleum-contaminated seawater [89].

Non-ribosomal peptides, like lipopeptides, along with polyketides and hybrids of both, have
typically been considered primarily for their often-prominent bioactivities. Marine organisms
are regarded as a promising source for such natural products [109]. The later appearance of
pharmacologically active compounds like polymyxin B and didemnin B in screenings for surface-activity
exemplifies that further lipopeptide biosurfactants may be already explored on a structural level, but
not assessed as such until today. Hence, more marine lipopeptide biosurfactants may already be
known, but have been investigated thus far for their bioactivity only and have not been evaluated for
their surface-activity.

Glycolipids are well-known for relatively easy large-scale production and various applications
as surfactants; in particular, the yeast-derived sophorolipids, MELs, and rhamnolipids (5) from
P. aeruginosa (5). This bacterium is known to be ubiquitously distributed; hence, it is not surprising
that it was also isolated from marine samples as a producer of rhamnolipids [90–92]. However,
P. aeruginosa is also a well-known human pathogen, making it less attractive for industrial applications.
Recently, a non-pathogenic producer of P. aeruginosa-like rhamnolipids was described with the
marine Pseudomonas sp. MCTG214(3b1), a potential future alternative for industrial production [94].
Notably, one of the marine Pseudomonas isolates apparently secretes solely mono-rhamnolipids [93],
an uncommon feature among wild type rhamnolipid producers, which are to the largest extent capable
of the synthesis of mixtures of mono- and di-rhamnolipids [110]. As a result of such reports, the marine
environment has been considered as a promising source for novel rhamnolipid producer strains [111].

Structurally related to rhamnolipids are the glucose lipids produced by S. rubidaea
(rubiwettin RG2 [61]) and Alcanivorax borkumensis. The latter is an obligate alkane-degrading
Gammaproteobacterium, which is globally distributed in marine habitats and was once isolated
from the North Sea as strain MM1, later defined as Alcaligenes, before it was finally classified as
A. borkumensis [49,98]. This strain produces a glucose lipid glycosidically-linked to four 3-hydroxy fatty
acids [51] (6); the terminal acid group can be linked to glycine [97]. Interestingly, the glycine-containing
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species were found associated with the bacterial envelope, whereas only the glycine-free species were
recovered from culture supernatants, suggesting that the free glycolipid is released from the cell by
cleavage of the terminal amide linkage of the membrane-stored lipid. However, the respective enzyme,
like all other enzymes involved in the biosynthesis, remains unknown. The free glucose lipids of
A. borkumensis were shown to exhibit remarkably low ecotoxicity in comparison to synthetic surfactants
and even to other glycolipid biosurfactants [6,51].

Ester linkages, instead of glycosidic bonds, were reported for glucose lipids from
a mangrove-isolated Buttiauxella sp. and a coral isolate identified as Serratia marcescens. Here, glucose
moieties are esterified with middle and long chain length fatty acids (C14 to C18), respectively, to form,
for example, glycosyl palmitate (7) [95,96]. For proteobacterial glycolipids, ester-linked fatty acids
are very uncommon. However, they represent a common feature of actinobacterial glycolipids [42]
where esters occur consisting of fatty acids, succinate or mycolic acids and trehalose or tri-glucose units
(8). Other marine actinobacteria are reported to produce extraordinary rhamnolipids with a single
subterminal additionally hydroxylated 3-OH fatty acid [102].

Among Actinobacteria, Streptomyces spp. are famous for the production of most diverse natural
products including important antibiotics. In line with that, the production of different biosurfactants is
also reported for various representatives of this genus [42]. However, marine Streptomycetes seem to be
underexplored regarding biosurfactants production, as only two publications report on the production
of di-rhamnolipids [103], and different l-quinovose phenazine esters containing a phenazine instead of
lipids as hydrophobic moiety [42,104] (9). Phenazines are heteroaromatic compounds produced by
many Pseudomonads and Streptomycetes [112], but this is the only report of a phenazine biosurfactant.
Firmicutes are very rarely described as glycolipid producers. The only marine example is, to the best of
our knowledge, a biofilm inhibiting threose-di-lipid from a snail epiphytic Staphylococcus lentus [105].

The number of reports describing biosurfactant producers isolated from marine sources does by no
means match the number of solved molecular structures. Hence, many new structures of surface-active
molecules from the sea need to be determined to extend the portfolio of marine biosurfactants.

4. Biosynthetic Mechanisms

The lack of molecular structures coincides with the missing knowledge of the underlying
biosynthetic pathways leading to the production of many marine biosurfactants. Most of the known
pathways were explored in studies using non-marine strains producing compounds that also appeared
in marine samples, whereas biosynthesis pathways of surfactants exclusively occurring in marine
phyla are barely known (Table 2). The following section describes the biosynthetic principles for the
production of different biosurfactant classes based on known pathways.

Fatty acids and hydroxy fatty acids presumably originate from the primary carbon metabolism.
The biosynthesis of lipoamino acid biosurfactants from marine bacteria was not described. It might
resemble the biosynthesis by environmental bacteria of N-acyl amino acids (Figure 2A) from
activated fatty acids and amino acids catalysed by acyltransferases of the N-acyl amino acid synthase
class [122–124].

Lipopeptide producing microbes have gained particular interest for their potential applications as
biocontrol strains or as producers of pharmaceutically active compounds [33,125]. In contrast to the
polypeptide chains in proteins, lipopeptides like surfactin (3) are not formed ribosomally by translation
of an mRNA template, but by special, non-ribosomal peptide synthetases (NRPS), which are built up in
a modular fashion (Figure 2B). Each module leads to the addition of one amino acid to the peptide chain;
furthermore, the NRPS can catalyse reactions including the incorporation of lipids, epimerisation or
lactonisation [126,127]. A prototypic module consists of three domains: A condensation, an adenylation,
and a peptidyl carrier domain. Here, the adenylation domain is responsible for the amino acid
selectivity of the respective module. Additional epimerisation domains are commonly responsible for
the transformation of l– to d-amino acids. Hence, the composition of non-ribosomal peptides is not
limited to the proteinogenic amino acids.
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Table 2. Marine biosurfactants with known biosynthetic pathways.

Surface-Active
Compound

Chemical
Classification Producing Bacterium Marine

Isolate 1 Reference

surfactin lipopeptide Bacillus subtilis - [33,113,114]
lichenysin lipopeptide Bacillus licheniformis + [115,116]
fengycins lipopeptide Bacillus subtilis - [117]

iturin lipopeptide Bacillus subtilis - [118]
plipastatin A1 lipopeptide Bacillus subtilis - [119]
polymyxin B lipopeptide Paenibacillus polymyxa - [120]
fusaricidin B lipopeptide Paenibacillus polymyxa - [121]
didemnin B lipopeptide Tistrella mobilis + [85]
massetolides lipopeptide Pseudomonas fluorescens - [88]
rhamnolipids glycolipid Pseudomonas aeruginosa - [42,110]

1 indication if the biosynthesis was described for a marine (+) or terrestrial (-) strain.Mar. Drugs 2019, 17, x FOR PEER REVIEW 11 of 33 
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Figure 2. Biosynthetic pathways leading to low molecular weight biosurfactants. (A) Synthesis
of lipoamino acid N-myristoyltyrosine via N-acyl amino acid synthase (NAS). ACP, acyl carrier
protein. (B) Lipopeptide surfactin biosynthesis by the non-ribosomal peptide synthetases SrfA-A,
SrfA-B, and SrfA-C, showing the principle of the modular non-ribosomal peptide biosynthesis.
C, condensation domain; A, adenylation domain; PCP, peptidyl carrier domain; E, epimerisation domain;
TE, thioesterase domain. (C) Biosynthesis of 3-(3-hydroxyalkanoyloxy)alkanoic acid, mono-rhamnolipids
and di-rhamnolipids, constituting fatty acids and glycolipid biosurfactants, respectively, by the enzymes
RhlA-C of P. aeruginosa.
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The surfactin biosynthetic molecular machinery (Figure 2B) constitutes one of the best studied
NRPS. It involves an NRPS consisting of three multifunctional proteins encoded in the srfA operon,
which comprises srfA-A, srfA-B and srfA-C. The proteins SrfA-A and SrfA-B consist of three modules
each, SrfA-C contains one module including a thioesterase domain. The condensation domain of the first
module recognises a 3-hydroxy fatty acid starter molecule, typically 3-hydroxy-13-methyl-myristic acid,
to which seven amino acids (l-Glu, l-Leu, d-Leu, l-Val, l-Asp, d-Leu and l-Leu) are sequentially added
by seven modules. Product release and lactonisation of the depsipeptide are finally catalysed by the
thioesterase domain of the termination module SrfA-C [113,114]. Analogous biosynthetic machineries
were described for the synthesis of lichenysin [115], fengycin [117], iturin [118], plipastatin [119],
polymyxin B [120], fusaricidin [121,128], and massetolide/viscosins [88]. The didemnin B biosynthesis by
Tistrella sp. was also described in detail including an unusual post-synthetase activation mechanism [85].

The biosynthesis of rhamnolipids by P. aeruginosa (Figure 2C) probably constitutes the
best-known example of a biosynthetic pathway for a bacterial glycolipid which is reported for
non-marine and marine strains. The formation of mono- and di-rhamnolipids (5) is catalysed
by two different glycosyltransferase units, that is, rhamnosyltransferase I and II. The products
of genes rhlA and rhlB, which are organised as a bicistronic operon, were originally designated
rhamnosyltransferase I; however, recent studies proved the independent activity of both RhlA and
RhlB proteins [129]. RhlA synthesises 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAA) from activated
hydroxy fatty acids, while the glycosyltransferase RhlB catalyses the condensation between the
dTDP-l-rhamnose and the HAA to form mono-rhamnolipids. Notably, HAA themselves are already
surface-active metabolites, which are released to the cell’s environment as biosurfactants [130].
The gene rhlC, which is localised at another chromosomal site apart from rhlAB in P. aeruginosa
(but interestingly not in Burkholderia spp.), encodes for rhamnosyltransferase II. This protein catalyses
the production of di-rhamnolipid (l-rhamnose-l-rhamnose-3-(3-hydroxyalkanoyloxy)alkanoic acid)
from mono-rhamnolipid and dTDP-l-rhamnose [110].

As far as we know, the biosynthesis of other marine glycolipids has not been elucidated yet.
Proteins like the RhlA homolog AML58231 of S. rubidaea strain 1122 (showing 43% identity to RhlA of
Burkholderia glumae at a query coverage of 94%) may be involved in the synthesis of rubiwettin.

Apparently, the biosynthesis of the majority of biosurfactants is strictly regulated. As a consequence,
they are only formed under distinct conditions, for instance, dependent on the cell density, limiting
growth conditions or the presence of hydrophobic nutrients [4,47,48,131,132]. Presently, most of the
known biosynthetic pathways for marine biosurfactants originate from studies of related non-marine
bacteria. The availability of inexpensive sequencing methods and bioinformatic analysis tools now
allows deducing putative biosurfactant biosynthetic genes from genome sequence data as discussed,
for example, for Alcanivorax glucose lipids [133] or Rhodococcus trehalose lipids [134].

5. Prospecting for Novel Biosurfactants

The marine environment comprises many different habitats, including those that appear
challenging for life because of extreme temperature, high pressure and salinity, poor nutrition
or toxic pollutants. Nonetheless, almost every niche inhabits specifically adapted microorganisms
able to cope with these challenges by using designated tools to survive, which were developed by
evolution over millions of years. Biosurfactant production may constitute such a tool which may, for
example, enable adaption to cold environments (present in many marine habitats), but the underlying
mechanisms are unknown [57,135]. The studies that were taken as a basis of the review do not indicate
biosurfactant production as a feature predominantly of microbes from cold habitats. In fact, samples
were derived from locations in all climatic zones.

The studies published so far suggest that biosurfactant producers may be identified within
marine samples mainly in communities associated with invertebrates and in oil-polluted environments.
The flora associated with filter-feeding marine invertebrates like sponges and tunicates is known to be
an astonishing source for novel complex and bioactive secondary metabolites in general [136–138],
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and likewise constitutes a promising source for surface-active secondary metabolites. In oil-polluted
environments, biosurfactants/bioemulsifiers may help to utilise the water-insoluble polluting chemicals
as a nutrient source [139], as outlined below. This section will discuss the role of biosurfactants in the
natural degradation of hydrocarbon spills.

Crude oil is a complex mixture of different aliphatic and aromatic hydrocarbons with generally
low bioavailability [140], that is, the hydrophobic character of crude oil prohibits the uptake and
metabolism by most microbes. Therefore, crude oil is extremely persistent in the environment, causing
a variety of harmful ecological effects. Hydrocarbonoclastic bacteria, in contrast, are not only able to
proliferate in environments polluted with crude oil but are even able to “make a meal of oil” [140],
using the crude-oil as a preferred carbon source by solubilising and oxidising the alkanes [141]. A large
part of the inhabitants of such polluted sites is considered to represent highly specialised organisms
perfectly adapted to this niche [142]. Prominent examples for such obligate oil-degrading marine
bacteria, hydrocarbonoclastics sensu strictu, are representatives of the genera Alcanivorax, Cycloclasticus,
Marinobacter, Oleispira or Thalassolituus, which can constitute up to 90% of the microbial population
during an oil spill [140,143–145]. Besides, more generalistic bacteria from the genera Pseudomonas [90],
Paracoccus [99] or Rhodococcus [101] have been isolated from crude oil-contaminated marine samples
and showed the ability to degrade oil/alkanes.

The ability of hydrocarbon degradation often comes along with the production of biosurfactants;
thus, it is presumed that most hydrocarbonoclastic bacteria are able to produce at least one
biosurfactant [46,141]. Within the Alcanivorax genus, A. borkumensis synthesises glucose-HAA (6),
whereas A. dieselolei is known for the production of proline lipids (1) and A. hongdengensis is described to
produce a lipopeptide of currently unknown structure (Table 1, [146]). The development of apparently
unrelated biosynthetic pathways for structurally distinct biosurfactants within a single genus may
also indicate an underlying evolutionary pressure towards surfactant production associated with this
ecological niche. However, there are still many hydrocarbonoclastic species without reported ability
to produce surface-active compounds. Reasons may include that the respective compounds are not
yet discovered, the bacteria rely as secondary consumers on surfactants produced by others [140]
or they use alternative strategies to facilitate access to alkanes, for example, the formation of outer
membrane vesicles [147].

The biological benefits of surfactant production for hydrocarbonoclastic bacteria include an
increase in bioavailability of hydrophobic carbon sources, that is, the rate of substrate mass transfer
into the cell [148] and improved efficiency of cell-adherence to the hydrophobic alkane phase [149–151].
It remains to be demonstrated whether one of these mechanisms is dominant or if both interact, at least
to some extent [46,152,153]. For instance, for A. borkumensis it was assumed that the two glycolipid
variants produced by this bacterium are involved in differential mechanisms to facilitate hydrocarbon
uptake. The function of the cell-associated glycine-containing biosurfactant, although its production is
apparently not dependent on the supplementation of alkanes, was assumed to increase of the cell’s
hydrophobicity. The altered cell surface hydrophobicity is the prerequisite for attachment and biofilm
formation on hydrocarbon droplets which is typical for this bacterium [151,154]. The extracellular
glucose lipid, in contrast, should promote the creation of micelles with water-insoluble fractions [155].

The frequent occurrence of surface-active molecules among the often highly specialised
alkane-degrading microorganisms renders them exceptionally interesting for biotechnological
applications, for example, with regard to the fast bioremediation of oil spills. In addition, novel
compounds can be identified and used for different applications by straightforward enrichment,
isolation and identification [53,60,66,83].
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6. Applications of Biosurfactants

The physical and biological properties of biosurfactants render them usable in a variety of different
fields as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants [155,156].
In addition, the chemical industries increasingly recognise the importance of these bio-based compounds
as drivers towards a bio-based economy [157]. This industrial interest is indicated by an increasing
number of patents describing various utilisations of these compounds [110,158]. Furthermore, numerous
studies have been conducted to explore further fields of application for biosurfactants as outlined below.

6.1. Medical Applications

Many surface-active lipids, especially lipopeptides, have been described as having bioactivity.
Antimicrobial activities of such biosurfactants have been described in several recent studies and
reviews [159–165], often with particular emphasis on marine compounds [54,83,89]. Interestingly,
some biosurfactants appear to consist of mixtures of molecules exhibiting different modes of
action. As an example, within the naturally occurring rhamnolipids mixture, it was suggested
that mono-rhamnolipids exhibit a bacteriostatic effect, while di-rhamnolipids were found to act
bacteriocidal on P. aeruginosa [166]. In some cases, biosurfactants were shown to exert reinforcing or
even synergistic effects with antibiotics, for example, by enhancing the penetration efficiency of the
antibiotic into the cell [167–170].

Moreover, biosurfactants often prove especially effective in the disruption of
biofilms [89,96,105,166,171], which protect pathogenic bacteria from immune cells and antibiotics.
Biofilm disruption may, therefore, support the application of antibiotics. Although biosurfactants
are often secreted by pathogenic organisms as an important factor in the development of biofilms in
the first place, they are also able to disrupt them. Both effects may be related to the formation and
maintenance of water channels within the biofilms. These are essential for nutrient supply; however,
further extension of such channels by additional biosurfactants leads to the dissociation of parts of the
biofilm [171]. Interference with biofilm regulating quorum sensing systems has been reported [60].
Furthermore, some lipopeptides, in particular, polymyxins, are applied to adsorb lipopolysaccharide
endotoxins and may, thus, contribute to relieve inflammation or avoid sepsis reactions [172].

Some biosurfactants have furthermore received a lot of attention because of their anti-tumour
cell activity [53,165]. Although some surface-active natural products have successfully entered
clinical trials like the marine compound didemnin B, reports of in vitro anticancer activities of
biosurfactants should be treated with some caution, as shown for sophorolipids. Here, translation to
in vivo systems resulted in even opposite effects, i.e. an enhanced metastasis by the release of cells from
the primary tumour [173]. In addition to naturally occurring molecules, modification approaches using
mutasynthesis, semisynthesis or molecular engineering of the production machinery (see Section 7)
have been described, specifically for lipopeptides aiming to change or improve bioactivities [174–176].

Furthermore, biosurfactants have been successfully tested for the treatment of burn wounds,
where they facilitated wound healing and reduced collagen content-related scar-formation [177].

6.2. Food

The usage of non-toxic and biodegradable ingredients is crucial for food production. In view of
the fact that the continuing growth of the human population requires measures to increase agricultural
productivity, biosurfactants can provide support by (i) enhancement of beneficial microbe-plant
interactions, (ii) protection from phytopathogens, (iii) soil improvement, and (iv) stimulation of effective
foliar fertilisers uptake [178–181]. In addition to their applications in food production, the antimicrobial
and antibiofilm effects can also be put to use in the food industry to sanitise production equipment
and prevent food spoilage [182]. Applications in food products themselves mainly serve consistency
control, stable solubilisation of ingredients like flavour oils, and fat stability [183,184]. Furthermore,
compounds like Massoia lactone, which exhibits a pleasant odour and flavour, can be obtained from
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marine fungi [59], which may be applied as a novel natural resource for the compound as an alternative
to the currently dominant production route applying synthetic chemistry. Finally, wastes of the
food industry may be used as feedstock to produce biosurfactants in the first place [183]. A smart
combination of these applications may finally enable a “cradle to cradle approach” as required by
a strictly circular bioeconomy.

6.3. Consumer Products

Cosmetics-related applications of biosurfactants are mainly based on their emulsifying,
solubilising, wetting, foaming and dispersing properties, which support the solubilisation of
hydrophobic ingredients in the products as well as their delivery through the skin barrier [185–187].
The low irritancy and high skin compatibility of many biosurfactants constitute a strong advantage
over non-natural counterparts [188]. Biosurfactants with antimicrobial activity also see use in cosmetic
products as recently reviewed [188–191].

Due to their intrinsic emulsifying and surface-active properties, application of biosurfactants as
a nature-derived alternative to chemical detergents for cleaning purposes appears obvious [192–194].
In addition to their biodegradability, which makes them less threatening upon environmental release,
the interest to include biosurfactants in such applications is driven by their frequently observed activity
over a broad range of temperature, pH, and salinity [195,196]. Biosurfactants produced by cold-adapted
microbial species common in marine habitats are of particular interest for less energy-demanding
low-temperature applications [56,135]. Despite all the advantages, the establishment of biosurfactants
as a sustainable alternative to inexpensive conventional surfactants is still impeded by the fact that the
bulk detergent market is strongly driven by cost-effectiveness. Although biosurfactants currently appear
too expensive to compete, few cleaning products containing glycolipids have been commercialised as
niche products and successfully marketed emphasising sustainability and biodegradability.

6.4. Bioremediation

Due to their biodegradability and low ecotoxicity, biosurfactants appear predetermined for
applications involving a release into the environment. Such processes are of great interest, since the
accumulation of petroleum hydrocarbons, heavy metals and other pollutants constitute a growing
global concern for terrestrial and marine environments [150,197–199]. Examples are remediation
processes to treat polluted sites by applying bioremediation concepts that rely on bio-based compounds.
In line with their natural function, biosurfactants can be applied to promote water solubility of
hydrophobic pollutants, which facilitates their removal [110,200,201]. Here, they appear as an
ecologically supreme alternative to classical surfactants applied in remediation [202,203]. As enhanced
solubility or emulsification also facilitates the cellular uptake of contaminants, biosurfactants are
especially useful in remediation techniques combining biochemical supplements and living organisms.

6.5. Enhanced Recovery of Fossil Resources

Despite known drawbacks, like the danger of environmental pollution, crude oil and
petroleum-based products still play a significant role in modern society. However, common oil
extraction procedures are only capable of recovering 10%–40% of the content of oil reservoirs [204],
calling for new concepts to enhance oil recovery. The microbially enhanced oil recovery (MEOR) as one
of these concepts utilises the natural capabilities of certain microorganisms to solubilise oil, for example,
by the help of biosurfactants (Section 5). It includes (i) stimulation of the growth of reservoir-indigenous
hydrocarbonoclastic bacteria, for example, by offering additional nitrogen sources; (ii) injection of
selected consortia of such bacteria into the reservoir; or (iii) ex situ production and addition to reservoirs
of microbial compounds including biosurfactants [205]. Accordingly, several biosurfactants have been
proven to enhance oil recovery [206].

Gas hydrates, which are ice formations with trapped molecules of gas (typically methane) inside,
represent another repository of stored energy and carbon, mainly found beneath the sea floor and
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in permafrost regions. These repositories are regarded as a next-generation energy source [207]
and, therefore, current efforts aim to develop technologies for the efficient and safe storage and
transportation of gas hydrates. Studies showed that biosurfactants are capable to promote methane
hydrate re-formation and thus to improve the storage [208,209].

6.6. Industrial Processes

Biosurfactants are discussed as facilitators of several industrial processes including cooling and
biorefinery. Industrial process cooling, cold-storage, and air conditioning systems may rely on ice
slurry, a homogenous mixture of water and small ice particles. However, the particle size is detrimental
to flow and equipment. Di-acetylated MELs were shown to prevent agglomeration in ice-water
slurries by stabilising small ice particles and thus preventing the formation of bigger crystals [210].
MEL additives were furthermore shown to improve flow properties of biodiesel and hence improve its
performance at low temperature [211]. Biosurfactants are also applicable to improve the degradation
of complex biomass in so-called biorefinery processes to exploit alternative industrial resources. Here,
their supplementation may enhance enzymatic lignocellulose degradation efficiency, probably by the
improvement of substrate binding of the applied cellulases [212]. Another study reported increased
hydrogen production from organic solid waste through surfactin and saponin supplementation [213].

In summary, biosurfactants are useful for a variety of highly diverse applications. However, with
the exception of studies concerning medicinal application, most reports currently focus on a small
set of well-characterised compounds, that is, sophorolipids, rhamnolipids, mannosylerythritol lipids
and, from the lipopeptide group, surfactin and related molecules. Other biosurfactants will surely
open further opportunities or perform even better in already discussed applications. In particular,
biosurfactants from marine environments may be of interest because they may be adapted to work
efficiently in cold or saline environments and therefore open up further fields of application [57].
Most often, temperature or salinity of a habitat is not stated in reports on novel biosurfactant producing
isolates. Hence, the physicochemical properties of those products cannot be necessarily deduced from
the source and have to be characterized in vitro. Current difficulties to supply industries with sufficient
amounts of novel compounds [214] require the development of appropriate production strategies and
processes. The structural elucidation and physicochemical characterisation of such novel biosurfactants
will also lead to novel applications.

7. Perspectives for the Biotechnological Exploitation of Marine Biosurfactants

The biotechnological production of non-marine biosurfactants is described in a multitude
of studies in both, natural microbial producer strains and heterologous systems [37,110,215,216].
However, production strategies for compounds from marine producer organisms, predominantly
bacterial species (see Section 3), have been explored only occasionally. Examples include a study on
A. borkumensis-derived glycolipids [52] and, very recently, another on Rhodococcus-derived trehalose
lipids [217]. In the following, general aspects regarding future biotechnological exploitations of marine
biosurfactants are discussed.

The production of biosurfactants by cultivating marine bacteria may pose technical challenges in
establishing robust and feasible fermentation conditions [53]. Furthermore, intrinsic regulatory circuits
may require the addition of oil for induction of the surfactant biosynthesis [218] (Table 1), which in turn
makes subsequent downstream processing more complex. Therefore, recombinant production appears
to be a more promising approach for accessing marine biosurfactants if sufficient knowledge about
biosynthesis and genetics is available. Here, functional metagenomics [28,29], sequence data generated
by next-generation sequencing of single producer strains or environmental DNA and a detailed
understanding of the underlying pathways facilitated by steadily improved bioinformatic tools will
allow the identification of a multitude of biosynthesis pathways leading to marine surfactants [219,220].
Heterologous biosurfactant production may even contribute to elucidating biosynthetic mechanisms
as shown recently [129]. Currently, Pseudomonads, namely P. aeruginosa and P. putida, as well as
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B. subtilis, and Escherichia coli, are mainly used for the biotechnological production of surfactants
of non-marine origin [110,215,216]. These strains can provide biosynthetic precursor molecules and
exhibit sufficient tolerance towards the respective surface-active end products. Moreover, due to
phylogenetic relationships, they feature genetic compatibility with a range of marine producer strains
in terms of guanine-cytosine content and thus codon usage. However, several marine producer strains
belong to actinobacterial clades, calling for the exploration of additional host systems for marine
biosurfactant production. To fill this gap, Streptomycetes that represent valuable hosts especially for
NRPS-derived compounds [176,221], may prove suitable as production hosts in future endeavours.

As a first step toward the implementation of recombinant biosynthesis in a chosen host,
the biosynthetic genes need to be cloned and functionally expressed. Therefore, smart cloning methods
represent a key enabling technology in natural product research in general, where a number of genes
or large biosynthetic gene clusters need to be handled [222]. Besides conventional restriction-ligation
cloning, diverse “smart” protocols are established including type II restriction enzyme-based cloning
strategies [223,224] and restriction-independent methods like phage enzyme-mediated recombination
in E. coli and in vitro homology-based methods [225–227]. In addition, yeast recombination has been
increasingly used for successful cloning and engineering of biosynthetic genes, for example, encoding
biosurfactant synthesis [228–230].

The transfer of the cloned genes into an expression host is usually carried out using well-established
protocols including electroporation and conjugation methods [231–234]. The respective genes can be
maintained on a plasmid or integrated into the bacterial chromosome, both being viable strategies.
For recombinant biosurfactant production with P. putida and E. coli, plasmid-based gene expression has
been used in most cases [130,235–237], whereas chromosomal integration of biosynthetic genes becomes
increasingly popular in natural products research in general [222,238]. This also holds for B. subtilis,
where chromosomal integration represents a common approach to confer gene expression for the
production of biosurfactants and other natural products [120,230,239]. For future approaches, it should
be considered that plasmid-based expression enables high flexibility, that is, the plasmid-encoded genes
can easily be expressed in different strains with different metabolic backgrounds. However, the burden
of plasmid replication can lead to certain instability of constructs [230,239,240]. Strategies have been
developed to address this [241], but it is altogether abrogated by chromosomal integration strategies.
Here, diverse tools are available like random chromosomal integration carried out using transposon
Tn5 [242] or site-specific integration using transposon Tn7 or targeted recombination [238,243], with all
methods being functional in a range of bacterial species. Of course, chromosomal integration strategies
may come with constraints on flexibility compared to plasmid application.

For expression of surfactant biosynthetic genes, host-specific promoters included in the cloned
expression constructs can be employed. Besides, the implementation of hybrid or synthetic promotors
is a widely-used expression strategy, as recently reviewed for rhamnolipid production [110].
Most commonly applied promoters include Ptac or synthetic promoters for use of P. putida as
host [44,110,130], resistance gene promoters for expression in B. subtilis [119,120], and the Ptac or
phage promoters for E. coli [72,237,244]. In addition, intrinsic chromosomal promoters of the host can
be readily exploited by integration in highly transcribed sites of the bacterial genome [245,246].

Expression of natural biosynthetic genes usually yields the natural product, as it does in
a recombinant system. Beyond this, the quality of the final product can be optimized aiming
for tailor-made “designer-molecules” [130,247]. For example, pure mono-rhamnolipids can be
produced in P. putida by expression of genes rhlAB (from P. aeruginosa or B. glumae) and omitting
gene rhlC, whereas co-expression of rhlC can lead to the exclusive production of di-rhamnolipids.
For lipopeptide production, module engineering of the NRPS machinery, for example, modification of
the adenylation domains or module deletion can lead to novel compounds as shown for polymyxin
and surfactin [120,175].
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Effective biosynthesis leading to high product yields not only requires a host tolerating the product
but is likewise dependent on a sufficient supply of biosynthetic precursor molecules. This may be
achieved by the exploitation of the intrinsic metabolism of the production hosts and by additional
engineering. For rhamnolipid production as an example, the fatty acid metabolism and the carbon
metabolism generating dTDP-l-rhamnose are required [215,248,249]. To enhance precursor supply, the
deletion of competing pathways like polyhydroxyalkanoate biosynthesis has proven valuable [250].
Similar approaches should allow strengthening the supply of precursors for other glycolipids. For amino
acid-derived non-ribosomal lipopeptides like daptomycin, an increase in production can likewise be
achieved by elimination of intrinsic pathways potentially competing for precursor molecules [251].

Product tolerance is an intrinsic property of selected host strains with P. putida as a prominent
example [236]. In addition, key features like an efficient export of toxic compounds, which render
an organism tolerant and represent beneficial traits for high yield production, might be increased
by engineering. Most biosurfactants are indeed excreted, notably both by the natural and by the
recombinant producers. On the one hand, vesicles may be involved, and on the other hand, active
or passive transporters may mediate product release into the medium. With respect to lipopeptide
transport, studies on surfactin and arthrofactin suggest an interaction of several less-specific pumps
driven by ATP- and/or proton motif force [252–254]. Regarding glycolipids, however, the molecular
genetic basis and underlying mechanisms in bacteria are currently unknown, in contrast to the
yeast system, where specific transporters have been assigned to different classes of glycolipids [255].
The identification of transporters for bacterial surfactants, in particular glycolipids, will spur the
creation of next-generation production platforms with an active excretion function which may increase
productivity [253,256]. In addition to molecular genetic approaches, process engineering can help
to increase product yields, for example, by simultaneous separation of the biosynthetic product
from the broth by in situ product removal. This can be achieved, for example, by adsorption or by
taking advantage of the specific foaming properties of biosurfactants via foam fractionation [257,258].
Here, it becomes evident that suitable techniques from the fields of molecular genetics/bioinformatics
and microbiotechnology, together with smart process development, truly synergise in the recombinant
production of biosurfactants, be it from marine or other sources for a number of applications (Figure 3).

8. Conclusions

Marine environments are a promising source for a large variety of surface-active metabolites.
Undoubtedly, their chemical diversity is much larger than described until today and the structures
of many biosurfactants still remain unknown. Furthermore, the oceans comprise a large diversity
of habitats and should contain many more biosurfactant producing organisms to be discovered,
in particular, in promising niches like communities associated with filter-feeding invertebrates or sites
affected by toxic pollution. Here, sampling and subsequent enrichment culturing of biosurfactant
producing microbes or culture-independent methods, like functional or sequence-based metagenomics,
will allow retrieval of surfactant biosynthetic DNA from these niches. The availability of affordable and
fast sequencing methods and bioinformatic tools for the analysis of biosynthetic pathways and metabolic
networks will furthermore facilitate the elucidation of the yet largely unknown biosynthesis pathways
for marine biosurfactants thereby enabling the development of synthetic biology derived concepts
to construct efficient recombinant production strains. All these interdisciplinary research efforts will
contribute to the identification, production and application of novel marine biosurfactants (Figure 3).
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surface-active compounds can be identified in habitats enriched for biosurfactant producers, either by
culture-dependent or -independent methods using simple assays like atomised oil assay, grid assay
or drop collapsing, and emulsification assay, respectively. NMR-analysis of biosurfactant structures
enables the elucidation of new compounds, while sequencing and bioinformatics allows the deciphering
of the biosynthetic background. Novel sophisticated strain engineering and expression tools will result
in designed next-generation cell factories able to convert renewable substrates into a wealth of
desired compounds with high precision and efficiency. Product yields may be further optimized by
process engineering. The combination of these methods will provide biosurfactants for highly diverse
applications in the future: for environmental remediation, microbially enhanced oil recovery, plant
growth promotion or other applications in the food sector as well as in medical and consumer products.
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