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Abstract

Motivation: High correlation in expression between regulatory elements is a persistent obstacle for the reverse-
engineering of gene regulatory networks. If two potential regulators have matching expression patterns, it becomes
challenging to differentiate between them, thus increasing the risk of false positive identifications.

Results: To allow for gene regulation predictions of high confidence, we propose a novel method, the Linear Profile
Likelihood (LiPLike), that assumes a regression model and iteratively searches for interactions that cannot be
replaced by a linear combination of other predictors. To compare the performance of LiPLike with other available in-
ference methods, we benchmarked LiPLike using three independent datasets from the Dialogue on Reverse
Engineering Assessment and Methods 5 (DREAM5) network inference challenge. We found that LiPLike could be
used to stratify predictions of other inference tools, and when applied to the predictions of DREAM5 participants, we
observed an average improvement in accuracy of >140% compared to individual methods. Furthermore, LiPLike
was able to independently predict networks better than all DREAM5 participants when applied to biological data.
When predicting the Escherichia coli network, LiPLike had an accuracy of 0.38 for the top-ranked 100 interactions,
whereas the corresponding DREAM5 consensus model yielded an accuracy of 0.11.
Availability and implementation: We made LiPLike available to the community as a Python toolbox, available at
https://gitlab.com/Gustafsson-lab/liplike. We believe that LiPLike will be used for high confidence predictions in stud-
ies where individual model interactions are of high importance, and to remove false positive predictions made by
other state-of-the-art gene–gene regulation prediction tools.
Contact: rasmus.magnusson@liu.se or mika.gustafsson@liu.se
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding and interpreting big data have become a focal point
of the field of bioinformatics, since several scientific areas, such as
preclinical medicine, are dependent on a thorough understanding of
biological processes. The studies have been fuelled by an increasing
stream of data from several omics’ techniques. The overwhelming
size and complexity of data from modern techniques, such as RNA-
Seq hinder the drawing of conclusions from straightforward analy-
ses (Magnusson et al., 2017). Therefore, network analysis has
emerged as a prominent tool that is used to both distinguish and in-
terpret cellular processes (Alvarez et al., 2018; Cheng et al., 2018;
Madar et al., 2010; Prill et al., 2010; Santolini and Barabási, 2018).
In such network analyses, the aim has typically been to infer the mo-
lecular functions behind biological processes. These molecular func-
tions have often been in the form of gene expression regulation, and
the complex network that forms between gene transcription regula-
tors and dependent genes (Zhang et al., 2015). This network ana-
lysis can be performed in several ways, such as by constructing

graphs of nodes and edges that give information about cellular proc-
esses. When reverse-engineering gene regulatory networks (GRNs),
genes are denoted as nodes while the aim is to infer interactions
between them, referred to as edges. Next, studying the GRN can
provide different insights into the biological system
(Madhamshettiwar et al., 2012; Wang et al., 2019). These insights
include identifications of important feedback or cross-talks in bio-
logical systems (Magnusson et al., 2017), understanding of upstream
master regulators of gene expression (Gustafsson et al., 2015;
Lefebvre et al., 2010) and potential drug targets (Guney et al., 2016;
Madhamshettiwar et al., 2012).

Currently, there are several methods that are commonly used to
predict GRNs from gene expression data. One such approach is to
assume the data to be generated from a linear system and apply
regression-based algorithms. Such methods include the LASSO
(Tibshirani, 1991), the Elastic Net (Zou and Hastie, 2005) and the
Inferelator (Bonneau et al., 2006; Madar et al., 2009). Other popu-
lar methods include mutual information, notably, ARACNe
(Margolin et al., 2006), Bayesian modelling (Friedman et al., 2000;
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Kwon, 2016), artificial neural networks (Marbach et al., 2012) and
methods based on correlation (Xiong and Zhou, 2012).

Although there are a number of cases where GRN inference has
been successfully applied to solve biological questions (Noh et al.,
2018; Madhamshettiwar et al., 2012; Gustafsson et al., 2015;
Guney et al., 2016), network analysis has historically struggled with
a set of problems. First, the results of network inference are often de-
pendent on the underlying quality of data, with factors, such as cor-
related regulators posing a problem for most algorithms (Barzel and
Barabási, 2013; Tjärnberg et al., 2015; Zhao and Yu, 2006).
Second, understanding what aspects of the results can be trusted
often poses a problem, as most network inference methods aim to
recreate the most probable network, which often comes at the ex-
pense of a high false prediction rate. An example of these low accu-
racies can be found in the prestigious Dialogue on Reverse
Engineering Assessment and Methods 5 (DREAM5) GRN predic-
tion challenge, a contest where participants were given gene expres-
sion datasets from four independent sources with the objective of
predicting gene regulation. Analysing the results of DREAM5, the
areas under precision recall curves were found to be around 10%
for biological networks (Marbach et al., 2012). Such low perform-
ances pose a problem for interpretations of GRNs and ultimately
hinder biological advances. Biological experiments are both time-
consuming and costly and performing experiments, such as drug
screening based on network predictions with an accuracy of 10% is
ineffective.

However, there are some methods that have addressed the prob-
lem of low accuracy in predictions of gene regulation. One common-
ly applied approach to address the problem of correlated
explanatory variables is to apply repeated subsampling of data fol-
lowed by model training (Morgan et al., 2018; Wang et al., 2011)
commonly referred to as bootstrapping. However, such approaches
will not fully avoid identifying edges that cannot be rejected and in-
stead will include identifications across correlated explanatory vari-
ables (Wang et al., 2011). In two simultaneously developed works
by Feizi et al. (2013) and Barzel and Barabási (2013), it was shown
that predictions stemming from indirect correlations between pos-
sible interactions can be removed from an inferred network.
Approaches of this type are of special importance in the reverse-
engineering of GRNs. Consider a set of three genes, A, B and C,
where the expression of B and C are regulated by A. In their gene ex-
pression values, B and C will correlate, and it is not simple to based
on data distinguish if there is a link from A to C or from B to C.
Moreover, it is not certain whether A holds more explanatory power
over C than what B does, and in an approach to only identify inter-
actions of high importance, it might be better not to identify any of
the interactions in this example if they are not uniquely inferable
from data. One such approach is the Robust Network Inference,
RNI tool (Nordling, 2013), which has been developed to omit iden-
tifications that cannot be rejected by any model (Tjärnberg et al.,
2015). However, RNI is not, as of the date of publication, a publicly
available tool (Tjärnberg et al., 2015). Furthermore, RNI has been
shown to be much stringent, with few predictions being made when
the signal-to-noise ratio is low (Morgan et al., 2018).

In this study, we present the LInear Profile LIKElihood (LiPLike)
method, a novel algorithm to predict gene to gene regulation with
high accuracy by only selecting interactions that are uniquely
inferred by measured data. LiPLike was conceptualized by merging
the profile likelihood method for parameter confidence estimation
(Kreutz et al., 2013) and GRN inference but with two major differ-
ences. First, LiPLike assumes a linear regression model, which
allows for substantially larger networks to be analysed. Second,
LiPLike does not search for a confidence interval for a certain par-
ameter, but instead only compares two key points of interest: the
parameter value that minimizes the residual sum of squares, and the
point where this parameter equals zero. If there is an alternative lin-
ear combination of the explanatory variables that can model a de-
pendent variable equally well, LiPLike will refrain from including
such a parameter. In other words, LiPLike will only infer gene regu-
lations with high confidence, and will avoid identifying edges that
are not well-determined from data. In the case of several highly

correlated explanatory variables that all can individually explain the
expression data of a target, LiPLike makes no edge prediction,
whereas the LASSO would typically include one at random (Xu
et al., 2012) and the Elastic Net would include all (Zou and Hastie,
2005).

We tested the sensitivity of LiPLike by applying it to data from
the DREAM5 challenge and comparing the predicted network with
the 36 GRN inference methods analysed in the challenge. Instead of
assessing the performance of a method based on the precision recall-
or receiver operating characteristic curves, we evaluated the accur-
acy of top-ranked predicted edges for both LiPLike and the
DREAM5 participants. We found LiPLike to have higher accuracy
than all DREAM5 methods in the biological networks, and better-
than-average accuracy when benchmarking against the in silico gen-
erated data. Moreover, we found that LiPLike could successfully re-
move false positive identifications from GRN predictions of other
methods, and recognized this feature to be useful whenever high ac-
curacy GRN predictions are sought from gene expression data.
Finally, to make LiPLike available to the community we built a
Python toolbox available for download at https://gitlab.com/
Gustafsson-lab/liplike.

2 Materials and methods

2.1 Problem description
LiPLike is a novel GRN inference method that maximizes the accur-
acy of gene regulatory predictions. LiPLike minimizes the false posi-
tive prediction rate by not identifying potential regulators where a
regulation can be replaced by a linear combination of one or several
other explanatory variables (Fig. 1A). Specifically, the LiPLike algo-
rithm was inspired by the profile likelihood method, used to esti-
mate confidence intervals of estimated model parameters. Consider
a system of independent variables X and dependent variables Y.

Y ¼ f ðX; bÞ; Y;X; b 2 R (1)

In Equation (1), f ðX;bÞ is a function of parameters mapping X
to Y, via parameter vector b. The vector b typically determines how
each independent variable quantitatively models Y. In biology, this
relationship could, for instance, be transcription factors (TFs) X reg-
ulating a target gene Y, with the effects of parameter vector b. The
profile likelihood method estimates a confidence interval of a par-
ameter bi by observing the residuals between Y and f ðX;bÞ when bi

is forced to take the user-defined value f, as shown in Equation (2).

�LLðY � f ðX; bjbi¼fÞÞ < T (2)

In Equation (2), the log-likelihood function, LL, is studied with
respect to one parameter bi. By varying f, a confidence interval can
be defined as the values of f for which the negative log-likelihood is
below a threshold T. In other words, the profile likelihood tests
which value a parameter bi can take while still being able to explain
a variable Y. For a detailed description of the profile likelihood ap-
proach, see Kreutz et al. (2013). The profile likelihood is, however,
mostly applied to non-linear systems and for grey-box models where
all parameters are known to exist. Here, we instead assume that
data are generated from a linear system of variables Y dependent on
variables X via a vector of unknown constants, b.

Yj;k ¼
X

i

bi;jXi;k þ e (3)

In the annotations of Equation (3), Yj;k is a scalar corresponding
to the expression of gene j at observation k. Likewise, Xi;k is a scalar
corresponding to regulator i at observation k. As is widely known,
for overdetermined systems the vector b can be analytically esti-
mated, via the methods of least squares, to minimize the sum of
squared residuals. Now, for each parameter bi;j, there are two par-
ameter values that are of interest, namely the one minimizing the re-
sidual sum of squares and the point where bi;j ¼ 0. Thus, we can
quantify the relationship between these two points and introduce
the term qi;j.
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qi;j ¼
minðbjbi;j¼0Þ

P
k ðYj;k �

P
m bm;jXm;kÞ2

minb
P

k ðYj;k �
P

m bm;jXm;kÞ2
(4)

Given the values of X and Y, LiPLike returns qi;j for all interac-
tions in the network (Algorithm 1). As written in Equation (4), qi;j

will take larger values for edges that are uniquely needed to explain
Yj (Fig. 1B). In practice, Equation (4) compares the residual sum of
squares of two ordinary least-squares regression problems; one with
all dependent variables and one with dependent variable j removed.

If there exists a solution to adequately model response variable Yj

without dependent variable j, the ratio of residual sum of squares qi;j

will be close to one. Alternatively, if the removed variable was
uniquely needed to fit data in the regression model, the relative in-
crease in the residual sum of squares will be larger. This equation
can also be explained with the help of an example. In the case of
two highly correlated regulators, XA and XB, the constraint ba;j ¼ 0
will not independently give a considerable increase in the residual
sum of squares. Thus, qa;j � 1, as bb;j will adjust accordingly. In
Equation (4), there are three properties that should be noted. First, if
the system is not overdetermined, i.e. if rank(X) � N, the denomin-
ator of Equation (4) equals zero, and thus q is undefined 8i; j. To
solve this problem, we implemented functionality such that LiPLike
either takes a prior interaction matrix as the input or builds one
based on a cut-off on the Pearson correlation between variables. It
should be noted, however, that this functionality interferes with the
aim of LiPLike, i.e. to only identify edges that cannot be replaced by
any other interaction, and we thus recommend to use prior know-
ledge sparingly. Second, when computing qi;j, the residual sum of
squares of the special case of bi;j ¼ 0 is normed to the least-squares
fit of the fully connected system. Thus, in the case of a poor general
fit to a dependent variable the increase in the numerator must thus
be larger than for a well-fitted dependent variable for an edge to be
identified. Third, the output of LiPLike qi;j, depends only on data
properties and there are no additional hyperparameters that affect
the performance of LiPLike.

2.2 Package design
We implemented the LiPLike algorithm as a Python toolbox based
solely on built-in Python3 functions and the widely used NumPy
package. LiPLike calculates ratios of the residual sum of squares,
denoted q. The q matrix will hold continuous values qi;j > 1, with
larger elements indicating an interaction that uniquely explains
data. To choose a cut-off for q, i.e. to choose which edges should be
considered to be identified, we implemented an optional Monte
Carlo simulation of LiPLike applied on data random data. By de-
fault, LiPLike draws data from X and Y a 100 000 times and
searches for the largest value of q that can be expected to be gener-
ated given random chance. Next, we only considered LiPLike to
have identified an edge where qi;j takes a value outside the range of
the random q values.

3 Results

3.1 LiPLike predicts edges with high accuracy
To test the ability of LiPLike to extract gene–gene interaction pre-
dictions, it was first applied to two versions of an in silico generated
gene expression dataset from the tool geneSPIDER (Tjärnberg et al.,
2017). The network contained 100 nodes genes with 300

Fig. 1. Illustration of LiPLike rationale. (A) In a toy system of three gene regulators

(X1, and the correlated variables X2 and X3) regulating a target gene (Y), the opti-

mal parameters of the corresponding linear model are easily identified using the

method of least squares. Next, by imposing a constraint that the parameter value of

X1 should equal a value f and iteratively re-estimating the remaining two variables,

the profile of the residual sum of squares as a function of f can be studied. In other

words, as the parameter f is changed, so will the ability of the regulators to explain

the data in Y. Of special interest is the point of f¼0, i.e. where the regulator is

removed from the system. Furthermore, if X1 is uniquely needed to model Y, the re-

sidual sum of squares as a function of f will increase rapidly, as seen in the top case,

and there will be a large increase in the residual sum of squares between the best fit

and the case where f¼ 0. In the bottom case, since X2 and X3 are correlated, there

exists a linear combination of remaining explanatory variables that can adequately

fit Y, and the residual sum of squares is less dependent on f. This is because when

the parameter between X2 and Y is changed, the variable X3 is able to take the place

of X2. (B) Two examples of LiPLike applied to data. Three independent variables

exist, whereof two (X2 and X3) have a high correlation between them. To explain

dependent variable Y, either (X1, X2) or (X1, X3) are needed, and there is no way to

infer whether X2 or X3 is the correct regulator. If X2 or X3 is left out from the set,

LiPLike infers both remaining inputs to be important, as illustrated by the magni-

tudes of q shown to the right. When all three independent variables are included,

LiPLike refrains from selecting variables that cannot be inferred uniquely. This is be-

cause there is no way to determine if X2 or X3 is the correct regulator

Algorithm 1. LiPLike pseudo-code

Data: matrices of dependent variables Y and independent

variables

X

Result: Scalar q indicating uniquely defined interaction

for every dependent variable j do

for every independent variable i do

qi;j ¼ (j:th residual sum of squares of full network

except

independent variable i)/(j:th residual sum of squares

of full model);

end

end
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measurements at signal-to-noise ratio of 10 and 100 000, respective-
ly. We observed LiPLike to split edges into two groups, a group con-
taining the majority of genes where no high precision prediction
could be made (qi;j � 1), and a minor group where we had a clear in-
dication of an interaction (qi;j � 1) (Fig. 2, left).

As expected, we found that the spread between these two groups
of edges appeared to be dependent on the signal-to-noise ratio of the
data, with an increase of qmax in order of 108 when going from a
signal-to-noise ratio of 10 to 100 000. Next, we studied the receiver
operating characteristic curves for the respective datasets and
observed a behaviour where the true precision rate was initially
high, corresponding to a high accuracy. Next, the receiver operating
characteristic curves transitioned into a linear phase, i.e. a phase
where true predictions were randomly distributed. This linearity
indicated that, as expected from Equation (4), LiPLike struggles to
predict edges outside the high accuracy interval (Fig. 2, right).

We further aimed at analysing the ability of LiPLike to handle
under-determined systems, and sampled 50 experiments 100 times
from the data a signal-to-noise ratio (SNR)¼10, and applied
LiPLike. By default, when applied to an under-determined network,
LiPLike creates a prior network based on Pearson correlation be-
tween regulators and targets. In particular, for each gene LiPLike
allows for n potential regulators, where n is 90% of the number of
available observations. Using this approach, we observed a mean
area under the receiver operating characteristic curve of 0.58, as
compared to 0.75 when using the full dataset of 300 observations.
This example showed how an over-determined system is not neces-
sary for LiPLike to produce usable results, and that LiPLike can still
be used when data are scarce.

3.2 LiPLike outperforms state-of-the-art methods in

terms of accuracy
Knowing that LiPLike was capable of producing accurate predic-
tions, we next aimed to benchmark LiPLike to other state-of-the-art
GRN inference methods. There are several available datasets for

benchmarking, of which the DREAM5 network inference challenge
is one of the most extensive. Moreover, the DREAM5 data contain
ranked predictions of networks from both challenge participants,
state-of-the-art methods and a combined crowd estimate, all based
on data from four different networks. The networks are based on
two prokaryotic (Staphylococcus aureus and Escherichia coli), one
eukaryotic (Saccharomyces cerevisiae) and one in silico simulated
system, all with accompanying expression datasets. However, due to
the inability of DREAM5 participants to infer edges from the
S.cerevisiae data (Marbach et al., 2012), we excluded it from further
analysis. We assumed the expression of target genes to be a linear
combination of the TFs in the data. Since the rationale of LiPLike is
not to predict full networks, we measured performance in terms of
accuracy, i.e. the rate of correct predictions among these top-ranked
edges and the corresponding number of top-ranked edges in the
DREAM5 participants’ networks. We identified the E.coli network
to be of special importance since the S.aureus gold standard was less
extensive (only 518 edges), and since in silico is less relevant than
true biologically derived networks.

Studying the performance of LiPLike on the E.coli data, we
found accuracies of 0.38, 0.27 and 0.18 for 100, 500 and 1000
included edges, respectively (Fig. 3A and B). These numbers can be
compared to the consensus model of all DREAM5 participants
(Marbach et al., 2012), with corresponding accuracies of 0.11, 0.10
and 0.08, i.e. less than half of LiPLike. Indeed, we found LiPLike to
give the highest accuracy of all methods on the interval of 41–7943
of top-ranked edges. To choose a threshold of included edges, we
performed a Monte Carlo re-sampling of data (Section 2) and found
2308 gene regulations to have qi;j larger than the max of the random
q (S.aureus: 263 and in silico: 2203). Studying the predictions of
both DREAM5 biological networks, we found LiPLike to have a
higher accuracy than all DREAM5 participants at the Monte Carlo
threshold (LiPLike accuracy ¼ 0.11, 0.10, for S.aureus and E.coli,
which is an increase of 11% and 18%, respectively compared to the
best method in the DREAM5 challenge) (Fig. 3C). Notably, applied
to the biological datasets, we found LiPLike to outperform the ac-
curacy of the community predictions, which previously have been
shown to be successful predictors of GRNs (Marbach et al., 2012).
In the in silico generated data, we observed LiPLike to only achieve
a higher accuracy than the average of the DREAM5 participants. It
should be noted, however, that most methods performed well on
this data, and the edges predicted by LiPLike still had an accuracy of
0.37 (average ¼ 0.32). We further analysed the recall, i.e. the per-
centage of the edges in the gold standard that were correctly identi-
fied in the LiPLike top edges, and found the recalls to be 6%, 11%
and 32% for the S.aureus, E.coli and in silico networks, respective-
ly. With these results, we concluded that LiPLike, used as a stand-
alone tool, is an effective method to extract gene–gene interactions
with high confidence.

3.3 LiPLike removed false positives from predictions of

other methods
A major conclusion drawn from the DREAM5 challenge was that
the union of method predictions robustly outperforms individual
methods. We, therefore, examined the impact of combining LiPLike
with DREAM5 participants’ predictions. For the edges predicted by
LiPLike and the same number of top-ranked edges in the community
prediction (263, 2308, 2203 edges), we found significant overlaps
(odds ratio ¼ 223, 288, 192, Fisher’s exact test P <
10�74; 10�100; 10�100 for the S.aureus, E.coli and in silico networks,
respectively). Indeed, we observed significant overlaps of edge pre-
dictions between LiPLike and almost all DREAM5 participants
(Supplementary Fig. S1), meaning that LiPLike identifies a subsec-
tion of interactions that are shared across several network inference
algorithms.

Since the rationale of LiPLike is not to identify any edge where
there is more than one potential regulator, we further tested to com-
bine LiPLike with other methods for better accuracy and studied the
DREAM5 community and LiPLike top-ranked predictions in depth.
For the predictions in common for both methods, we found the

Fig. 2. LiPLike properties and performance on in silico generated networks. The

confidence of inferred edges is listed as q, calculated for two datasets for the same

network. The networks differed in the signal-to-noise ratio. The magnitudes of q

were found to be dependent on the noise level, with a factor 10e7 differing between

the datasets, as seen on the x-axis on the histograms to the left. Moreover, the histo-

grams both display a property empirically arising from LiPLike for networks with

strong signals, i.e. a separation of confidence into two distinct groups, high confi-

dence or none. To the right are the corresponding receiver operating characteristic

curves, showing that LiPLike infers edges well for some values, to then have a near

to random chance for identifying an edge. The networks were retrieved from https://

bitbucket.org/sonnhammergrni/genespider
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community accuracies to increase from 9%, 5% and 53% to 53%,
15% and 70% (Fisher’s exact test P < 1:8 � 10�14; 5:4 � 10�18 2:6 �
10�78 for S.aureus, E.coli and in silico, respectively; Fig. 4).
Moreover, for the non-overlapping edges between LiPLike and the
community approach in the E.coli and S.aureus networks, we also
observed an almost complete depletion of correct edges predicted by
the community but not by LiPLike, with accuracies as low as 1.8%
and 1.3%, respectively (Fig. 4), suggesting that combining LiPLike
with other methods can effectively remove false positive edge identi-
fications from a set of predictions. Furthermore, this property of

removing false positive interactions seems to be a general property
of LiPLike. By examining the intersections between all DREAM5
participants and LiPLike, we found the accuracy to be increased for
almost all methods, with median increases in accuracy from 0.05,
0.04 and 0.36 to 0.47, 0.15 and 0.68, for S.aureus, E.coli and in sil-
ico (Supplementary Fig. S2). Furthermore, we verified this behaviour
by applying LiPLike to independent in silico generated data (Prill
et al., 2010, Supplementary Material S3). When applied to the ex-
pression sets of 10, 50 and 100 genes, we observed LiPLike to re-
move false positive predictions of two independent network
inference methods presented in Zhang et al. (2015) and Aghdam
et al. (2015). This increase in accuracy demonstrated that LiPLike
can be used to remove false interaction predictions from other meth-
ods. Thus, there is a strong indication that LiPLike can be used in
combination of any GRN inference method to stratify predictions
into two groups of more and less reliable interactions. We also noted
LiPLike to produce accuracies and F1 measures in line with the other
methods (accuracies¼0.43, 0.16, 0.11, F1¼0.35, 0.19, 0.12), when
applied as a stand-alone tool to the 10, 50 and 100 gene networks,
much like the results from the study of the DREAM5 in silico data.

3.4 LiPLike robustly identifies interactions from a wide

selection of TFs
We next aimed to further compare the network structures generated
by LiPLike and the community. Since LiPLike aims to only include
edges that uniquely model an interaction, we first analysed the
Pearson correlation of inferred regulators in the LiPLike and top
community networks. For each inferred edge, we searched for the
closest correlating TF and found the median of these correlations to
be significantly higher for the community predictions than LiPLike
for all tested datasets (mediancommunity � medianLiPLike ¼ 0.086,
0.106, 0.053 and Mann–Whitney P < 10�17, 10�124 and 10�30), for
S.aureus, E.coli and in silico, respectively (Fig. 5A). Thus, LiPLike
avoided identifying edges when two or more regulators correlated,
which was not the case for the community predictions. It can be
noted that the median Pearson correlation coefficient of the closest
correlating TF in the three networks was significantly lower in the in
silico generated network than in the experimentally generated ones

Fig. 3. LiPLike performance on DREAM5 challenge data. (A) Accuracy of algorithms predicting edges of the E.coli network as a function of number of edges considered. The

LiPLike performance is plotted in red, showing a higher accuracy than all DREAM5 participants. (B) The accuracies of LiPLike across top-ranked edges for all networks. (C)

The accuracy of all methods, the crowd estimate and LiPLike for the top-ranked edges. LiPLike gave the highest accuracy of all methods in both biologically derived networks,

and ranked 20th of 36 in the in silico network. (Color version of this figure is available at Bioinformatics online.)

Fig. 4. Accuracy of edge predictions of the DREAM5 community prediction and

LiPLike, split up between top edges that are exclusively found in the community,

LiPLike, and in both. In all cases, the edges that are found in both predictions have

a considerable increase in accuracy compared to the DREAM5 challenge commu-

nity prediction. Moreover, in the case of the biological networks, S.aureus and

E.coli, LiPLike performs better than the community in the non-overlapping predic-

tions, indicating that LiPLike identifies edges that the community failed to include
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(medianS.aureus ¼ 0.61, medianE.coli ¼ 0.54 and medianin silico ¼ 0.39
and Mann–Whitney Pin silico�S.aureus < 10�21 and Pin silico�E.coli <
10�19). It is possible that the lower Pearson correlations in the in sil-
ico data explain why LiPLike does not achieve a higher accuracy
than the DREAM5 participants, as it is thus unlikely that two TFs
can independently predict the expression of a gene.

Apart from predicting individual gene interactions, GRN infer-
ence can also be used to extract topological information on a bio-
logical system. For instance, network regulators with a
disproportionately large outdegree have previously been used in pre-
dictive medicine (Gustafsson et al., 2015). We hypothesized that
such genes are more likely to have closely correlated regulators, and
that LiPLike would therefore fail to identify their targets. Studying
the E.coli network, we found that LiPLike indeed predicted net-
works containing fewer high-outdegree TFs than the community
predictions. Whereas the community-predicted network followed
power–law distribution on TF outdegrees, LiPLike produced a top-
ology that was similar to an exponential distribution (Fig. 5B). In
other words, the DREAM5 community produced a network where,
compared to LiPLike, the predicted edges generally congregated
around a few TFs. We then tested whether these TFs were important
regulators that LiPLike failed to capture. Surprisingly, we observed
accuracies much lower than that of the overall community accuracy
(0.01 compared to 0.05 overall accuracy), with four of the five top
TFs having no predicted edges with support in the gold standard
(Fig. 5C). As a comparison, the top five TFs predicted by LiPLike
showed a combined accuracy of 0.09, in line with the 0.10 overall
LiPLike accuracy, indicating that LiPLike can robustly predict edges
across node outdegrees.

Lastly, we tested whether the top regulators in the different
DREAM5 participants overall had a low accuracy and continued to
analyse all participants’ regulators with a larger outdegree than any
of the respective LiPLike regulators. Notably, the S.aureus and

E.coli networks on average had lower accuracies than the overall ac-
curacy of the method [S.aureus and E.coli: 88 of 90 and 158 of 200
hubs having lower accuracies than the method overall performance
(binomial PS:aureus < 10�23;PE:coli < 10�16)], indicating that
reduced accuracy in inferred edges from top gene regulators is a gen-
eral property of GRN inference methods.

4 Discussion

The creation of GRNs is a pivotal tool for understanding gene ex-
pression patterns. However, such inferences have long struggled
with low accuracy in predictions, to a large extent due to correlating
expression profiles of potential regulators. In this article, we have
presented the LiPLike, a novel method and software for high accur-
acy gene regulatory predictions from large biological datasets. As in-
put, LiPLike takes data for dependent and independent variables
and searches for cases where an independent variable uniquely
explains the behaviour of a dependent variable. We showed that
LiPLike could successfully infer gene–gene interactions from bio-
logical data by benchmarking it against the DREAM5 network in-
ference challenge (Marbach et al., 2012), achieving accuracies
higher than all 36 DREAM5 participants for GRNs of S.aureus and
E.coli. We also reported that combining LiPLike with networks
from other GRN prediction methods significantly increased the ac-
curacy for gene–gene interaction predictions, indicating that LiPLike
can be used to remove false positive identifications from GRN pre-
dictions of other network inference methods.

LiPLike is related to the method profile likelihood, which aims
to estimate the intervals that an estimated parameter can take with a
retained fit to data (Cole et al., 2014). However, LiPLike differs
from the profile likelihood in three key aspects. First, the profile
likelihood is most commonly applied to non-linear ordinary differ-
ential equation systems, while LiPLike assumes linear relations

Fig. 5. Network properties. A) Cumulative distribution of the highest correlation with other regulators of putative interactions shown for LiPLike (red), and the crowd (grey)

top-ranked interaction from respective DREAM5 networks. The regulators LiPLike identify tend to have on average fewer correlating regulators. For example, in the E.coli

network, we observed a median Pearson correlation of q ¼ 0:57. For the corresponding community prediction, 85.3% of all inferred regulators have a higher correlation than

0.57 to another regulator. This higher correlation indicates that LiPLike to a lesser degree predicts edges where there are several potential regulators to choose from. (B)

Distribution of inferred edges for each transcription factor for LiPLike (red) and the community (grey). While the putative outdegrees of transcription factors in the community

estimate appear to follow power law (as indicated by the straight line in the log-scale), LiPLike appears to select edges with a broader distribution profile. (C) Accuracies for

the inferred top regulators in the community prediction were found to be low. The top regulators in the LiPLike network had similar accuracies to the overall LiPLike accuracy.

(Color version of this figure is available at Bioinformatics online.)
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between independent and dependent variables, which increases the
computation speed by several orders of magnitude. This increase in
computational performance arises from the fact that the linear rela-
tionship is algebraically solvable in the form of the least-squares
method, or variants thereof. It is important to point out that where-
as a profile likelihood analysis can deal with almost any mathemat-
ical model, the restriction of LiPLike to linear models limits what
biological dependencies can be captured. Nevertheless, the assump-
tion that biological data come from a linear system is one of the
most common approaches in GRN inference, and not exclusive to
LiPLike. Second, LiPLike differs from the profile likelihood in that
the profile likelihood tests which values a model parameter, b, can
take with retained fit to data. LiPLike only tests the parameter b for
the values minimizing the residual sum of squares and b¼0. Third,
the profile likelihood estimates the uncertainty of a parameter, while
LiPLike ranks all potential interactions in a network and interprets
the increase in residual sum of squares from the two cases as an indi-
cation of the presence of an interaction.

While LiPLike is different from the profile likelihood in that the
profile likelihood does not aim to infer edges in a network, there are
alternative methods available for high accuracy GRN inference.
Several methods have aimed to filter out gene–gene interaction iden-
tifications that are by-products of indirect correlations, for instance
by studying the inverse covariance matrix of gene expression (Yuan,
2010). However, there are cases where this approach would fail.
Consider a system of four genes, A–D. If C and D both are regulated
by an interplay between A and B, C and D would arguably correlate
more with each other than with A or B. Thus, a method that firmly
avoids predictions where there is more than one possible model is
needed to not make false positive identification. The RNI method
(Nordling, 2013), for example, aims to only include edges that can-
not be rejected by any model (Tjärnberg et al., 2015). However,
RNI might be too stringent and has been found not to make any
interaction predictions from in silico generated data with SNR val-
ues commonly reported in biology (Tjärnberg et al., 2015; Venet
et al., 2012). Another method aiming to address the problem of cor-
relating explanatory variables is the random LASSO (Wang et al.,
2011), which bootstraps the explanatory variables in a series of
steps and predicts a network by taking the average results from the
bootstrap outcome. Thus, correlated explanatory variables will be
predicted a smaller number of times, but will still be predicted in the
final outcome (Wang et al., 2011). An alternative approach to coun-
ter the problem of correlated explanatory variables is to cluster high-
ly correlated variables into groups, as for example, done by the
cMonkey algorithm, and use these groups as wider representations
of explanatory variables (Reiss et al., 2006). It should be noted,
however, that such approaches capture broad changes in gene regu-
lation, with identified interactions between clusters of genes as
opposed to the single gene–gene interactions identified by LiPLike.

Moreover, a common approach to deal with false positive identi-
fications is to include prior knowledge of the network that is being
inferred. While LiPLike comes with an option to include prior matri-
ces, this feature interferes with the rationale behind LiPLike, i.e. to
only include interactions that cannot be replaced by a linear combin-
ation of all other regulators. Nevertheless, this rationale could be
applied to local neighbourhoods of potential regulators too, as
opposed to all genes.

LiPLike is, at its core, a comparison between two linear regres-
sion models. In the first case, the ability of a model containing all
possible regulators, e.g. TFs, to fit a dependent variable is tested. In
the second case, one regulator is removed, and the new fit of the
model is calculated. If the decrease in fit is large, the removed vari-
able had a unique explanatory power over the target gene that was
being studied, and LiPLike would, therefore, identify and
interaction.

Arguably, gene expression data often contain several genes that
are regulated by the same biological processes, thereby correlate.
This correlation impedes the accuracy of algorithms that aim to
reverse-engineer the underlying structures of the gene regulation, as
it is hard to distinguish between the directly and indirectly corre-
lated variables when selecting variables to explain a gene, and false

positive interactions are abundant. However, correlation between
gene expression regulators is not the only factor that could invoke
unidentifiable interactions in data. For example, gene expression is
in reality regulated by the proteins of TFs, and most models use
mRNA of TFs as a proxy of protein levels. In spite of that, gene ex-
pression data are known to be poorly correlated with the corre-
sponding protein abundance (Fortelny et al., 2017). In other words,
regulators where mRNA expression is a poor proxy for the ability to
control other genes will be hard to include in an mRNA-mRNA
model. Nevertheless, there are today established approaches to esti-
mate the activity of regulators from targets, such as discussed in
Arrieta-Ortiz et al. (2015), and such approaches can indeed be used
in combination with LiPLike.

The rationale behind LiPLike is to only identify edges that can-
not be replaced by other interactions in the data. This approach is
different from other approaches, which often try to infer the most
probable network. This difference makes LiPLike highly stringent,
and it is, therefore, closer to be a method for edge identification
than a tool for full network reverse-engineering. Such identifications
are important, for example, when planning costly follow-up experi-
ments. Here, we showed that LiPLike seems to have a higher accur-
acy than other available tools for edge identification when
explanatory variables are highly correlated. We further hypothesized
this performance to stem from the properties of common GRN in-
ference methods. Indeed, when encountering correlated independent
variables, GRN-inference tools have been known to identify a regu-
lator at random, or to include all potential regulators (Zou and
Hastie, 2005). LiPLike, however, would identify none as a potential
regulator. Importantly, we have also shown LiPLike to be able to re-
move false predictions from GRN produced from other methods, a
property that can be used by anyone that wishes to stratify their pre-
dictions into sets of high and low confidence.

5 Conclusion

The occurrence of correlating explanatory variables poses a major
obstacle when inferring GRNs. Available methods for GRN infer-
ence normally handle correlations by including several or one of the
correlating explanatory variables. In this study, we present LiPLike,
which identifies no interactions that cannot be uniquely inferred
from data, and we show LiPLike to predict edges with higher accur-
acy than other state-of-the-art GRN inference tools in the
DREAM5-challenge. Importantly, we also show that LiPLike can be
used to remove false interactions from other methods, with the aver-
age increase of accuracies being 0.05, 0.04 and 0.36 to 0.47, 0.15
and 0.68, for S.aureus, E.coli, and in silico, respectively, and we rec-
ommend LiPLike be used on top of GRN estimations to give reliable
predictions. In summary, we herein make gene interaction identifica-
tion of high accuracy available for the community, using LiPLike to-
gether with other algorithms or as a stand-alone feature selection
tool.
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