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Abstract

Purpose

4D and 2D phase-contrast MRI (2D Flow MRI, 4D Flow MRI, respectively) are increasingly

being used to noninvasively assess pulmonary hypertension (PH). The goals of this study

were i) to evaluate whether established quantitative parameters in 2D Flow MRI associated

with pulmonary hypertension can be assessed using 4D Flow MRI; ii) to compare results

from 4D Flow MRI on a digital broadband 3T MR system with data from clinically established

MRI-techniques as well as conservation of mass analysis and phantom correction and iii) to

elaborate on the added value of secondary flow patterns in detecting PH.

Methods

11 patients with PH (4f, 63 ± 16y), 15 age-matched healthy volunteers (9f, 56 ± 11y), and 20

young healthy volunteers (13f, 23 ± 2y) were scanned on a 3T MR scanner (Philips Ingenia).

Subjects were examined with a 4D Flow, a 2D Flow and a bSSFP sequence. For extrinsic

comparison, quantitative parameters measured with 4D Flow MRI were compared to i) a

static phantom, ii) 2D Flow acquisitions and iii) stroke volume derived from a bSSFP

sequence. For intrinsic comparison conservation of mass-analysis was employed. Dedi-

cated software was used to extract various flow, velocity, and anatomical parameters. Visu-

alization of blood flow was performed to detect secondary flow patterns.

Results

Overall, there was good agreement between all techniques, 4D Flow results revealed a con-

siderable spread. Data improved after phantom correction. Both 4D and 2D Flow MRI

revealed concordant results to differentiate patients from healthy individuals, especially

based on values derived from anatomical parameters. The visualization of a vortex, indicat-

ing the presence of PH was achieved in 9 /11 patients and 2/35 volunteers.
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Discussion

This study confirms that quantitative parameters used for characterizing pulmonary hyper-

tension can be gathered using 4D Flow MRI within clinically reasonable limits of agreement.

Despite its unfavorable spatial and lesser temporal resolution and a non-neglible spread of

results, the identification of diseased study participants was possible.

Introduction

Pulmonary hypertension (PH) is a severe and multifactorial disease associated with a high

mortality that can further aggravate the underlying disease. PH usually presents with non-spe-

cific symptoms and is thus often diagnosed at a late stage, thus impairing prognosis. Despite

constant improvements of treatment, PH is still associated with a high mortality [1]. The diag-

nosis of PH is typically established by measuring an elevated mean pulmonary artery pressure

(mPAP) of� 25 mmHg at rest using invasive right heart catheterization (RHC) [2]. Although

potential side effects of RHC are relatively rare, the invasive nature of the procedure bears a

certain risk, especially in cardiopulmonary diseased patients, and may further delay diagnosis

of PH. Moreover the clinical standard for diagnosing and characterizing PH still comprises a

large set of additional exams, including computed tomography and ventilation/perfusion scin-

tigraphy for diagnosis and subclassification of PH [2]. Therefore, a comprehensive, non-inva-

sive diagnostic approach that is able to diagnose PH and potentially contribute further

information regarding anatomy and hemodynamics would be of high relevance. Here, 4D

Flow MRI may serve as a valuable tool in a comprehensive MRI setup.

There is a growing body of MRI studies evaluating PH, including cardiac magnetic reso-

nance (CMR) [3–5], MRI of the lung parenchyma and its perfusion [6], and derived parame-

ters such as transit time measurements [7]. Several studies tested the use of time resolved 2D

phase contrast flow measurements, and more recently, 4D phase contrast magnetic resonance

imaging (2D Flow MRI and 4D Flow MRI, respectively) for diagnosing PH. Among others,

Sanz and co-workers successfully evaluated anatomical and hemodynamic parameters of the

main as well as the proximal right and left pulmonary arteries based on 2D Flow MRI. Mini-

mal vessel area, average blood flow velocity, and strain, defined as the relative vessel area

change through the cardiac cycle, demonstrated a good sensitivity and specificity diagnosing

PH [8, 9]. In addition, the mPAP has been successfully estimated based on 2D Flow MRI by

Swift and co-workers [10].

4D Flow MRI has provided unprecedented insights into hemodynamics of various diseases

and vascular territories [11]. In pulmonary hypertension, Reiter and co-workers established

means of non-invasively diagnosing pulmonary hypertension by estimating the mPAP using

presence and persistence time of secondary flow patterns in the main pulmonary artery [12–

14]. Other data revealed differences in hemodynamic parameters derived from 4D Flow MRI

between patients and volunteers [15].

The aforementioned MRI studies typically used a single technique to examine volunteers

and patients. In the clinical setting, it is of equal interest how different diagnostic approaches

compare. In addition, there is still concern regarding the errors associated with phase contrast

acquisitions, the accuracy of the used sequences, and the possible impairment of phase contrast

data by phase offsets [16]. Therefore, studies evaluating both the diagnostic performance and

the comparability of established parameters are of practical interest. To the best of our knowl-

edge, there is no comprehensive study comparing 4D Flow MRI to a broad set of MRI-based
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alternative measurements in patients with PH in vivo. Prior to its introduction into clinical

routine, a thorough comparison and error quantification is essential.

Therefore, the goals of this study were: i) to compare 4D and 2D Flow MRI for differentiat-

ing between patients with PH and healthy volunteers using hemodynamic and anatomical

parameters previously established for diagnosing PH; ii) to compare results from the applied

4D Flow MRI sequence on a digital broadband 3T MR system to those from established MRI

sequences (2D Flow MRI and right ventricular volumetry, respectively), by performing phan-

tom correction and conservation of mass (COM)-analysis and iii) to analyze the additional

diagnostic value of secondary flow patterns in 4D Flow MRI.

Materials and methods

Study participants

All human subjects were enrolled in this HIPAA-compliant study after approval of the local

ethics committee (Ethics Committee of the University of Lübeck, Study-ID: Az 13–117) and

written informed consent. Forty-six subjects, 11 patients with clinically proven PH [PAT], 15

age-matched, healthy volunteers [VOL-O], and 20 young, healthy volunteers [VOL-Y] were

included. Table 1 provides a full demographic description of study participants. According to

the updated clinical classification by Simonneau et al., three patients presented with PH type I,

four with PH type III, three with type IV and one patient with type V [2, 17]. Patients were

classified following a diagnostic work-up in line with recent guidelines, including a qualifying

right heart catheterization with an mPAP�25 mmHg. Patients presented with a mean mPAP

of 46.1 ± 16.0 mmHg, mean systolic pulmonary artery pressure of 67.3 ± 11.1 and mean dia-

stolic pulmonary artery pressure of 9.6 ± 4.2 mmHg according to RHC. The mean time inter-

val between RHC and MRI was 12.5 ± 15 days. Exclusion criteria were: generally accepted

contraindications against conducting MRI; inability to or withdrawal of consent into the

study, and arrhythmia preventing completion of the ECG-gated studies.

MRI scans

MR Imaging was performed on a 3T MR scanner (Philips Ingenia Omega dStream, R5.18,

Philips, Best, The Netherlands) using a 20-channel body surface coil. The digitization of the

MR data took place in the coil itself rather than prior conversion to direct current, which,

Table 1. Demographics and physiological data.

Total VOL-Y VOL-O PAT P value#

n 46 20 15 11 -

Age 44.1 ± 20.4 23.4 ± 2.2 56 ± 11.3 62.5 ± 16.3 0.24

Gender ratio [m:f] 20:26 7:13 6:9 7:4 0.23

Height [cm] 173 ± 10.6 176 ± 10.6 172 ± 11.7 168 ± 7.8 0.62

Weight [kg] 68.9 ± 16.2 64.5 ± 13.2 70.6 ± 17.9 75.0 ± 18.2 0.53

BMI [kg/m2] 22.8 ± 3.8 20.5 ± 2.0 23.5 ± 3.6 25.7 ± 4.3 0.19

Blood pressure [mmHg] 130±17/

82±9

118±11/

78±6

128±19/

82±13

144±23/

84±10

0.05�/0.72

Heart rate

[bpm]

65.2 ± 11.0 62.3 ± 9.9 64.0 ± 10.6 70.0 ± 12.2 0.38

Table 1—Demographics and physiological data of study participants. Values are given as mean ± standard deviation
# comparison between age-matched healthy volunteers and patients; asterisk (�) indicates statistical significance.

https://doi.org/10.1371/journal.pone.0224121.t001
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according to the manufacturer, is beneficial in terms of noise reduction. In all subjects, 4D and

2D Flow MRI were performed. For the secondary study goal, 23 healthy volunteers underwent

RV cardiac volumetry and phantom scans repeating the 2D and 4D Flow MRI sequences in an

identical manner on a static phantom were conducted based on the method proposed by Cher-

nobelsky et al. [18].

As part of a clinically indicated cardiac MR exam protocol, patients were given 0.1ml/kg

body weight contrast agent (Gadubotrol, Gadovist1, Bayer Vital, Leverkusen, Germany) at

1,5ml/sec using an Accutron MR1 injector (MedTron AG, Saarbrücken, Germany) in

sequences conducted prior to the flow acquisitions. Volunteers did not receive contrast agent.

2D Flow MRI

One-directionally (“through-plane”) velocity encoded, referenced 2D phase contrast MRI

sequences with retrospective ECG-gating were adapted to scanning within a single

breathhold� 20 seconds. A total of three 2D acquisition planes were carefully positioned per-

pendicular to the main pulmonary artery (MPA) approximately 1 cm downstream the pulmo-

nary valve and in the left and right pulmonary artery (LPA, RPA, respectively) approximately

1 cm downstream the pulmonary bifurcation. The total scan time for all three 2D Flow MRI

sequences ranged between 7:39 and 10:21 minutes. Typical imaging parameters were: repeti-

tion time/echo time (TR/TE) = 3.12/1.14ms; flip angle = 7˚; velocity encoding sensitivity

(Venc) = 80-120cm/s and an acquired in-plane resolution of 2.0 x 2.0mm and a slice thickness

of 7mm. All scans were checked for velocity-aliasing directly following the end of each scan

and repeated with adapted Venc-settings if necessary. Data were reconstructed to 40 temporal

frames resulting in an effective temporal resolution of 17-34ms.

4D Flow MRI

For 4D Flow MRI acquisitions, a retrospectively ECG-gated, time-resolved, three-dimensional,

cartesian phase-contrast MR sequence with referenced three-directional velocity-encoding

was used. Respiratory gating with an acceptance window of 8-12mm to achieve a gating effi-

ciency on the order of 60% was applied. To avoid velocity aliasing, the Venc was adapted to the

Venc setting used in the previously obtained 2D Flow MRI sequences, which were checked for

velocity aliasing. Typical imaging parameters were: 25–36 slices in oblique axial orientation;

field of view = 180-300mm x 172-300mm x 167-294mm adapted to the individual anatomy; an

acquired in-plane isotropic voxel resolution of 2.0–2.4mm was reconstructed to 2mm; TR/

TE = 3.12/1.14ms; flip angle = 14˚. To compensate potential signal-to-noise ratio differences

between contrast enhanced and non-contrast enhanced scans, the flip angle was adapted to 7˚

in studies without contrast agent [19]. Data were reconstructed to 20 frames resulting in an

effective temporal resolution of 36-67ms depending on the average heart rate. The use of paral-

lel imaging with a SENSE factor of 2 in AP-direction allowed for effective scan times between

7:55 and 14:30 minutes, depending on the ECG trigger and navigator gating efficiency. If con-

trast agent was administered, the 4D Flow MRI sequence was obtained directly after a clinically

requested contrast-enhanced MR angiogram to take advantage of the improved signal-to-

noise and velocity-to-noise ratio [20]. Eddy currents and Maxwell terms were corrected auto-

matically during offline reconstruction of the raw data.

Right heart volumetry

A time-resolved, retrospectively ECG-triggered, balanced steady-state free precession (bSSFP)

sequence planned transversal to the body axis covering the entire right ventricle was acquired

per clinical routine during multiple breathholds for quantification of right ventricular SV [21].

4D Flow MRI in pulmonary artery hemodynamics
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Scan time for the bSSFP sequenced ranged between 3:21 and 4:46 minutes. Imaging parame-

ters included: TR/TE = 3.12/1.14ms; flip angle = 45˚; field of view = 390mm × 390mm; slice

thickness = 8mm, interpolated to a spatial resolution of 1.5 × 1.5 × 8mm. Images were recon-

structed to 40 cardiac frames through the cardiac cycle.

Data analysis

Data were transferred to an offline workstation for postprocessing, visualization and quantifi-

cation. The evaluation scheme for 4D Flow MRI on a workstation equipped with GTFlow

(v2.2.15, GyroTools, Switzerland) included noise filtering of data, creation of a surface shaded

3D volume display based on the velocity weighted magnitude data (complex difference), and

placement of cutplanes transecting the main, proximal left and right pulmonary arteries for

further analysis.

For quantitative analyses, the anatomical position of the 2D Flow MRI slices was automati-

cally extracted from the DICOM data in order to define exactly matching cut-planes in the 4D

Flow MRI data volume. Correct positioning of these planes was confirmed via a 3D angiogram,

computed from phase-difference information derived from the 4D Flow dataset. On each vessel

cutplane, vessel walls were segmented with a B-spline interpolation algorithm. Manual segmen-

tation of the vessel wall was performed as described before with established small inter- and

intra-reader differences [22]. The segmentation was copied over all time frames and was then

carefully adapted manually to each time point through the cardiac cycle accounting for pulsa-

tion and vessel motion. An example of cutplane placement, contouring, and subsequent visuali-

zation can be found in Fig 1A. Extracted hemodynamic and anatomical parameters from 2D

and 4D Flow MRI used for comparison were: Stroke volume (SV), maximum flow (Qmax), time-

point of maximum flow (t_Qmax), maximum velocity (vmax), timepoint of maximum velocity

(t_vmax), maximum area (Amax) and minimum area (Amin). Strain was calculated as (Amax-

Amin)/Amin
�100 [9]. In addition, a COM-analysis following the logic that flows in RPA and LPA

must add up to flow in the MPA (SVMPA = SVLPA + SVRPA) as further illustrated in Fig 1B [23]

was performed. For error quantification, the geometric and anatomical information of the

Fig 1. Data analysis of a 4D Flow MRI dataset. Fig 1 a) shows contour-placement (white) in the main, right and left pulmonary artery (MPA, RPA, LPA,

respectively) in a healthy volunteer. The oblique cutplane transecting the LPA matches the 2D Flow geometric orientation to guarantee the exact

comparability of data. Visualization in (a) was achieved by using particle-traces, projected in both flow directions, with contours as seed points. Color-

coding was performed with respect to the acquired velocities. (b) the principle of the Conservation of mass-analysis in the same volunteer. Stroke volume

in the MPA should equal the sum of stroke volume in the RPA and LPA to proof data consistency. The vessel wall was reconstructed based on complex

difference and surface shading of the 4D Flow MRI data.

https://doi.org/10.1371/journal.pone.0224121.g001

4D Flow MRI in pulmonary artery hemodynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0224121 October 24, 2019 5 / 17

https://doi.org/10.1371/journal.pone.0224121.g001
https://doi.org/10.1371/journal.pone.0224121


above MPA, LPA and RPA cutplanes of the 2D and 4D data were copied to the phantom data

to achieve perfect spatiotemporal matching.

The left ventricular stroke volume (SV) based on bSSFP CMR was determined per clinical

standard according to the Simpson’s method using the Extended MR WorkSpace (v2.6.3.5,

Philips) by segmenting endocardial borders on end-diastolic and end-systolic frames on every

slice through the right ventricle. Resulting end-diastolic and end-systolic volumes were sub-

tracted to calculate SV.

For blood flow pattern visualization, time-resolved pathlines emitted up- and downstream

from each predefined contour and instantaneous 3D streamlines were used on the 4D Flow

MRI data. Both visualization options were based on the interpolated spatial resolution of 2mm

isotropic voxel size. Data were color-coded with respect to the acquired blood flow velocity.

For details on the visualization options please see [20]. Both visualization strategies were taken

into account for the evaluation of secondary vortices. The presence of secondary vortices

defined as concentric circular flow patterns within the vessel was recorded [24].

Statistical analysis

Statistical analyses were performed using XLSTAT1 (Addinsoft1, New York, United States).

All continuous values are presented as average ± standard deviation. The 95% confidence

interval was calculated for each parameter. All continuous data were tested for normal distri-

bution using Shapiro-Wilk test.

After normal distribution was confirmed, statistical testing for significant differences was

achieved using a two-sided unpaired Student’s t-test between patients with PH and age-

matched, healthy volunteers. Significance was accepted at a p-value of<0.05. Sensitivity and

specificity based on cut-off values for the detection of PH proposed by Sanz and colleagues for

Amin (660mm2) [9] and Strain (24%) [8] were calculated. Receiver operating characteristic

(ROC) curve analysis and area under the curve calculation were performed for both

parameters.

To evaluate quantitative parameters between 4D, 2D Flow MRI, and right heart volumetry

a Bland-Altman analysis was performed accepting differences in the range of ± 10% between

tests as clinically acceptable. Bland-Altman data and plots are given as mean bias and limits of

agreement (± 1.96 standard deviations of the difference) [25]. Scatter plots of 4D Flow versus

2D Flow MRI were constructed to depict correlation. In addition the intraclass correlation

coefficient (ICC; two way mixed-effects model; absolute agreement) was computed to test for

agreement between 4D and 2D Flow MRI, respectively. ICC values below 0.50 were evaluated

as poor, between 0.50 and 0.75 as moderate, between 0.75 and 0.90 as good and values greater

than 0.90 as excellent reliability [26].

For the analysis of additional value of 4D Flow MRI, sensitivity and specificity for the

occurrence of secondary vortices in the MPA to detect subjects presenting with an mPAP

of� 25mmHg confirmed by RHC-examination were computed.

Results

Comparison between volunteers and patients with PH

Table 2 provides a comparative overview of results in patients with pulmonary hypertension

and age-matched volunteers. 4D and 2D Flow MRI both revealed the ability to distinguish

patients from healthy individuals. Overall, patients with pulmonary hypertension presented

with increased vessel areas, decreased flows and flow velocities and their respective times to

maximum, as well as decreased strain. Differences of the anatomical parameters Amax, Amin,

and strain revealed statistical significance for both, 4D and 2D Flow MRI.

4D Flow MRI in pulmonary artery hemodynamics
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Applying the aforementioned cut-off values introduced by Sanz et al. yielded the following

results for the differentiation between healthy and diseased subjects: Amin reached a sensitivity

of 90.9% and specificity of 93.3% for detecting PH for both techniques. Values for strain were

especially helpful for diagnosing PH taking into accounts its high specificity of 86.7%/100% for

both 4D and 2D Flow MRI, respectively. The sensitivity to detect PH by MRI based on strain

analysis in the PA revealed values of 54%/63% for 4D and 2D Flow MRI, respectively. ROC

curves (Fig 2) confirmed the excellent ability of Amin to detect patients with PH for both tech-

niques, with 2D Flow MRI being slightly superior to 4D Flow MRI. Despite a large difference

in means for vmax for both techniques, differences between patients and age-matched healthy

volunteers showed statistical significance for the 2D Flow MRI acquisitions only (p<0.05). For

the time to maximum flow (t_Qmax) differences reached statistical significance only for 4D

Flow acquisitions (p<0.05).

Comparison of hemodynamic and anatomical parameters

Table 3 summarizes overall hemodynamic and anatomical results without phantom correc-

tion, averaged over the group of 20 young, 15 age-matched healthy volunteers and 11 patients.

There was good agreement between 2D and 4D Flow MRI with a tendency of 4D Flow MRI to

overestimate results in comparison to 2D Flow MRI. Only Qmax (4D: 359.6 ± 92.2ml; 2D:

369.7 ± 82.3ml, p = 0.1) presented with a tendency towards lower values in 4D than in 2D

Flow MRI.

Overall Bland-Altman analysis and the ICC confirmed these findings. While the mean

error was below 10% for all parameters except for Amin (60.9 ± 75.4 mm2; 12% ± 12%), in par-

ticular the parameters t_vmax (5.6 ± 129.9cm/s; 7% ± 45%) and strain (-4.9 ± 35.5%; -9% ±
43%) revealed considerable spread. ICC demonstrated good to excellent reliability for all quan-

titative parameters with the exception of t_Qmax and t_vmax. Bland-Altman plots are displayed

in Fig 3, corresponding scatter plots can be found in Fig 4, and ICC values are given in

Table 4.

Phantom corrected comparison

The comparison of SV in 23 volunteers examined with all three imaging techniques revealed

good agreement: SV obtained in the MPA was 93.0 ± 26.1 ml for 4D Flow MRI and 87.3 ± 19.1

ml for 2D Flow MRI. The mean bias of 5.7 ± 10.6 ml revealed by the Bland-Altman Plot was

acceptably small. The average SV derived from CINE-bSSFP was 90.5 ± 25.3 ml, resulting in a

Table 2. Comparison of hemodynamic and anatomical parameters between aged-matched, healthy volunteers (VOL-O) and patients with PH (PAT).

4D Flow MRI P value 2D Flow MRI P value

VOL-O PAT VOL-O PAT

SV [ml] 81.1 ± 12.8 79.3 ± 17.5 0.8 82.0 ± 16.0 70.7 ± 17.1 0.1

Qmax [ml/s] 334.1 ± 66.0 321.3 ± 83.7 0.7 363.3 ± 73.3 356.2 ± 85.7 0.8

t_Qmax [ms] 136 ± 23.9 114.8 ± 21.5 <0.05� 124,7 ± 25.3 104.5 ± 28.5 0.07

vmax [cm/s] 87.9 ± 16.5 83.3 ± 17.6 0.5 96.8 ± 18.5 80.3 ± 15.9 <0.05�

t_vmax [ms] 143.2 ± 40.5 114.8 ± 21.5 0.2 142.18 ± 50.5 131.47 ± 29.7 0.5

Amax [mm2] 730.2 ± 140.7 1152.9 ± 237.4 <0.01� 666.2 ± 114.0 1071.1 ± 279.6 <0.01�

Amin [mm2] 545.7 ± 106.7 927.5 ± 118.2 <0.01� 473.8 ± 95.5 906.5 ± 204.7 <0.01�

Strain [%] 34.8 ± 13.3 24.5 ± 8.8 <0.05� 41.2 ± 12.4 21.2 ± 7.3 <0.01�

Values are given as average ± standard deviation; asterisk (�) indicates statistical significance.

https://doi.org/10.1371/journal.pone.0224121.t002
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mean bias compared to 4D Flow MRI of 5.5 ± 17.2 ml. Phantom correction further improved

mean bias to 3.1 ± 12.3 ml (4D Flow vs. 2D Flow MRI) and to -0.1 ± 20ml (4D Flow MRI vs.

CINE-bSSFP), decreasing the Bland-Altman window width, too.

Similar to volumes, the peak velocity revealed good agreement between 2D Flow and 4D Flow

MRI of 89.4 ± 14.9 cm/s and 93.3 ± 16.3 cm/s. Bland Altman analysis demonstrated a mean bias

of 3.9 ± 12.5 cm/s which was further improved by phantom correction to 1.3 ± 14.5 cm/s.

Fig 2. Receiver operating characteristic curves for Amin and Strain measured with 4D and 2D Flow MRI. The ROC

curves illustrate the ability of Amin and Strain to detect patients with PH, characterized by a mean pulmonary artery

pressure of> 25 mmHg. AUC = area under the curve.

https://doi.org/10.1371/journal.pone.0224121.g002

Table 3. Comparison of hemodynamic and anatomical values between 2D and 4D Flow MRI in the entire study collective.

4D Flow MRI 95% CI 2D Flow MRI 95% CI P value

SV [ml] 88.6 ± 21.3 [82.4; 94.7] 82.8 ± 18.9 [77.3; 88.3] < 0.01�

Qmax [ml/s] 359.6 ± 92.2 [332.8; 386.6] 369.7 ± 82.3 [341.9; 391.0] 0.1

t_Qmax [ms] 136 ± 23.9 [131.7; 150.5] 136 ± 23.9 [122.0; 138.7] < 0.05�

vmax [cm/s] 91.1 ± 19.5 [96.8; 85.5] 87.4 ± 17.2 [82.5; 92.4] 0.2

t_vmax [ms] 147.5 ± 56.9 [131.1; 164.0] 142.18 ± 50.5 [125.5; 149.3] 0.3

Amax [mm2] 865.0 ± 237.4 [797.2; 934.5] 789.2 ± 233.5 [721.7; 856.7] 0.1

Amin [mm2] 626.5 ± 209.5 [566.0; 687.1] 565.6 ± 228.8 [499.5; 631.7] 0.2

Strain [%] 41.3 ± 18.5 [36.0; 46.6] 46.1 ± 20.9 [40.1; 52.2] 0.2

Values are given as average ± standard deviation; asterisk (�) indicates significance.

https://doi.org/10.1371/journal.pone.0224121.t003
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Fig 3. Bland-Altman plots for all evaluated hemodynamic and anatomical parameters for the comparison between 4D Flow and 2D Flow

MRI. The solid line indicates mean bias between techniques, dashed lines indicate limits of agreement (mean bias ± 1.96 standard deviations).

https://doi.org/10.1371/journal.pone.0224121.g003
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The COM-analysis for the uncorrected 4D Flow MRI data in 23 volunteers presented

matching average results of 93.0 ± 26.1ml for SVMPA and 90.8 ± 19.5ml for the sum of SVRPA +

SVLPA (p = 0.51). Mean bias did not benefit from phantom correction revealing an increase in

difference from 2.2 ± 15.6 ml (uncorrected data) to 7.7 ± 15.9 ml (corrected data).

Fig 4. Scatter plots for all evaluated hemodynamic and anatomical parameters for the comparison between 4D Flow and 2D

Flow MRI.

https://doi.org/10.1371/journal.pone.0224121.g004
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Visualization of secondary vortices

The flow pattern visualization revealed secondary vortices in the distal MPA in 9 of 11 patients

and in 2 of 35 volunteers, resulting in a sensitivity of 81.8% and a specificity of 94.6% for detec-

tion of PH in this study. An example of blood flow visualization can be found in Fig 5.

Discussion

The herein presented data are unique in that they express an ambiguity that seems to be inher-

ent to the field of 4D Flow MR imaging: To one end, 4D Flow MRI is able to aid the detection

of PH and distinguish PH patients from volunteers based on hemodynamic and anatomical

parameters as well as flow visualization. To the other end, while showing a convincing degree

of comparability between clinically applicable MR methods, there is still a considerable spread

of differences and a tendency of 4D Flow MRI to overestimate certain parameters. This has to

be taken into account when evaluating patients’ quantitative data. However, the advantage of

the 4D Flow MRI approach is that a single sequence provides both anatomical and hemody-

namic values as well as bloodflow visualization guiding the detection of PH while a plethora of

further derived parameters potentially being available [11, 23].

Despite the restrictions mentioned above, results of our study suggest that 4D Flow MRI

offers a feasible, comprehensive approach to evaluate quantitative parameters in the pulmo-

nary circulation as underlined by the good to excellent reliability of flow, velocity and anatomi-

cal parameters in the ICC analysis. Cut off-values for detecting an elevated mPAP established

previously for Amin and strain with 2D Flow MRI [8, 9] were confirmed in this study and suc-

cessfully applied to data derived from 4D Flow measurements with comparable results. Sanz

and colleagues reported sensitivities and specificities of 92%/88.2% for Amin [9] and 77%/95%

for strain [8], matching the results of our study. While results for sensitivity and specificity

regarding strain and Amin are favorable, the large spread for strain in particular revealed by

BA-analysis potentially hampers the applicability of this parameter for diagnosing PH.

However, with a growing body of studies comparing 4D and 2D Flow MRI, both over- and

underestimation of hemodynamic parameters measured with 4D Flow MRI have been

reported for different vendors and systems in literature [22, 27–32]. Various reasons have been

attributed to these differences; including general limitations inherent in 4D Flow MRI like

decreased spatiotemporal resolution [20], as well as different acquisition and post-processing

techniques [16]. While the decreased spatiotemporal resolution is likely responsible for the

low reliability of t_Qmax and t_vmax demonstrated in the ICC analysis, these differences are

contrasted by good results of the COM-analysis, suggesting reliable intrinsic consistency of

our 4D Flow measurements [23]. This consistency of 4D Flow MRI implies that above

Table 4. Intraclass correlation coefficients with corresponding 95% confidence intervals for quantitative parame-

ters evaluated with 2D and 4D Flow MRI in the entire study collective.

ICC 95% CI

SV [ml] 0.82 [0.66; 0.91]

Qmax [ml/s] 0.93 [0.88; 0.96]

t_Qmax [ms] 0.73 [0.50; 0.85]

vmax [cm/s] 0.82 [0.67; 0.90]

t_vmax [ms] 0.19 [-0.46; 0.55]

Amax [mm2] 0.94 [0.70; 0.98]

Amin [mm2] 0.95 [0.78; 0.98]

Strain [%] 0.78 [0.60; 0.88]

https://doi.org/10.1371/journal.pone.0224121.t004
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differences in flow, velocity and anatomical parameters may have also been influenced by vary-

ing physiological conditions, especially image acquisition during free breathing in 4D Flow

MRI as opposed to breathholding in 2D Flow MRI and bSSFP CMR [28, 33]. Similarly, there

may have been bias introduced by the fact that 4D Flow MRI was performed after the applica-

tion of contrast agent whereas 2D Flow MRI was performed before.

As expected, phantom correction improved comparability which may be due to imperfectly

corrected eddy currents and the relatively high signal-to-noise ratio in 4D Flow MRI as com-

pared to 2D Flow MRI [34]. A debatable finding of our study is the deterioration of the COM-

analysis after phantom correction. While there is no simple, provable explanation to this find-

ing, additional factors such as differing gradient temperatures during human and phantom

studies may affect phase contrast measurements to a variable extent. Such variations are diffi-

cult to control, especially during the 4D Flow measurements with durations of over 10 minutes

[34, 35]. As employing a phantom potentially doubles scan time and differences between non-

phantom and phantom corrected data were relatively low, phantom correction might be dis-

pensable for practical clinical use. However, the residual error and spread in both, corrected

and non-corrected data, is still of note and should be motivation for future optimization of the

sequence, the acquisition set-up, and the use of a phantom in quantitative studies.

Fig 5. Visualization of macroscopic bloodflow in a healthy volunteer and a patient with PH. The volunteer (a) shows physiological laminar flow

without any secondary flow patterns whereas the patient (b) demonstrates a vortex in the MPA, indicating an increased mean pulmonary artery

pressure.

https://doi.org/10.1371/journal.pone.0224121.g005
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In general, 4D Flow MRI offers advantages over 2D Flow MRI, such as the post-hoc

analysis of the 4D volume that allows for targeted analysis of vessel sections of interest and

the placement of multiple analysis planes, thus relieves one of the need to plan multiple

slices during the acquisition and minimizes potential errors due to improper slice-place-

ment limiting the use of 2D phase contrast MRI sequences. As demonstrated by various

works including this study, pathological flow conditions may vary considerably in patients

with PH. Placement of a single 2D slice in a complex flow field to analyze quantitative

parameters may miss relevant information, whereas in a 4D Flow dataset analysis planes

can be tailored to the individual patients flow characteristics. Technical limitations such as

long scan times and the somewhat lengthy evaluation are subject of continuous improve-

ments, including faster imaging protocols like compressed-sensing and novel software

approaches [36, 37].

The peerless characteristic of 4D Flow MRI is the visualization of blood flow patterns in

the pulmonary vasculature. We were able to demonstrate the presence of a vortex in the

main pulmonary artery in our data as previously described [12], confirming good sensitivity

and specificity in the detection of PH via visualization of secondary flow patterns. Other

advanced parameters obtainable with 4D Flow MRI, such as vorticity and wall shear stress,

show promising results in detecting PH und underscore the potential and comprehensive

nature of this technique for clinical application [15, 38–40]. Unfortunately, the evaluation

of these parameters was not possible with our software package, therefore warranting fur-

ther research.

Other potential shortcomings of this study may be seen in the lack of a true reference stan-

dard (ground truth) for in vivo flow measurements. Additionally, certain comparison efforts

were only performed in a subset of participants. Also including more patients is essential to

future work elaborating on testing for PH and characterizing PH subtypes, in particular. The

general limitations of 4D Flow MRI are well known and have been discussed extensively [20].

For further comparison interscan, inter-vendor as well as rescan or inter-field strength com-

parisons would be desirable. Possible, physiological diurnal variations of the acquired parame-

ters have not been assessed to this date. Finally, the patients received a variability of different

PH-treatments, which may have confounding effects on the study’s results.

Conclusion

In conclusion, our study confirms both, the applicability of 4D Flow MRI applied on a digital

broadband 3T MR system as well as acceptable agreement and reliability for most quantitative

parameters in volunteers and patients with PH compared to 2D Flow MRI. Despite the consid-

erable spread and potential overestimation in particular for strain and peak-time-related

parameters that have to be taken into account when examining patients with 4D Flow MRI,

4D Flow MRI promises the most comprehensive evaluation of the pulmonary circulation pro-

vided by a single diagnostic technique, assessing hemodynamics, anatomy and secondary flow

patterns non-invasively. To identify parameters suitable to better characterize and reliably

diagnose PH using 4D Flow, larger, preferably multicenter studies with greater numbers of

patients would be desirable.
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