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ARTICLE INFO ABSTRACT

The investigation of pH-dependent membrane-associated folding has both fundamental interest and practical
applications for targeting of acidic tumors and specific delivery of therapeutic molecules across membrane of
CD cancer cells. We and others investigated molecular mechanism and medical uses of class of water soluble
ocD membrane peptides, pH (Low) Insertion Peptides (pHLIP® peptides). Here we employed optical spectroscopy
Eil:quuenching methods to study interactions of the truncated PHPIP@ peptide (S‘hort pHLIP") V\.Iith lipid bilayer of membra.ne.
Tumor targeting Tryptophan fluorescence, CD and OCD data indicate on pH-triggered forma@tlon of transmembrane helical

structure. Dual quenching and FRET assays demonstrated that Short pHLIP peptide spans lipid bilayer of
membrane similar to Long pHLIP® peptides. Truncated pHLIP® peptides with multiple charged and
protonatable residues in their sequences potentially can make these peptides to be less hydrophobic compared
to Long pHLIP® peptides, and might have utility in tumor imaging, and potentially, in pH-regulated cytoplasmic
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delivery of moderately hydrophobic drugs.

1. Introduction

Study of polypeptide's pH-dependent insertion into the lipid bilayer
of membrane and membrane-associated folding finds both fundamen-
tal interest and practical applications in targeting of acidic diseased
tissues such as tumors. Here we have performed a comparative study of
full-length and truncated versions of pH Low Insertion Peptide's
(pHLIP® peptides) interaction with the lipid bilayer of a membrane.
pHLIP® peptides are well investigated water-soluble membrane poly-
peptides, which insert into membrane and form a stable transmem-
brane (TM) alpha-helix in a result of pH drop [1-4]. These peptides
find wide applications in medicine, since they show excellent targeting
of acidic diseased tissues and intracellular delivery of polar cell-
impermeable cargo molecules [5]. Importantly, the mechanism of
tumor targeting and intracellular delivery of cargo molecules is based
on a pH-dependent membrane-associated folding of pHLIP® peptides.
At neutral and high pHs, the peptides are in equilibrium between free
in solution and membrane-bound forms [2]. Once the pH drops,
protonatable Asp/Glu residues within the pHLIP® sequence become
neutral, and the overall hydrophobicity of the peptide increases [6—8].
This triggers peptide partitioning into the membrane, which induces
folding and formation of a TM helix [2]. The truncated pHLIP®
peptides show lower affinity to the membrane at neutral pH [1]. As a

result, it leads to the weaker interactions with the cellular membranes
in blood and fast blood clearance [1,9]. Fast blood circulation is
essential in nuclear imaging for the delivery of fast decaying radioactive
imaging probes to tumors. Also fast blood clearance of radioactive
materials is needed to ensure safety. Recently, it was published several
reports demonstrating high utility of truncated pHLIP® peptides in
optical [1,10], opto-acoustic [11] and PET [9] imaging.

2. Materials and methods
2.1. Peptides preparation

pHLIP® peptides were synthesized at W.M. KECK Biotechnology
center at Yale. The synthesized peptides were dissolved in buffer
containing 3 M urea and then passed through the fast spin G-10
column to remove urea. Concentrations of the peptides were calculated
spectrophotometrically by measuring absorbance at 280 nm.

2.2. Liposomes preparation
Large unilamellar and multilamellar vesicles were prepared by

extrusion. POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(Avanti Polar Lipids), or a mixture of POPC with 0.5% of 18:1 NBD-
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PE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-7-nitro-2-1,3-
benzoxadiazol-4-yl ammonium salt (Avanti Polar Lipids) were dis-
solved in chloroform, desolvated in a rotary evaporator and dried
under high vacuum for several hours. The phospholipid film was then
rehydrated in 10 mM phosphate buffer pH 8, vortexed until the lipid
bilayer was completely dissolved, and repeatedly extruded (15 times)
through the membranes with 50 nm pore size.

2.3. Steady-state fluorescence, CD and OCD

Steady-state fluorescence, circular dichroism (CD) and oriented
circular dichroism (OCD) measurements were carried out under a
temperature control at 25 °C on a PC1 spectrofluorometer (ISS, Inc.)
and MOS 450 spectropolarimeter (Bio-Logic, Inc.), respectively. The
concentrations of the peptides and POPC lipids were varied from 3 to
7 uM and from 0.1 to 2.1 mM, respectively. The final measurements
presented on the figures were performed with 7 uM of peptides and
2.1 mM of lipids (L/P ratio is 300). Tryptophan fluorescence of the
peptides was excited at 295 nm. Emission was recorded with the
excitation and emission slits set at 1 nm. The polarizers in the
excitation and emission paths were set at the “magic” angle (54.7°
from the vertical orientation) and vertically (0°), respectively. Peptide
CD spectra were recorded from 195 to 255 nm (where no PMT
saturation was observed) with 0.5 nm increment using a cuvette with
an optical path length of 0.5 cm. Also, CD spectra were recorded using
a stack of quartz slides with special polish for far UV measurements,
with spacers of 0.2 mm thickness on one side of each slide (Starna).
Oriented CD (OCD) was measured from the supported bilayers
deposited on a stack of quartz slides. Quartz slides were cleaned by
sonication for 10 min in cuvette cleaner solution (Decon Contrad 5% in
water), 2-propanol, acetone, 2-propanol and rinsed with deionized
water. Then the slides were immersed in a mixture of concentrated
sulfuric acid and hydrogen peroxide (ratio 3:1) for 5-10 min to
completely remove any remaining organic material. Slides were then
thoroughly rinsed with and stored in deionized water (Milli-Q purified
water kept at 25 °C). A POPC lipid monolayer was deposited on the
clean quartz substrate by the Langmuir-Blodgett method using a KSV
minitrough. For the Langmuir-Blodgett deposition, a POPC lipid
solution in chloroform was spread on the subphase and allowed to
evaporate solvent for about 30 min, followed by monolayer compres-
sion to 32 mN/m. An initial layer was deposited by retrieving the slide
from the subphase at a rate of 15 mm/min. The second layer of the
bilayer was created by fusion. For this step, the monolayer on the slide
was incubated with a solution of POPC vesicles (50 nm in diameter
obtained by extrusion) mixed with the peptide solution at pH 4
(0.5 mM POPC and 10 pM peptide). The fusion occurred during 6 h
incubation at 100% humidity. Then, excess of vesicles was carefully
removed and the slides were stacked to make a pile filled with the
buffer solution at pH 4. Measurements were taken at 3 steps during the
process: when the monolayers were incubated with the excess of
liposomes, soon after spaces between slides were filled with the buffer
solution and 6 h after the second measurement. 14 slides (28 bilayers)
were assembled and OCD spectra were recorded on a MOS-450
spectrometer with 2 s sampling time. Control measurements were
carried out of the peptide between slides with and without supported
bilayers and in the presence of an excess of POPC liposomes in the
range of 205—260 nm (where no PMT saturation was observed).

2.4. Dual quenching assay

POPC liposomes without and with 10% of the lipids replaced by 10-
doxylnonadecane (10DN) (Avanti Polar Lipids) were prepared in
10 mM citrate-phosphate buffer at pH 8. Peptides and POPC liposomes
were mixed to final concentrations of 7 uM peptide and 2.1 mM POPC
without and with 10DN (L/P ratio is 300). In some of the samples the
pH was lowered to pH 4 by addition of aliquot of 2 M citric acid and
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other samples were kept at pH 8. Acrylamide (Sigma-Aldrich) was
added to the samples containing POPC liposomes without 10DN. The
final concentration of acrylamide in the sample was 235 mM. The
peptide concentration in all samples was kept constant by adding an
appropriate amount of buffer at the required pH. To observe quenching
of tryptophan fluorescence by 10DN or acrylamide the tryptophan
fluorescence was recorded as described above. The appropriate POPC
blanks were measured and subtracted from the measured spectra
before analysis. The percentage of quenching was calculated by
measuring area under the spectra in the presence of quencher and
normalizing to the area under the spectra with no quencher added.

2.5. NBD-FRET assay

First, POPC liposomes with NBD at the inner leaflet were prepared.
To do so, POPC liposomes containing 0.5% PE lipids headgroup
conjugated with NBD were prepared. Next, 1.2 mL of symmetrically
NBD-labeled POPC liposomes at 6 mM concentration were incubated
with 150 pL of 1 M freshly prepared membrane-impermeable dithio-
nite in buffer at pH 8. The decrease of NBD fluorescence occurring as
the result of quenching of NBD by dithionite was monitored at the
excitation of 463 nm and emission of 530 nm. The dithionite quench-
ing led to the reduction of about 60-65% of NBD fluorescence signal,
which corresponds to the NBD on the outer leaflet of the bilayer. Next,
the POPC solution was passed through a fast spin G-10 column to
remove excess of dithionite. Asymmetrically labeled POPC liposomes
(2.1 mM) were incubated with the peptides (7 uM), at L/P ratio of 300.
FRET from tryptophan residues to NBD at inner leaflet of the bilayer
was monitored at 295 nm excitation wavelength. The emission was
recorded from 310 to 580 nm.

3. Results
3.1. Fluorescence, CD and OCD measurements

We have investigated full-length and truncated versions of pHLIP®
peptide's (Table 1), and their interactions with a membrane. Full-
length pHLIP® peptides, such as WT-pHLIP and Long pHLIP (called
Var2 in Weerakkody et al. [1]), are well investigated water-soluble
membrane polypeptides. They insert into the lipid bilayer of a
membrane and form TM helix upon a drop of pH [4]. The truncated
versions (Short WT-pHLIP and Short pHLIP) also demonstrate pH-
dependent interaction with lipid bilayer of a membrane [1]. At the
same time, the truncated version (Short pHLIP*), where Trp residue
located at the beginning of putative TM part was replaced by Phe, lost
it's pH-dependent ability to interact with membrane (Fig. 1a), which
indicative of the lack of insertion into the lipid bilayer of membrane.
Our further comparative investigation was performed with Long and
Short pHLIP® sequences, where Trp residues were located at the

Table 1
Peptide sequences, the putative transmembrane part is underlined.

Peptide name Peptide sequence

WT-pHLIP AEQNPIYWARYADWLETTPLLLLDLALLVDADEGT
Short WT-pHLIP AEQNPIYWARYADWLETTPL

Short pHL[P* AEQNPIYFARYADWLFTTPL

Long pHLIP AEDQONPYWRAYADLFTPLTLLDLLALWDG

Short pHLIP AEQNPIYWARYADLLEPTTLAW
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Fig. 1. Three states of short pHLIP® peptide and OCD. The states of Short pHLIP*(a) and Short pHLIP® (b-c) were monitored by changes of the tryptophan fluorescence (a-b) and CD
(c). The state I (black lines) represents peptides in solution at pH 8. The state II (blue lines) is a peptide in a solution in the presence of POPC liposomes at pH 8. The state III (red line) is
a peptide in a solution in the presence of POPC liposomes at pH 4. The oriented circular dichroism (OCD) spectrum was measured for the Short pHLIP® peptide on the supported

bilayers at pH 4 (d). The dashed line indicates zero level.

beginning and end of putative TM region of the peptides. Such location
of Trp residues, on one hand, is expected to stabilize TM orientation
and, on other hand, is convenient for interpretation of the results of
FRET and quenching assays.

Short pHLIP® peptide demonstrated pH-dependent changes of the
fluorescence and CD spectral signals (Figs. 1b and c). The increase of
tryptophan emission and the short wavelength shift of the spectrum
were observed. The overall strength of the CD signal was twice less than
the strength of the full-length pHLIP° peptide's CD signals [1,2], and
the first minimum (at 208—-210 nm) had higher amplitude compared to
the second one at 222-225 nm. The observed CD might represent
presence of a mixture of a-helical and random coil conformations of
the peptide, and/or formation of a 3;o helical segments, which are
known to have stronger signal at 208 compared to 222 [12]. The ratio
of CD signal at 222/208 nm for 3, helix was established previously to
be in the range of 0.3—-0.4 compared to the same ratio for an a-helix,
which is close to 1 or higher [12]. According to our previous data the
selected L/P ratio of 300 is expected to ensure shift of the equilibrium
toward the membrane-bound form of the peptide [1,3]. Thus, the
population of the free peptide in solution (random coil) should be
minimal.

To prove that Short pHLIP® peptide indeed adopts TM orientation
we recorded OCD spectrum from the peptide on the supported bilayers
(Fig. 1d). We observed a characteristic shift and increase of the positive
band; and a disappearance of 208 negative band, which is indicative of
a TM orientation of the peptide [13].
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3.2. Dual-quenching assay

To identify location of Trp residues within a bilayer, we employed
dual quenching and NBD-FRET fluorescent assays [14]. Both Long and
Short pHLIP® peptides have Trp residues located at the beginning and
end of the putative TM parts. The quenching of Trp fluorescence by
acrylamide and 10DN was carried out to establish location of trypto-
phan residues within the lipid bilayer of membrane at high and low
pHs. Effective quenching of Trp fluorescence by acrylamide occurs
when tryptophan residues are exposed to the polar parts of outer or
inner leaflets of a bilayer. At the same time tryptophan residues located
in the middle of a membrane could be effectively quenched by 10DN.
At pH 8 Short pHLIP® peptide just barely partitions into the bilayer and
therefore tryptophan fluorescence is quenched by acrylamide very well
(Fig. 2a and Table 2). Long pHLIP® peptide being more hydrophobic, is
located much deeper into the bilayer, which correlates well with our
previous data [1,4,15]. Lowering the pH reduces quenching of Trp
fluorescence by acrylamide and increases quenching by 10DN. The
overall trend of Short pHLIP® peptide's partition into the bilayer at low
pH is similar to Long pHLIP® peptide. However, Trp residues in Short
pHLIP® peptide are more exposed to the acrylamide compared to Trp
residues of Long pHLIP® peptide.

3.3. NBD-FRET assay

The dual-quenching assay provided information about the degree of
partitioning of Trp residues into a bilayer. However it did not allow
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Fig. 2. Dual-quenching assay. The tryptophan fluorescence of Short (a, b) and Long (c, d) pHLIP® peptides in the presence of POPC liposomes at pH 8 (blue lines) and pH 4 (red lines)
are shown. The emission of tryptophan residues of the peptides in the presence of POPC liposomes at both pHs is quenched by 10DN (magenta lines) or acrylamide (green lines). The

amount of quenching is given in Table 2.

Table 2

The percentage of quenching of Trp fluorescence of Long-pHLIP and Short-pHLIP in the
presence of POPC liposomes at pH 8 and pH 4, by acrylamide and 10DN incorporated
into liposomes. The data are calculated from the spectra shown on Fig. 2. The percentage
of quenching was calculated by measuring area under the spectra in the presence of
quencher and normalizing to the area under the spectra with no quencher added. The
experiment was repeated three times for Short pHLIP peptide and mean and St.d.
numbers are presented in the Table.

pHS8 pH 4

Acrylamide 10-DN Acrylamide 10-DN
Short-pHLIP 84.1+4.6% 7.7+0.2% 48.9+1.5% 34.4+£0.8%
Long-pHLIP 44% 33% 31% 45%

distinguishing between inner or outer leaflet locations of the acryla-
mide-accessible Trp residues. To further investigate location of trypto-
phan residues in membrane we performed NBD-FRET assay [16,17].
Symmetrically-labeled (with NBD dye) POPC liposomes were prepared.
Then, the membrane-impermeable dithionite was used to chemically
modify and quench fluorescence of NBD in the outer leaflet of bilayer,
followed by the removal of dithionite by gel filtration. As a result,
asymmetrically-labeled liposomes with NBD at the inner leaflet were
obtained. The absence of a flip-flopping of lipids was accessed by the
absence of quenching of NBD fluorescence by addition of new portion
of dithionite with time. FRET was monitored from the tryptophan
residues of peptides to NBD at the inner leaflet of bilayer. Energy
transfer occurs when both fluorophores (Trp and NBD) are in a close
proximity to each other (the Forster distance for Trp-NBD donor-
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acceptor pair is about 10 A [18]). Thus, when tryptophan residues are
located at the outer leaflet of the bilayer, there is not any significant
energy transfer to NBD at the inner leaflet of bilayer. This is the
situation observed at pH 8 for both peptides, but was less pronounced
for Long pHLIP® peptide, which partitions deeper into the membrane
(Fig. 3). At the same time, at low pH the FRET signal was comparable
for both peptides. We observed that the NBD fluorescence signal
increased by 11.7 and 12.9 times for Short and Long pHLIP® peptides,
respectively, in the presence of POPC at low pH compared to the
baseline. It indicates that Trp residue in both Long and Short pHLIP®
peptides is in close proximity to the headgroups of the inner leaflet of a
bilayer. Previously it was shown that C-terminus of pHLIP® peptides
propagates into membrane across lipid bilayer upon drop of pH
[2,4,19].

4. Discussion

All obtained results allow us to make a conclusion that Short
pHLIP® peptide inserts into the lipid bilayer of a membrane and spans
the bilayer. Since Short pHLIP® peptide has truncated sequence a
negative hydrophobic mismatch might occur. Usually, positive and/or
negative hydrophobic mismatches lead to the energetic penalties, since
the hydrophobic segments of the polypeptide sequence could be
exposed to the polar environment or, vice versa, the polar segments
of the polypeptide sequences could be exposed to the hydrophobic
environment. As a result, it can lead to the structural perturbations in a
polypeptide, alteration in a polypeptide's mobility and/or membrane
thickness changes to compensate energetic penalties [20—-22]. As it was
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Fig. 3. NBD-FRET assay. The tryptophan fluorescence of Short (a, b) and Long (c, d) pHLIP peptides in three states are shown. The state I (black lines) represents peptides in solution
at pH 8. The state II (blue lines) is a peptide in a solution in the presence of asymmetrically-labeled (by NBD) POPC liposomes at pH 8. The state III (red line) is a peptide in a solution in
the presence of asymmetrically-labeled (by NBD) POPC liposomes at pH 4. Energy transfer from tryptophan residues to NBD dye at the inner leaflet of bilayer was monitored (b, d). The
numbers on panels b and d indicate the increase of NBD fluorescence (calculated by increase of area under the spectra in the range of 480—560 nm) in states III and II compared to the

baseline (black lines).

proposed early, there are number of ways a system might reduce a
negative energy of the hydrophobic mismatch, such as thinning of
lipids, aggregation of peptides, anchoring aromatic residues to the lipid
headgroups, and stretching from the alpha-helical to 3;9-helical
conformations [23—-25]. Our data does not point to the aggregation
of the peptide in membrane; however we cannot exclude that as a
possibility. Also, our data might point to the appearance of elements of
stretched 3¢ helical conformation, or mixture of alpha- and 31¢-helices
potentially with 3,9 components at the beginning and end of TM alpha-
helix. Finally, our data indicate that anchoring of Trp residue at the
lipid headgroups contributes to the stability of the inserted helical
peptide at low pH.

As we outlined in the introduction, the molecular mechanism of
pHLIP® peptide's pH-triggered insertion into membrane is based on
protonation of Asp residues, with leads to the increase of peptide's
hydrophobicity and peptide partitioning into bilayer and folding. The
role of protonatable Asp residues in TM part and peptide's inserting
end was investigated previously [1,4,7,8]. However, all investigated
peptides had multiple protonatable residues in the sequence. Here we
investigated truncated peptide, which has single Asp residue. Our data
indicate that protonation of a single Asp residue located in TM and free
C-terminal group of the short pHLIP® peptide is enough to trigger
insertion into the lipid bilayer of membrane at low pH. According to
our previous kinetics data obtained on similar truncated pHLIP®
peptide (Varl2) the process of peptide insertion into membrane is
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completed within 100 ms [1].

The truncated pHLIP® peptides have less hydrophobic residues in
their sequence and they still can insert across a membrane. So, the
overall hydrophobicity of the truncated pHLIP® peptides is lower
compared to the full-length pHLIP® peptides. Moreover, the truncated
peptides might be designed with different number of protonatable Asp/
Glu residues, which are charged at high pH and protonatable at low
pH. Such short pHLIP® peptides might be attractive for tumor targeting
and pH-dependent cellular delivery of moderately hydrophobic ther-
apeutics cargo molecules. Small hydrophobic (drug like) molecules
demonstrate fast blood clearance and lack of tumor targeting. pHLIP®
peptides might alter pharmacokinetics and biodistribution and en-
hance pH-specific translation of these molecules across membrane of
cancer cells, and potentially prevent translation across membrane of
normal cells in healthy tissue. It would allow reducing therapeutic
dose, enhancing therapeutic index and reducing side effects.
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