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Anxiolytic effects of polydatin through
the blockade of neuroinflammation
in a chronic pain mouse model
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Abstract

Background: Chronic pain is frequently comorbid with anxiety disorder, thereby complicating its treatment. Polydatin, a

component from the root of Polygonum cuspidatum, has shown neuroprotection in the central nervous system. However, its

effects on pain and anxiety processing have been rarely investigated. In this study, mice were injected with complete Freund’s

adjuvant (CFA) at the hindpaw to induce pain- and anxiety-like behaviors.

Results: Treatment with polydatin (25mg/kg) alleviated the anxiety-like behaviors but not pain perception in these mice.

Polydatin treatment reversed the upregulation of N-methyl-D-aspartic acid receptors and GluA1-containing a-amino-3-

hydroxy-5-methyl-4-isoxazole-propionic acid receptors in the amygdala of CFA-injected mice. Additionally, this treatment

reduced the levels of proinflammatory cytokines, namely, tumor necrosis factor-alpha and interleukin-1b, in the amygdala.

Furthermore, activated nuclear factor kappa-B signaling was blocked in the amygdala from CFA-injected mice. By using

docking technology, we found potential structural binding between polydatin and IjB kinase beta.

Conclusion: This study indicates the anxiolytic effects of polydatin by suppressing inflammatory cytokines in the amygdala.
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Background

Patients suffering from chronic pain commonly have

emotional comorbidities, including sleep disorder, cog-

nitive impairment, and anxiety. Chronic pain is the

first determinant of mood disorders.1 Comorbidities

of anxiety show its significant contribution to pain.2,3

However, most patients with chronic pain are often

administered at specialty pain clinics with opioids as

the most effective treatment, but they are commonly

already suffering from evident mood disorders.4

Analgesic abuse shows the urgent need for novel analge-

sics and anxiolytics.5

In the central nervous system (CNS), the amygdala

coordinates negative emotional responses to threatening

stimuli. The amygdala consists of several anatomically

and functionally distinct nuclei, such as the lateral (LA)

and basolateral (BLA)6 nuclei and the central nucleus.7,8
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Studies on amygdala function have focused on the plas-
ticity of sensory inputs from the thalamus and the cortex
to the LA and the BLA.9,10 The amygdala is believed to
switch chronic pain on and off11 and is involved in
major depressive disorder.12,13 Alterations in excitato-
ry/inhibitory (E/I) neurons and synapses in the
amygdala have been prominently linked to anxiety
disorders.14 In addition, inflammation is involved in
the onset and development of anxiety in the amygdala.15

Polydatin (3,4’,5-Trihydroxystilbene-3-b-D-
glucoside), also named piceid, is a monocrystalline
compound that was first isolated from the rhizome and
root of Polygonum cuspidatum (Polygonaceae). This
compound is also detected in grapes, peanuts, hop
cones, red wines, hop pellets, cocoa-containing products,
and chocolate products.16 These herbs are traditionally
used to treat symptoms, such as pain, fever, cough,
and hypertension.17 Nowadays, polydatin has been
increasingly comprehensively investigated for its phar-
macological actions, such as anti-oxidative, anti-platelet
aggregative, anti-inflammatory, and anti-cancer effects,
and benefits for neurological diseases.18 However, the
effects of polydatin on analgesia and anti-anxiety
have been rarely studied. The present study aims to eval-
uate the effects of polydatin on chronic inflammatory
pain and related anxiety.

Methods

Animals

Adult male C57BL/6J mice (6–8weeks) from the
Experimental Animal Center of the Fourth Military
Medical University (FMMU) were used in the experi-
ments. Male mice were used to avoid the possible effects
of hormone cycles on pain. The animals were housed in
groups under standard laboratory conditions (12 h light/
12 h dark, temperature 22–26�C, and humidity 55–60%).
The water and food were freely accessible. Prior to the
procedure, animals were allowed to accommodate to
laboratory conditions for at least seven days. All exper-
imental procedures were carried out according to proto-
cols approved by the Animal Ethics Committee of the
FMMU.

Induction of chronic inflammatory pain and drug
treatment

To induce chronic inflammatory pain, mice were injected
subcutaneously with a single dose of complete Freund’s
adjuvant (CFA) (50% CFA, 10ll) into the plantar
surface of right hindpaw.19 Control mice were injected
with the same volume of saline. One week after CFA
administration, mice received an intraperitoneal injec-
tion (i.p.) of polydatin at a dose of 6.25, 25, or

100mg/kg once a day for 8 to 10 consecutive days
between 9:00 a.m. to 10:00 a.m. Polydatin was dissolved
in olive oil to the concentration of 5mg/ml. Last poly-
datin administrated was 30min before behavioral tests.
Brain samples were collected immediately after behav-
ioral tests. CFA was purchased from Sigma (St. Louis,
MO, USA), and polydatin (purity¼ 99.9%) was
purchased from TargetMol (Shanghai, China).

Open field test

Open field (OF) test was conducted to assess anxiety-like
behaviors as reported previously.20 OF test apparatus
(JL Behv-LAM, Shanghai, China) contains a square
arena (30 cm� 30 cm� 30 cm) with plastic walls and
floor and was placed inside an isolated chamber with
illumination. Half of mice in each group were placed
into the central area of the box and allowed to freely
explore for 15min. Movement locus of mouse was video-
taped using a camera fixed above the floor and analyzed
with a video-tracking system (Jiliang, Shanghai, China).
OF test was performed before the elevated plus maze
(EPM) test on the same day in the morning.

EPM test

To further detect anxiety-like behaviors, EPM test
was conducted as described in a previous report.21

The apparatus (RD1208-EP, Shanghai Mobiledatum
Corporation, China) comprised two open arms
(25 cm� 8 cm� 0.5 cm) and two closed arms (25 cm�
8 cm� 12 cm) that extend from a common central plat-
form (8 cm� 8 cm). The apparatus was elevated to a
height of 50 cm above the floor. Mice were allowed to
habituate to the testing room for one day before the test.
For each test, individual animals were placed in the
center square, facing an open arm, and allowed to
explore freely for 5min. Mice were videotaped using a
camera fixed above the maze and analyzed with a video-
tracking system. The number of entries and time spent in
each arm were recorded. The anxious degree was evalu-
ated by the number of entries and the time spent in open
arms.22 EPM test was performed after OF test on the
same day in the morning.

Von Frey test

Another half of mice were placed in individual plastic
boxes on a metal mesh floor and allowed to adjust to the
environment for 20min. Via Dixon’s up-down para-
digm, the mechanical sensitivity was determined based
on the responsiveness of hindpaw to the point of bend-
ing of Von Frey filaments. Von Frey filaments with
different bending forces (0.008–2 g) were applied on the
middle of dorsum of hindpaw in an ascending order.
Positive responses included licking, biting, and sharp
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withdrawal of the hindpaw.23 There was a 3-minute

interval between the stimuli. The result was tabulated,

and the threshold of 50% withdrawal was analyzed as

pain threshold.

Hot plate test

To assess the thermal hyperalgesia in animals, a com-

mercially available plantar analgesia instrument

(BME410A, Institute of Biological Medicine, Academy

of Medical Science, China) was employed. Animals were

placed in individual plastic boxes and allowed to accom-

modate the environment for 20min. Thermal hyperalge-

sia was assessed by measuring the latency of paw
withdrawal (PWL) in response to a radiant heat

source.24 The heat source was turned off automatically

when the mice lifted the foot. The time from radiant heat

application to withdrawal of the hindpaw was defined as

the PWL. In order to prevent tissue damage caused by

heat, the heat source would be cut off automatically at

40 s even if the mice did not lift the hindpaw. The exper-

iment was repeated for five times with 5-minute interval

each. Hot plate test was performed after Von Frey test
on the same day in the morning.

Western blot analysis

Half of mice in each group were administered with poly-

datin, and 30min later, the mice were anesthetized with

4% isoflurane and then decapitated, the brains were

extracted, and the amygdala were dissected under the

anatomical microscope on Day 16 (Figure 1(a)).
Western blot analysis was performed as previously

described.25 Amygdala sample was dissociated with son-

ication in radioimmunoprecipitation assay (RIPA) lysis

buffer containing phosphatase inhibitor and protease

inhibitor. Protein level of the samples was quantified by

quantified by bicinchonininc acid (BCA) Protein Assay

Kit. Equal amounts of proteins (40 lg) were dispersed on

sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis gels and electrotransferred to PVDF membranes

(Millipore, Massachusetts, the USA), which were respec-

tively probed with antibodies after 5% nonfat milk (BD

Difco, the USA) incubation for 1.5 h. The antibodies

used in the analysis were as follows: anti-b-actin antibody

(1:50000; cat. A5316, Sigma, USA), anti-Iba-1 (1:1000;

cat. NB-100-1028ss, Novus Biologicals, USA), anti-PSD95

(1:2000; cat. ab2723, Abcam, UK), anti-GluN2B (1:1000;

cat. ab65783, Abcam), anti-synaptophysin (1:1000; cat.
ab8049, Abcam), anti-p-GluN2B-S1303 (1:1000; cat.

ab81271, Abcam), anti-GluA1 (1:1000; cat. ab31232,

Abcam), anti-GluN2A (1:1000; cat. ab1555, Millipore),

anti-p-GluA1-S845; 1:1000; cat. ab5849, Millipore), anti-

p-GluA1-S831 (1:1000; cat. ab5847, Millipore), anti-

nuclear factor kappa-B (NF-jB) p65 (1:750; cat.

AF0874, Affinity Biosciences, USA), anti-glial fibrillary

acidic protein (GFAP) (1:1000; cat. 3670, Cell Signaling

Technology, USA), anti-p-GluN2B-T1472 (1:1000; cat.

4208, Cell Signaling Technology), and anti-p-IjBa
(1:1000; cat. 9246, Cell Signaling Technology). The mem-

branes were incubated with horseradish peroxidase-

conjugated secondary antibodies (anti-rabbit/anti-

mouse IgG for the primary antibodies, Affinity

Biosciences). All of the chemicals and reagents were com-

mercially available with standard biochemical quality.

Densitometric analysis of Western blot was conducted

using a Tanon (Shanghai, China) and quantified using

Image J software (NIH, Bethesda, MD, USA) according

to the instructions. For data analysis, band intensity of

each blot was calculated as ratio relative to the b-actin.
The intensity ratio of control group was set as 100%, and

the intensity ratios of other treatment groups were

expressed as percentage to the control group.

Enzyme-linked immunosorbent assay

Samples of amygdala were dissociated with sonication in

RIPA lysis buffer. The supernatant was collected for

commercially available enzyme-linked immunosorbent

assay (ELISA) kit to quantify tumor necrosis factor-

alpha (TNF-a) and interleukin (IL)-1b levels in the

amygdala of the mice (cat.#JL10484; cat.# JL18442,

J&L Biological Co. Ltd. Shanghai, China) according

to the manufacturer’s instructions. Absorbance (optical

density) was measured at 450 nm (BioTek, USA).

Concentrations were obtained by interpolation from

standard curves.

In silico docking study of compound polydatin with IjB
kinase beta

The processes of ligand preparation and optimization

were conducted by means of the Prepare Ligands

module, a protocol of Discovery Studio 3.5 (Accelrys

Inc., San Diego, CA, USA). The prepared ligands were

converted to the SD file format. IjB kinase beta (IKKb)
crystal structure in Protein Data Bank (PDB) format

was downloaded from the RCSB website (http://www.

pdb.org). Before the docking procedure, water molecules

were removed from the complexes. Hydrogen atoms were

added by application of CHARMm force field and the

Momany–Rone partial charge as default settings in

Discovery Studio 3.5. The ligand-binding site was cen-

tered by PHE219 of B chain with 10 Å radius. Docking

analyses of compound polydatin with IKKb protein in

the presence of crystal ligand was performed by means

of the CDOCKER module. The number of generated

poses was set to 100 for each ligand, and default settings

were selected for other parameters.

Guan et al. 3
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Figure 1. Polydatin relieved anxiety-like behaviors in mice injected with CFA. (a) Schedule displayed the experimental procedure. (b)
Representative traces in OF test during a period of 15 min. Behavioral tests were performed on Day 14. (c–e) In OF test, administration
with polydatin (25 mg/kg) for eight days increased the distance (d) and time spent in the central area (e) but had no effect on the total
locomotor distance (c). (f) Representative traces in EPM test during a period of 5 min. (g–i) Polydatin treatment reversed the frequency
into open arms (h) and the time spent in open arms (i). However, total arm entries had no change among four groups (g). Data are
presented as means� SEM (n¼ 7 in each group). *p< 0.05, **p< 0.01 vs. control group; #p< 0.05, ##p< 0.01 vs. CFA group.
CFA: complete Freund’s adjuvant; WB: Western blot.
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Immunofluorescence staining

Immunofluorescence staining was conducted as

described previously (45), modified to some extent.

Another half of mice in each group were deeply anesthe-

tized with 4% isoflurane. This was followed by perfusion

with 0.9% NaCl and then 4% paraformaldehyde (PFA)

in 0.1mM phosphate-buffered saline (PBS) through

aorta. Brains were removed and post-fixed in 4% PFA

overnight at 4�C. Free-floating coronal sections (20 mm)

were obtained using a freezing microtome (CM1950,

Leica, Germany). Sections containing the amygdala

were washed in 0.1mM PBS buffer, permeabilized with

0.3% TritonTM in 5% normal goat serum for 1 h. Then,

the sections were incubated in primary antibodies

(anti-GFAP, 1:400; anti-Iba-1, 1:500) overnight at 4�C
in 10% normal goat serum. After washing, sections were

incubated with secondary Cy3-conjugated anti-rabbit

antibody (1:300, Wuhan Servicebio Technology Co.,

China) for 2 h at room temperature. Diluted Hoechst

33342 in 0.1mM PBS (1:1000) was applied to sections

after washing for 5min to stain nuclei. Sections were

mounted onto slides using 50% glycerinum. The slides

were observed using a confocal laser microscope

(FV1000, Olympus, Japan), and images were captured

by FV 1000 using standard laser lines and filters.

Statistical analysis

Data were presented as mean�SEM. Statistical analysis

of multiple groups were performed by two-way analysis

of variance followed by least significant difference test

or Dunnett’s test for post hoc comparisons (SPSS 20.0).

In all cases, p< 0.05 was considered as statistical

significance.

Results

Polydatin ameliorates anxiety-like behaviors in

CFA-injected mice

Figure 1(a) shows the experimental scheme. At seven

days after CFA injection, mice were administered with

polydatin (25mg/kg, i.p.) for 8 to 10 days. OF and EPM

tests were used to determine anxiety-like behaviors

on Day 14 after 30min of last polydatin injection

(Figure 1). In the OF test, the distance and time traveled

in the central area were less in CFA-injected mice than in

control mice (Figure 1(b), (d), and (e)). In the EPM test,

CFA-injected mice showed fewer entries and less time in

open arms than control mice (Figure 1(f), (h), and (i)).

Polydatin administration markedly restored the CFA-

induced decreased distance and time traveled in the

central area and open arm entries. The effects of poly-

datin in OF and EPM tests were dose dependent

(Supplementary Figure 1). However, the total locomotor

distance in the OF test and the arm entries in the EPM

test were comparable (Figure 1(c) and (g)), indicating

similar locomotor activity between the groups. The

data suggest the anxiolytic effects of polydatin in

CFA-injected mice.

Polydatin has no analgesic effects on chronic

inflammatory pain

To investigate the mechanism underlying the anxiolytic

effects of polydatin, we detected its effects on pain sen-

sory. Von Frey and hot plate tests were performed

to determine mechanical allodynia and thermal hyper-

algesia on Day 15 (Figure 1(a)). Hindpaw CFA injection

reduced the threshold (Figure 2(a)) and PWL (Figure 2

(c)) in ipsilateral hindpaw but not in contralateral hind-

paw (Figure 2(b) and (d)). Polydatin treatment did not

affect the threshold and latency in both sides of hind-

paw, even when the dose was increased to 100mg/kg

(i.p.) (Supplementary Figure 2). These data indicate

that polydatin had no analgesic effects on mechanical

allodynia and thermal hyperalgesia. The anxiolytic

effect of polydatin is not related to analgesic effect.

Polydatin reduces the upregulation of glutamatergic

receptors in the amygdala

Amygdala is a critical brain region implicated in the

onset and development of anxiety,26 which is associated

with synaptic changes.27 The alteration of glutamatergic

receptors, including N-methyl-D-aspartic acid receptors

(NMDARs) and a-amino-3-hydroxy-5-methyl-4-isoxa-

zole-propionic acid receptors (AMPARs), is associated

with anxiety-like behaviors.28–30 In the current study,

GluN2A, GluN2B, p-GluN2B-T1472, p-GluN2B-

S1303, PSD95, and synaptophysin levels were markedly

increased in the amygdala of CFA-injected mice

(Figure 3). Levels of these excitatory synaptic proteins

were reversed with polydatin treatment. Polydatin

administration alone had no effect on these proteins in

control mice (Figure 3(a) to (d)). Similarly, the levels of

AMPAR subunitGluA1 and its phosphorylated proteins

(p-GluA1-S831 and p-GluA1-S845) were significantly

enhanced in the amygdala after CFA injection but

could be downregulated by polydatin treatment

(Figure 4(a) and (b)). Polydatin treatment alone did

not affect the levels of total GluA1and its phosphorylat-

ed proteins. These results imply that the anxiolytic effect

of polydatin is related to the inhibition of glutamatergic

receptors in the amygdala.

Guan et al. 5



Polydatin attenuates inflammatory response in the

amygdala

The inflammatory system has a clear role in the patho-

physiology of chronic mental illnesses, such as anxiety

disorder.31 Thus, we determined if the anxiolytic effect

of polydatin was connected to inflammatory inhibition.

We detected the edema of CFA-injected hindpaw

with polydatin treatment, but no alteration by polydatin

was found at Day 16 (data not shown). However, CFA

injection significantly increased the levels of proinflam-

matory mediators, namely, TNF-a and IL-1b, in the

amygdala, which were reversed by polydatin treatment

(Figure 5(a) and (b)). NF-jB p65 and p-IjBa levels in

the amygdala, which were mitigated by polydatin treat-

ment, were upregulated after CFA injection (Figure 5(c)

and (d)).
Astrocytes and microglia are active participants in

propagating and regulating neuroinflammation within

the brain.32,33 GFAP and Iba-1 are markers of astro-

cytes and microglia.34 The levels of Iba-1 but not

GFAP were enhanced in the amygdala after CFA injec-

tion, indicating the involvement of microglia in the

peripheral pain process. Polydatin administration

reduced the levels of Iba-1 (Figure 6(a) and (b)), which

was consistent with immunofluorescence staining

(Figure 6(c)). The data indicate that polydatin inhibits

the neuroinflammation mediated by microglial activa-

tion in the amygdala of CFA-injected mice.

Polydatin has structural interactions with IKKb

To investigate the underlying mechanism of anti-

inflammation, further, we conducted a molecular dock-

ing analysis of polydatin. Polydatin was docked to IKKb
by using the CDOCKER module of Discovery Studio

(Accelrys Inc.).The multisubunit protein kinase IKK

regulates NF-jB activation and contains two possible

kinase subunits IKKa and IKKb.35 Their functions dif-
ferentiate from each other. IKKb is a potent NF-jB
activator and plays a key role in the canonical NF-jB
pathway responsible for immune responses, whereas

IKKa is critical in the noncanonical pathway required

for developmental processes. Additionally, IKKb inhib-

itors compete with the substrate IjB.36 IKKb has unusu-

ally high affinity for ATP, the inside binding pocket of

which contains an innate crystal ligand.37 By contrast,

conformations of IKK in its active or inactive state

would not be differentiated. Therefore, outside of the

ATP binding pocket, certain binding site for non-ATP

competitive IKKb inhibitors exists to change its kinase

activity. One of the potential binding sites is remote from

the ATP-binding pocket and centers around Phe219,

which is displayed as a 12 Å-long and 10 Å-deep chan-

nel.38 In the present study, the OH group on the mono-

saccharide of polydatin under the binding pocket formed

hydrogen bonds with Glu214 and Arg220 on the B chain

of polydatin-IKKb binding protein (PDB:4KIK).

Moreover, the phenyl moiety of polydatin formed Pi-Pi

Figure 2. Polydatin had no analgesic effects in mice with chronic inflammatory pain. Von Frey and hot plate tests were implemented on
Day 15. Polydatin (25 mg/kg) did not diminish CFA-induced mechanical allodynia (a) and thermal hyperalgesia(c) in CFA-injected hind paw
(ipsilateral). The basal mechanical allodynia (b) and thermal hyperalgesia (d) in contralateral hind paw were not impacted by CFA and/or
polydatin. Data are presented as means� SEM (n¼ 7 in each group). **p< 0.01 vs. control group; ##p< 0.01 vs. CFA group.
CFA: complete Freund’s adjuvant.
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Figure 4. Polydatin reversed CFA-induced upregulation of AMPARs in the amygdala. (a) Representative Western blot analysis of GluA1,
p-GluA1-S831, and p-GluA1-S845. CFA injection increased the expressions of GluA1, p-GluA1-S831, and p-GluA1-S845 (b) and polydatin
(25 mg/kg) significantly reduced the expression of GluA1, p-GluA1-S831, and p-GluA1-S845 in the amygdala of CFA-injected mice. Data
are presented as means� SEM (n¼ 7 in each group). **p< 0.01 vs. control group; ##p< 0.01 vs. CFA group.
CFA: complete Freund’s adjuvant.

Figure 3. Polydatin reduced CFA-induced upregulation of NMDARs in the amygdala. (a and b) Representative Western blot analysis of
p-GluN2B-T1472, p-GluN2BS1303, GluN2B, GluN2A, PSD95, and synaptophysin. Polydatin (25 mg/kg) treatment for 10 days reversed the
upregulation of p-GluN2B-T1472, p-GluN2BS1303, and total GluN2B (c), and GluN2A, PSD95, and synaptophysin (d). Data are presented
as means� SEM (n¼ 7 in each group). **p< 0.01 vs. control group; ##p< 0.01 vs. CFA group.
CFA: complete Freund’s adjuvant.
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stacked interaction with Phe219 on the B chain, and

formative intramolecular hydrogen bonds dramatically

improved the stability of the protein–ligand complex

(Figure 7). In conclusion, we presume that polydatin

acts as a competitor of IjB and interacts with IKKb
underlying the action of the NF-jB signaling pathway.

Discussion

Pain and emotional disorders likely share the same path-

obiological pathway, which is noteworthy for treating

this comorbidity.39,40 CFA-injected mouse model is

manifested to possess pain and anxiety-like behaviors

synchronously. Polydatin, isolated from the rhizome,

effectively relieved CFA-induced anxiety-like behaviors

in mice. However, this compound did not ameliorate

pain-related behaviors in mechanical allodynia and ther-

mal hyperalgesia tests. The present study provides a

novel mechanism in brain underlying the anxiolytic

effect of polydatin.
In the CNS, the E/I network maintains a finely tuned

balance in neural activities, which is vital for central

physiological function. Once the balance in E/I signaling

is broken, onset patterns of autism, schizophrenia, and

seizure arise.41 Glutamate mediates the majority of excit-

atory synaptic transmissions in mammalian brains.

Ionotropic and metabotropic glutamate receptors

contribute to synaptic transmission, plasticity, and

modulation.42 NMDARs and AMPARs are crucial

excitatory postsynaptic receptors, of which the mounting

activities indicate neurotransmitter hyperexcitability.43

Among them, NMDARs typically contain GluN1

and GluN2 subunits. Each type of GluN2, including

GluN2A and GluN2B, exerts its function largely by

associating with the postsynaptic density protein

PSD-95.44 Moreover, synaptophysin, a major resident

of the synaptic vesicle membrane, relates closely with

the packaging and storage of synaptic vesicles and release

of neurotransmitters.15,45 In the present study, the upre-

gulation of NMDARs and AMPARs in the amygdala

after CFA injection increased the excitatory transmission,

which contributed to anxiety-like behaviors in mice.

Polydatin treatment reversed the upregulation of

NMDARs and AMPARs and restored the E/I balance

in the amygdala. This result is consistent with observa-

tions from a recent study using ketamine, a noncompeti-

tive antagonist of NMDARs, as a fast antidepressant

treatment in rodent models of anxiety/depression.46

Polydatin did not affect pain-like behaviors, although

it had anti-inflammatory effect in the amygdala but not

in the CFA-injected site. Since amygdala is critical for

pain and anxiety, present study found that polydatin

Figure 5. Polydatin suppressed CFA-induced production of proinflammatory mediators and NF-jB signaling pathway in the amygdala.
(a and b) Effects of polydatin against CFA-induced proinflammation by ELISA. Polydatin treatment reduced TNF-A and IL-1b levels in the
amygdala of CFA-injected mice. (c) Representative bands of Western blot analysis showing the levels of NF-jB p65 and p-IjBA. CFA
injection evidently increased NF-jB p65and p-IjBA (d) in the amygdala, which were reversed by polydatin administration. Data are
presented as means� SEM (n¼ 7 in each group). **p< 0.01 vs. control group; #p<0.05, ##p< 0.01 vs. CFA group.
CFA: complete Freund’s adjuvant; TNF-A: tumor necrosis factor-alpha; IL-1b: interleukin-1b.
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selectively reduce anxiety-like behavior but not mechan-
ical hypersensitivity. It raises the possibility that polyda-
tin selectively reduces proinflammatory cytokines in
“anxiety, but not pain” related specific area in amygdala.
In fact, polydatin selectively reduces proinflammatory
cytokines in CFA-injected hindpaw. Furthermore, we
did not exclude the anxiolytic effects through modulat-
ing function of other brain regions including cingulate
cortex, hippocampus, or striatum.

Proinflammatory cytokines, including TNF-a, IL-1b,
IL-6, and IL-8, were increased in patients with anxiety,
suggesting a key role of inflammation in anxiety.47

NF-jB is a transcript factor involved in the regulation
of inflammation and immune response.48 In its inactive
form, NF-jB is sequestered in the cytoplasm and bound

by members of the IjB family, including prototypical
IjBs, atypical IjBs, p105, and p100. IKK contains a
cytokine-inducible IjB kinase activity and controls
sequential phosphorylation, ubiquitination, and degra-
dation of the inhibitory subunit IjB for NF-jB. As a
result, the release of NF-jB subunit exerts its functions
in the nucleus, including the induction of several proin-
flammatory cytokines and chemokines, which are
involved in innate and acquired immune responses.18,49

The anti-inflammatory and neuroprotective effects of
polydatin targeting NF-jB signaling have been
reported.50,51 Polydatin is identified as a natural precur-
sor of resveratrol, which is also a stilbene-derived natu-
ral compound. Considerable studies reveal the
suppressive effect of resveratrol on the NF-jB pathway

Figure 6. Effects of polydatin on CFA-induced microglia activation and GFAP expression. (a) Representative Western blot analysis of
GFAP and Iba-1. (b) Polydatin inhibited overexpression of Iba-1 in CFA-treated mice but had no effects on the levels of GFAP among the
groups. Data are presented as means� SEM (n¼ 7 in each group). **p< 0.01 vs. control group; ##p< 0.01 vs. CFA group. (c)
Immunofluorescence staining showed microglia activation by CFA injection in the amygdala by Iba-1 immunoreactivity, which was reversed
by polydatin administration. Scale bars: lower 20lm, upper 1000 lm. n¼ 3 in each group.
CFA: complete Freund’s adjuvant; GFAP: glial fibrillary acidic protein.
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by counteracting the phosphorylation of IjBa, IKKA,
and IKKb.52,53 In the current study, CFA injection

markedly triggered the secretion of TNF-a and IL-1b
and increased the levels of NF-jB p65 and p-IjBa,
which were abrogated by polydatin treatment. On the

basis of in silico docking analysis, the reverse effect of

polydatin on the upregulated expressions of NF-jB p65

and p-IjBA in CFA-induced mice may be due to the

interactive structures of polydatin and IKKb in the

NF-jB pathway.
Microglia is a dynamic immune cell response to

brain damage, degeneration, and neuroinflammation,

and it produces various neurotoxic and neuroprotective

factors. The most neurotoxic factor from activated

microglia is glutamate.54 Astrocytes are activated by

inflammatory mediators but contribute to the local

inflammatory response by producing proinflammatory

cytokines and alleviating neuronal damage through

anti-inflammatory factors in the CNS.32 Under neuro-

inflammatory conditions, astrocytes uptake excessive

extracellular glutamate by membrane-bound glutamate

transporters, thereby playing a critical role in preventing

glutamate excitotoxicity.55 Astrocyte dysfunction results

in the decrease of glutamate uptake, loss of neuronal

synapses, and increased release of cytokines and inflam-

matory mediators.56 Here, we found that CFA injection

markedly activated microglia in the amygdala. This

effect was inhibited by polydatin treatment. Astroglios

did not occur after CFA injection and/or polydatin

treatment, indicating that astrocytes were not involved

in the anxiolytic effects of polydatin.
In summary, the present data provide solid evidence

for the anxiolytic effects of polydatin in mice with

chronic inflammatory pain. The underlying mechanisms

are related to its neuroinflammation inhibition in the

amygdala.
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