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further into larger fibrillar aggregates, and accumulates in 
characteristic intracellular compartments of granulovacu-
olar degeneration together with TDP-43 and phosphoryl-
ated tau. Importantly, pSer26Aβ oligomers exert increased 
toxicity in human neurons as compared to other known Aβ 
species. Thus, pSer26Aβ could represent a critical species 
in the neurodegeneration during AD pathogenesis.
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Introduction

Alzheimer’s disease (AD) is the most common form 
of dementia and characterized by the combined occur-
rence of extracellular amyloid plaques and intraneu-
ronal neurofibrillary tangles [44]. The accumulation of 
amyloid-β (Aβ) as oligomers and fibrils is an early event 
in the development of AD. Aβ peptides derive from the 
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proteolytic processing of the amyloid precursor protein 
(APP) by β- and γ-secretases [54]. A critical role of Aβ 
in the pathogenesis of AD is strongly supported by muta-
tions in the genes encoding APP or presenilin 1 and 2 
that cause early-onset familial forms of AD (FAD) [45]. 
These mutations commonly increase the production and/
or aggregation of Aβ and deposition of amyloid plaques 
[7, 9, 18]. However, the vast majority of cases occur late 
in life without mutations in the amyloid precursor protein 
(APP) or presenilins (PS) that cause familial forms of 
early-onset AD.

The Aβ peptide is natively unfolded and tends to aggre-
gate into soluble oligomers, protofibrils and fibrils [3]. 
Recent studies suggest that the toxicity of Aβ and other 
amyloidogenic proteins is not only exerted by insolu-
ble fibrils, but rather by soluble oligomeric intermediates 
[11, 19, 33, 52]. Strong evidence indicates a critical role 
of soluble Aβ oligomers in the pathogenesis of AD [4, 
19,32]. While extracellular deposits of this peptide in form 
of plaques only weakly correlate with neuronal cell death 
and clinical stage of AD, soluble oligomers [11, 32, 52] 
and intracellular [17, 56] deposits of Aβ have been shown 
to associate more closely with disease progression. Certain 
FAD mutations in the Aβ domain facilitate the formation of 
such assemblies [13, 23, 25, 34, 49]. However, these muta-
tions are rare and mechanisms that drive the aggregation of 
wild-type Aβ during the pathogenesis of much more com-
mon sporadic forms of AD are largely unclear.

We recently demonstrated that extracellular Aβ under-
goes phosphorylation by secreted variants of protein 
kinase A [26]. Phosphorylation of Aβ at serine (Ser) 8 resi-
due promotes its aggregation into oligomeric and fibrillar 
assemblies [26]. Phosphorylation of Ser8 also attenuated 
the proteolytic degradation of Aβ by certain proteases and 
clearance by microglial cells [27]. By employing pSer8Aβ-
specific monoclonal antibodies, we showed the early 
intraneuronal accumulation and increased aggregation of 
pSer8Aβ in transgenic mouse and human brains [29, 42]. 
These findings highlight the plausible role of Aβ phospho-
rylation in AD pathogenesis.

Aβ can also undergo phosphorylation at Ser26 which 
modulates its aggregation in vitro [36, 41]. Here we inves-
tigated the effect of Ser26 phosphorylation on aggrega-
tion, toxicity and its presence in human AD brains and 
transgenic mouse models. We demonstrate a peculiar 
deposition of Ser26 phosphorylated Aβ in human and 
transgenic mouse brain that differs from that observed for 
other Aβ species. Notably, phosphorylation of Aβ at Ser26 
strongly promotes the formation and stabilization of low 
molecular weight soluble Aβ oligomers with increased 
toxicity on human neurons.

Materials and methods

Reagents and antibodies

Synthetic non-phosphorylated Aβ1–40 (npAβ), phospho-
rylated Aβ1–40 variants (pSer8Aβ and pSer26Aβ) and 
other modified Aβ (Tyr10 nitrated, Glu3 pyroglutamate 
and truncated 3–42) peptides were purchased from Pep-
tide Speciality Laboratory (PSL, Germany). Thioflavin T, 
4′,6-diamidino-2′phenylindole dihydrochloride (DAPI), 
3,3′-diamino-benzidine (DAB) and methanol were from 
Sigma-Aldrich (USA). Congo red was purchased from 
AppliChem GmbH (Germany). Precast 4–12  % NuPAGE 
Bis–Tris mini and midi gels, prestained protein molecular 
weight markers and PrestoBlue® cell viability reagent were 
from Life technologies (Germany). Nitrocellulose mem-
branes were from Schleicher and Schuell (Germany). ECL 
Western blotting detection reagents were from GE Health-
care (UK). Vectastain ABC kit and hematoxylin were from 
Vector laboratories (USA). Protease and phosphatase inhib-
itors were from Roche laboratories (Germany). BCA™ 
protein assay kit was from Thermo Scientific (USA). Mon-
oclonal Aβ antibodies 6E10 and 4G8 were purchased from 
Covance Laboratories (USA), and 82E1 antibody was from 
IBL Corporation (Japan). Mouse monoclonal GFAP anti-
body was from Synaptic systems (Germany), and 22C11 
antibody specific against amyloid precursor protein (APP) 
(a.a. 66–81 of APP at N-terminus) was from Merck Mil-
lipore (Germany). A Mouse monoclonal Phospho-PHF-tau 
specific AT8 antibody was purchased from Thermo scien-
tific (USA). Rabbit polyclonal anti-CK1δ (antiserum 108) 
and anti-CK1ε (antiserum 712) were generously provided 
by Dr. Uwe Knippschild from University Hospital Ulm, 
Germany. The anti-mouse, anti-rabbit secondary antibod-
ies conjugated to horseradish peroxidase were from Sigma 
Aldrich (Germany), Secondary fluorescent anti-mouse 594 
DyLight, anti-rabbit 488 antibodies were from Thermo Sci-
entific (USA), IRDye800CW and IRDye680RD were from 
LI-COR Biotechnology. Biotinylated secondary anti-mouse 
and anti-rabbit antibodies were from DAKO (Glostrup, 
Denmark). The dilutions of each antibody stock are men-
tioned for the respective methods or in figure legends.

Generation of pSer26Aβ‑specific antibodies

The pSer26Aβ-specific polyclonal antibody SA6192 was 
generated in rabbits by injecting synthetic Aβ19–31 pep-
tides with Ser26 in phosphorylated state (antigen sequence: 
FFAEDVG (p) SNKGAI) conjugated with keyhole limpet 
hemocyanin (KLH) (Eurogentec, Belgium). Phosphoryla-
tion state-specific antibodies were purified from the serum 
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by double-affinity purification using pSer26Aβ and npAβ 
peptide. The specificity of the purified antibodies was char-
acterized by enzyme-linked immunosorbent assay (ELISA) 
and Western blotting (WB). Further details are described in 
the Supplementary Information.

Biochemical and immunohistochemical detection 
of pSer26Aβ in transgenic mouse brains

For biochemical analysis of pSer26Aβ, whole brain 
homogenates from APP/PS1KI were prepared as described 
previously [26, 29]. Immunohistochemistry was performed 
on 4 µm sagittal paraffin sections as described previously 
[58]. Further details of Aβ extraction and immunohisto-
chemistry of transgenic mouse brains are described in the 
Supplementary Information.

Immunohistochemistry of human AD brain

Human autopsy brains were received from University Hos-
pital Bonn (Germany) and from University Hospital Ulm 
(Germany) in accordance with the laws and the permission 
of the local ethical committees. Post-mortem diagnosis of 
Alzheimer’s disease was carried out according to the NIA-
Reagan Criteria [6, 37]. All procedures were conducted in 
accordance with the laws and the permission of the local 
ethical committees. Further detailed methods and informa-
tion on cases are given in the Supplementary Information.

Aβ aggregation assays

Aβ aggregation kinetics by Thioflavin T (ThT) and Congo 
Red (CR) binding assays were performed as described pre-
viously [26]. Morphology of the aggregates was character-
ized by transmission electron and atomic force microscopy. 
Further details are given in the Supplementary Information.

Cell viability assays

Cell viability assays were carried out with human neuroblas-
toma cells (SK-N-SH), embryonic stem cell (ES)-derived 
neurons and induced pluripotent stem cell (iPSC)-derived 
neurons. Further details on cultivation and assay procedures 
are described in the Supplementary Information.

Results

Phosphorylation state‑specific antibodies detect 
pSer26Aβ aggregates in transgenic mouse models of AD

Post-translational modifications could alter the aggrega-
tion, degradation and toxicity of Aβ [26–28, 30, 43, 57]. 

Synthetic Aβ peptides phosphorylated on either Ser8 or 
Ser26 showed faster formation of oligomeric assemblies 
in  vitro [26, 41]. To specifically investigate Ser26-phos-
phorylated Aβ (pSer26Aβ) species in  vivo, we gener-
ated phosphorylation state-specific antibodies (Fig.  1a). 
Double-affinity purified antibody SA6192 was highly spe-
cific for Aβ phosphorylated at Ser26 (Fig.  1b). It did not 
detect Ser8 phosphorylated (pSer8Aβ), pyroGlu-modi-
fied (pyroAβ3–42), N-terminally truncated (Aβ3–42), or 
nitrosylated (3NTyr10-Aβ) Aβ variants (Fig.  1c), while 
the generic 4G8 antibody which recognizes an epitope 
between amino acids 17 and 24 of the Aβ domain, detected 
npAβ (Fig.  1b) and all the tested peptide variants simi-
larly (Fig.  1c). SA6192 did not detect full-length APP or 
its C-terminal fragments in brain extracts of transgenic 
mice, suggesting selective phosphorylation of Ser26 after 
the generation of Aβ (Supplementary Fig.  1a, b). Detec-
tion of pSer26Aβ by the SA6192 antibody was efficiently 
blocked with synthetic pSer26Aβ, but not with synthetic 
npAβ peptide, further demonstrating the specificity of this 
antibody (Supplementary Fig.  1c, d). We took advantage 
of the SA6192 antibody to characterize the deposition of 
pSer26Aβ peptides in transgenic mouse brains. Western 
immunoblot analysis of brain extracts from APP/PS1KI 
transgenic mice showed the presence of pSer26Aβ pep-
tides in water-soluble (predominantly containing extracel-
lular soluble Aβ) and in SDS-soluble fractions (predomi-
nantly containing intracellular and membrane-associated 
Aβ) at 6  months of age (Fig.  1d, e). pSer26Aβ reactivity 
was not detected in non-transgenic mouse brains. The 
quantification of the SA6192 immunoreactivity of water-
soluble APP/PS1KI transgenic mouse brain extracts using 
synthetic pSer26Aβ as standard revealed that ~10–15  % 
of extracted monomeric Aβ is in a phosphorylated state 
(50 μg protein from water-soluble brain extracts contained 
~0.17 ± 0.03 ng of pSer26Aβ and ~1.55 ± 0.09 ng of total 
Aβ).

In 2-month-old transgenic mice, pSer26Aβ was not 
detectable by Western immunoblotting (Fig.  1d, e). 
Interestingly, immunohistochemistry revealed abundant 
deposition of pSer26Aβ intraneuronally in 2-month-old 
animals when extracellular plaques were hardly detect-
able (Fig.  1f). The pronounced intraneuronal reactivity 
was also detected in older mice in different brain regions. 
Occasionally, extracellular deposits were also positive 
for pSer26Aβ (Fig. 1f). Double-labelling with pSer26Aβ 
and generic Aβ antibodies specifically demonstrate pref-
erential intraneuronal accumulation of pSer26Aβ in the 
presence of pronounced extracellular plaques (Fig.  1g). 
As compared to staining with generic Aβ antibod-
ies, pSer26Aβ reactivity was restricted to structures in 
the core of the plaques in aged transgenic mouse brains 
(10  months) (Supplementary Fig.  2a). Double-staining 
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also revealed the association of reactive astrocytes in the 
vicinity of neurons with intracellular pSer26Aβ (Supple-
mentary Fig. 2b). Reactivity of the SA6192 antibody was 
not observed in control mice (Supplementary Fig.  3c). 

SA6192 immunoreactivity in transgenic mice was effi-
ciently blocked by synthetic pSer26Aβ, further supporting 
the specific detection of pSer26Aβ deposits (Supplemen-
tary Fig. 3b, c). Additional immunohistochemical staining 
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of 6- and 12-month-old 5XFAD mouse brains also dem-
onstrated intraneuronal accumulation of pSer26Aβ aggre-
gates and few extracellular pSer26Aβ positive plaques 
(Supplementary Fig. 4). These data demonstrate a unique 
pattern of deposition of pSer26Aβ that differs from that 
of other Aβ species, including post-translationally modi-
fied variants like pSer8Aβ [26, 29] or pyroglutaminated 
Aβ [43, 57].

Selective intraneuronal deposition of pSer26Aβ 
in human brains

Human AD brains also revealed a specific accumulation 
pattern of pSer26Aβ. pSer26Aβ could be detected in indi-
vidual cored-neuritic plaques and partially overlapped with 
the pattern of antibodies raised against the middle region 
of Aβ (4G8; epitope 17–24) (Fig.  2a, b; Supplementary 
Fig.  5a, b). pSer26Aβ was also detected in APP-positive 
dystrophic neurites in these plaques (Fig.  2c, d). Anti-
pSer26Aβ also stained additional material indicating the 
deposition of pSer26Aβ within extracellular plaques (Sup-
plementary Fig.  5a, c). A considerable number of diffuse 
plaques were also stained with anti-pSer26Aβ (Supple-
mentary Fig. 5d). By analysis of the distinct plaque-types 
occurring in the medial temporal lobe, pSer26Aβ-positive 
material was restricted to diffuse, cored and neuritic 

plaques as well as subpial band-like amyloid (Supplemen-
tary Fig.  5d), whereas fleecy amyloid and presubicular 
lake-like amyloid was not stained in the cases studied here 
(Supplementary Table 1). Moreover, staining of pSer26Aβ 
in amyloid plaques was restricted to the symptomatic 
AD cases observed here. No pSer26Aβ-positive plaques 
are observed in pathologically diagnosed preclinical AD 
(p-preAD) cases.

Notably, pSer26Aβ was also detected inside of neu-
rons that showed no or only faint reactivity with antibod-
ies against APP or generic Aβ (Fig. 2a–d, arrowhead). The 
diffuse neuronal staining was not only detected in AD, but 
also in pathological pre-AD and even in control cases. The 
intraneuronal pSer26Aβ showed the typical morphologi-
cal pattern of granulovacuolar degeneration (GVD) [48]. 
The morphological distribution of the pSer26Aβ-positive 
granules predominantly in neurons of the CA1-subicu-
lum regions of the hippocampal formation fitted with that 
known for GVD (Fig. 2e–g) [48]. Interestingly, most neu-
rons with GVD lesions also contained abnormally phos-
phorylated τ-protein (Fig.  2h–j), phosphorylated transac-
tive response DNA-binding protein (pTDP43) and casein 
kinase 1δ/ε (Supplementary Fig.  5e–h). Notably, CK1 
indeed could phosphorylate Aβ at Ser26 (Supplementary 
Fig.  6a–d), suggesting a phosphorylation of Aβ by CK1 
in GVD compartments. Interestingly, pSer26Aβ was con-
sistently detected together with pTDP43 in GVD, even 
in p-preAD and non-AD control cases (Supplementary 
Table 2).

Peculiar aggregation behaviour of pSer26Aβ

Phosphorylation of Aβ at Ser26 alters plasticity of a criti-
cal turn region and impairs fibrillization [41]. Accordingly, 
pSer26Aβ showed strongly reduced binding of Congo 
Red (CR) and Thioflavin T (ThT) as compared to npAβ 
(Fig.  3a; Supplementary Fig.  7a). In contrast, phospho-
rylation at Ser8 strongly increased CR and ThT binding. 
Kinetic analysis revealed a slight but very rapid increase in 
ThT binding of pSer26Aβ that did not further increase over 
time (Supplementary Fig.  7a; inset), indicating rapid for-
mation of smaller assemblies without proceeding to fibril 
formation (Fig. 3b; Supplementary Fig. 7b). In denaturing 
(Fig.  3c) and non-denaturing PAGE (Fig.  3d), pSer26Aβ 
was detected as smaller oligomeric assemblies (i.e., dimers 
and trimers) already at very short incubation periods that 

Fig. 1   Specific detection of Aβ phosphorylated at Ser26 in transgenic 
mouse models of AD. a Amino acid sequence of human Aβ indicat-
ing the phosphorylation site at Ser26. Underlined glutamic acid (E) 
and aspartic acid (D) residues comprise a consensus phosphoryla-
tion sequence for casein kinase 1. b, c SA6192 antibody specifically 
detects pSer26Aβ in immunoblotting without cross-reactivity against 
other post-translationally modified or non-modified Aβ variants (c). 
Generic 4G8 antibody recognizes non-modified and all the modi-
fied Aβ variants (b, c). d, e WB analysis of sucrose (d) and SDS (e) 
fractions of 2- and 6-months-old APP/PS1KI (Tg) and non-Tg (WT) 
mouse brain homogenates revealed the presence of pSer26Aβ in vivo. 
SA6192 showed no reactivity with endogenous mouse APP in non-
transgenic mice, further demonstrating the specificity of this antibody 
(Supplementary Fig.  1a, b). The bands indicated by asterisks likely 
represent heavy and light chains of endogenous immunoglobulins. 
f Immunohistochemical staining of 2-, 6-, and 10-month-old APP/
PS1KI mouse brain tissues with SA6192 antibody demonstrates 
the occurrence of intraneuronal (2 and 6  months) and extracellular 
(10 months) pSer26Aβ deposits in different brain regions. g Double-
labelling with 6E10 (green) and SA6192 (red) revealed intraneuronal 
immunoreactivity of SA6192. The inset in the merged image shows 
a higher magnification of 6E10 and SA6192 co-localization (yellow) 
within the cell body of a cortical neuron. Scale bars f and g 50 μm

◂
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persist even after longer incubation time, consistent with a 
very rapid self-assembly of this Aβ variant. As already indi-
cated by the CR and ThT binding assays, pSer8Aβ reached 

a higher aggregation state than npAβ represented by the 
increased reactivity in the upper parts of the gel (Fig. 3b–
d; Supplementary Fig.  7b). Even after longer incubation 
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periods, pSer26Aβ only formed intermediate oligomeric 
forms migrating between 30 and 80 kDa in SDS-containing 
denaturing gels (Fig. 3c) and between 30 and 400 kDa in 
native gels (Fig. 3d). npAβ and pSer8Aβ formed higher oli-
gomeric and fibrillar (<1000 kDa) assemblies (Fig. 3c, d). 
Transmission electron microscopy (TEM) and atomic force 
microscopy (AFM) revealed only heterogeneous globular 
species of various sizes of pSer26Aβ without formation of 
fibrillar structures, as seen with npAβ peptide (Fig.  3e, f; 
Supplementary Fig. 8).

Increased toxicity of pSer26Aβ in human neurons

To assess the toxicity of the pSer26Aβ in a human neu-
ronal model, we used human neuroblastoma cells, human 
neurons differentiated from embryonic stem cell (ESC) 
and induced pluripotent stem cell (iPSC)-derived neural 
stem cells (lt-NES) cells. In a first set of experiments, the 
different Aβ variants were added without prior aggrega-
tion to human neuroblastoma cells (Fig.  4a) and to dif-
ferentiated neurons (Fig.  4b). As compared to the non-
phosphorylated peptide, Aβ pseudophosphorylated at 
position 26 (AβS26D) induced increased toxicity in neu-
roblastoma cells (Fig. 4a) and also in hESC-derived neu-
rons (Fig. 4b). Even at concentrations when npAβ showed 
no overt toxicity, AβS26D impaired neuronal metabo-
lism comparable to the effect of a tenfold higher con-
centration of npAβ in both neuroblastoma cells (Fig. 4a) 
and human ESC-derived neurons (Fig.  4b). To specifi-
cally assess the toxic properties of different Aβ variants 

depending on their aggregation state, we next exposed 
human iPSC-derived neurons to preformed assemblies of 
npAβ, pSer8Aβ and pSer26Aβ. Dot blot analysis of the 
different preformed Aβ assemblies showed significant dif-
ferences in their immunoreactivity against conformation-
dependent anti-oligomer antibodies such as A11 (Fig. 4c) 
and OC (Fig.  4d; Supplementary Fig.  9) [21, 22]. npAβ 
and pSer8Aβ assemblies were detected by both A11 and 
OC antibodies after 2–6  h of incubation. However, both 
antibodies revealed only very little if any reactivity for 
assemblies formed by pSer26Aβ (Fig.  4c, d). Native-
PAGE analysis showed that the samples from different 
incubation times contained assemblies of different sizes 
(Fig.  4e). After 2–6  h of aggregation, samples of npAβ 
and pSer8Aβ contained oligomers of intermediate size 
(150–480  kDa). After 6–24  h, npAβ and pSer8Aβ also 
formed high molecular weight assemblies, which were not 
detected with pSer26Aβ. Instead, oligomers of intermedi-
ate size formed by pSer26Aβ were prominently detected 
at 24  h of incubation. Monomeric and dimeric Aβ were 
detected at all time points. However, these forms might 
also result from dissociation of aggregates, even during 
native-PAGE conditions. Notably, npAβ and pSer8Aβ var-
iants exerted toxicity only at 6 and 2 h of pre-aggregation, 
respectively, and lost their toxic activity during extended 
aggregation (Fig. 4e, f). After longer aggregation periods, 
toxicity of npAβ and pSer8Aβ was decreased. A similar 
behaviour was previously observed for pyroE3-modified 
Aβ [39]. Compared to npAβ and pSer8Aβ, pSer26Aβ 
exerted strongest toxicity (Fig. 4f). Toxicity of pSer26Aβ 
was observed after 24 h of pre-aggregation. Interestingly, 
during this time of incubation, pSer26Aβ also formed 
intermediate-size oligomers of 150–480  kDa, but no 
larger assemblies or fibrils (Fig. 4e, f).

Discussion

The present data reveal peculiar characteristics of Ser26 
phosphorylated Aβ in aggregation, brain deposition and 
neurotoxicity. In contrast to non-modified Aβ or other Aβ 
variants with post-translational modifications in the N-ter-
minal domain of Aβ, including Glu3 pyroglutaminated [43, 
57], Ser8 phosphorylated [26, 29], Tyr10 nitrated forms 
of Aβ [30], pSer26Aβ does not form higher prefibrillar or 
fibrillar assemblies. Instead, pSer26Aβ forms stable oli-
gomers of intermediate size that exert pronounced toxicity 
on human neurons.

In many neurodegenerative diseases, soluble oligom-
ers of pathogenic proteins are considered as the principal 
toxic forms, and the accumulation of large fibrillar deposits 

Fig. 2   Detection of intraneuronal pSer26Aβ aggregates and GVDs 
in human AD brains. Detection of pSer26Aβ in extracellular (arrows) 
and intraneuronal (arrowheads) deposits in the hippocampal CA1 
subfield (a, c, e, f, g, i). The extracellular Aβ plaques are co-stained 
with anti-Aβ17–24 (4G8) (b), and anti-APP antibody (22C11) (d).
The central amyloid core is stained with SA6192 and 4G8 but not 
with anti-APP indicating the co-deposition of pSer26Aβ together 
with non-phosphorylated Aβ in plaques (Supplementary Fig.  5a–c). 
Note the intraneuronal globular aggregates reactivity is selectively 
observed with pSer26Aβ (arrowhead in a, c), but not with APP anti-
bodies. Immunohistochemical analysis demonstrates strong intra-
neuronal granular cytoplasmic pSer26Aβ inclusions (arrows in e), 
and only weakly stained extracellular pSer26Aβ-positive plaques (P 
in e) (Supplementary Fig. 4d). These granular inclusions exhibit the 
morphological pattern of granulovacuolar degeneration (GVD) and 
most frequently occur in the CA1-subiculum area of the hippocam-
pal formation (arrow in f). GVD was also detected by anti-Aβ17–24 
staining (arrow in g). pSer26Aβ-positive GVD lesions colocalized 
with abnormal-phosphorylated τ in neurons (arrows in h–j). Note 
that neurofibrillary tangles were not labelled with anti-pSer26Aβ anti-
body (arrowhead in h–j). The panels in this figure are representative 
images from 4 different AD brains (a, b case # 7; c, d case # 3, e–g 
case # 1 and h, i case # 5 of supplementary Table 2). Scale bars a and 
b 50 µm; c and d 30 µm; e 20 µm; f and g 5 µm; h–j 20 µm

◂
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may be inert or even protective [1, 4, 15, 19, 47]. Thus, Aβ 
peptide aggregation into toxic, soluble oligomers is consid-
ered as an important event in the pathogenesis of AD [31, 
32, 53]. This is also supported by findings with transgenic 

animal models where pathological changes are frequently 
observed prior to the onset of amyloid plaque accumula-
tion [5, 16, 49]. In addition, soluble Aβ correlates better 
with dementia than insoluble fibrillar deposits [1, 11, 31, 
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32, 52], further suggesting that soluble oligomeric forms of 
Aβ may represent the primary toxic species in AD patho-
genesis. Our results indicate that phosphorylation at Ser26 
results in the specific formation of low and intermediate 
molecular weight, soluble oligomers. These pSer26Aβ 
oligomers are a persistent structural entity that remain as 
non-fibrillar assemblies and do not produce high molecular 
weight Aβ oligomers or fibrils even upon extended incuba-
tion time.

Monomeric Aβ is intrinsically disordered in aqueous solu-
tion. During conversion into fibrils, two β-strands are formed 
(residues Val12–Val24 and Ala30–Val40). These two β-strands 
form parallel β-sheets through intermolecular hydrogen bond-
ing, whereas the intervening region comprising residues 
Gly25–Gly29 forms a bend-like structure that brings the two 
β-sheets in contact through sidechain–sidechain interac-
tions [35, 51]. Formation of this turn/bend-like structure from 
Gly25 to Gly29 is important for fibrillization of Aβ and is 
one of the earliest events in Aβ self-association and nuclea-
tion of Aβ monomers as supported by several experimental 
and computational studies [2, 24, 35, 38, 41, 51]. Mutations 
such as the Flemish (A21G), Italian (E22K), Arctic (E22G), 
Dutch (E22Q), Osaka (E22Δ), and Iowa (D23N) that cause 
FAD and CAA are localized close to this critical region and 
interfere with turn formation and fibrillization [8, 10, 14, 18, 
24, 25]. Furthermore, computational studies have indicated 
an interaction of Asp23 and Ser26 that is particularly impor-
tant in organizing Aβ structure [2]. As Ser26 is located within 
the Gly25–Gly29 turn motif, phosphorylation of Ser26 in this 
turn region could play a crucial role in Aβ monomer folding, 

oligomerization and assembly. Introduction of a negatively 
charged phosphate group at this position could cause intermo-
lecular repulsive interactions that might lead to destabilization 
of the fibrillar conformation. The importance of Ser26 is fur-
ther supported by studies demonstrating that substitution of 
this residue by proline or cysteine residues alters fibrillization 
of Aβ [40, 55]. Furthermore, NMR spectroscopy and molecu-
lar dynamics simulations have shown that phosphorylation 
of Ser26 decreases the propensity of Aβ to form a β-hairpin, 
rigidify the region around the modification site and interfere 
with formation of a fibril-specific salt bridge between Asp23 
and Lys28 [41]. Our present data indicate that phosphorylation 
at Ser26 promotes the formation of a stable and neurotoxic Aβ 
assembly, thereby suppressing the formation of larger prefibril-
lar or fibrillar assemblies with lower toxic activity.

Several studies revealed that intraneuronal accumulation 
of Aβ precedes its extracellular deposition in AD patients 
and transgenic mouse brains and correlates with neurode-
generation [5, 16, 23, 29, 56, 58]. Immunohistochemical 
analysis of the transgenic mouse and human brains dem-
onstrated intracellular accumulation of pSer26Aβ, thereby 
resembling findings on accumulation of intracellular Aβ 
oligomers without extracellular plaques in transgenic mice 
expressing the APPE693Δ mutant [49]. This FAD mutation 
(Osaka) is located within the Aβ sequence and produces 
an Aβ variant lacking glutamate-22 (E22Δ) that exhibits 
enhanced oligomerization without fibrillization [50], very 
similar to the behaviour of pSer26Aβ. Notably, the intra-
neuronal pSer26Aβ accumulations in the human AD brain 
are observed in GVDs. GVDs are one of the pathological 
hallmarks commonly found in hippocampal pyramidal 
neurons of patients with aging-related neurodegenerative 
diseases including AD [48], and defined as electron-dense 
granules within double membrane-bound cytoplasmic vac-
uoles present in neurons, having an immunohistochemical 
signature that suggests that they derive from the autophagic 
system [12]. GVDs have been shown to present more fre-
quently in AD brains as compared to age-matched con-
trols, and increases during AD pathogenesis [48]. GVDs 
appear within hippocampal pyramidal neurons in AD when 
phosphorylated tau begins to aggregate into early-stage 
neurofibrillary tangles [46], and correlate with vulnerabil-
ity and neuronal loss [48]. Characterization of GVDs by 
immunohistochemical methods led to the identification of 
protein constituents such as tau, pTDP43, together with 
protein kinases CK1ε and CK1δ [20]. Interestingly, in vitro 

Fig. 3   pSer26Aβ selectively forms oligomers without fibril forma-
tion. a Congo Red (CR) binding assay showing the decreased CR dye 
binding to pSer26Aβ as compared to npAβ and pSer8Aβ peptides. b 
SDS-PAGE and Western immunoblot detection of Aβ variants after 
different times of aggregation (see also supplementary Fig. 7). SDS-
PAGE (c) and native-PAGE (d) analysis of the aggregates collected at 
different incubation time demonstrates the lack of HMW pSer26Aβ 
assemblies, even after prolonged incubation time (96 h). Monoclonal 
82E1 antibody was used for immunoblotting. e Transmission elec-
tron microscopy (TEM) images demonstrate granular non-aggregated 
structures of npAβ and pSer26Aβ peptide samples at 0  h (e I, II). 
After 24 h of incubation, mature fibrils are only seen with npAβ (e 
III), whereas pSer26Aβ predominantly shows spherical non-fibril-
lar chain-like globular structures (e IV). f Atomic force microscopy 
(AFM) images of npAβ and pSer26Aβ after 24 h of aggregation fur-
ther confirm the formation of fibrillar aggregates of npAβ (f, i) and 
non-fibrillar globular assemblies of pSer26Aβ peptide (f II, see also 
Supplementary Fig. 8)
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phosphorylation assays indeed show that CK1 phosphoryl-
ates Ser26 of Aβ, indicating that CK1 could also phospho-
rylate Aβ in vivo. Notably, pSer26Aβ-positive GVDs were 
also detected in pathologically preclinical AD (p-preAD) 
and non-AD controls. Thus, it will be intriguing to further 
analyse the role of intraneuronal pSer26Aβ and progres-
sion of AD from pathologically preclinical AD or non-AD 

to AD stage. It was also suggested that neurons harbour-
ing GVDs with phosphorylated tau accumulation reflect a 
‘toxic’ or ‘apoptotic’ alterations in AD [46].

Together, the present data indicate a critical role of Ser26 
phosphorylation in Aβ assembly and oligomerization, and 
its toxic properties. Thus, pSer26Aβ shows similar char-
acteristics as certain Aβ variants with FAD-associated 
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mutations at Ala21, Glu22 and Asp23 [7, 13, 18, 23, 25, 34, 
49, 50]. In contrast to these very rare mutations, phospho-
rylation of Ser26 can occur on wild-type Aβ and was com-
monly detected in the brains of sporadic human AD cases 
and several AD mouse models. Thus, pSer26Aβ might be 
critically involved in the pathogenesis of the most common 
sporadic late-onset forms of AD.
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